История интегрального исчисления кратко

Обновлено: 05.07.2024

Интегральное исчисление, вместе с исчислением дифференциальным, составляет основу математического анализа. Интегральным исчислением называют раздел математики, занимающийся изучением интегралов, их свойств и методов вычисления.
Метод исчерпывания - начало интегрального исчисления.

Содержание

Введение…………………………………………………………………….….3
Глава I .История развития интегрального исчисления……………………. 5
§1.1. Геометрический смысл неопределенного интеграла………………….6
§1.2. Неопределенный интеграл……………………………………………. 7
§1.3. Символьный метод, операторы………………………………………….7
Глава II. Ньютон и Лейбниц ………………………………………………….8
§2.1. Рождения противоречий………………………………………………. 9
§2.2. Эйлер. Понятие об интегральной сумме……………………………. 10
Глава III. Проблема двойных и тройных интегралов………………………12
§3.1. Исследование методов двойных и тройных интегралов……………..12
§3.2. Основополагающий результат Коши………………………………….13
§1.3. Роль интегрального исчисления в будущей профессии юриста…….14
Заключение………………………………………………………………. 16
Список использованной литературы……………………………………..18
Приложения………………………………………………………………….19

Прикрепленные файлы: 1 файл

проект.Интегралы.docx

Глава I .История развития интегрального исчисления……………………. 5

§1.1. Геометрический смысл неопределенного интеграла………………….6

§1.2. Неопределенный интеграл……………………………………………. 7

§1.3. Символьный метод, операторы………………………………………….7

Глава II. Ньютон и Лейбниц ………………………………………………….8

§2.1. Рождения противоречий……………………………………………… . 9

§2.2. Эйлер. Понятие об интегральной сумме……………………………. 10

Глава III. Проблема двойных и тройных интегралов………………………12

§3.1. Исследование методов двойных и тройных интегралов…… ………..12

§3.2. Основополагающий результат Коши………………………………….13

§1.3. Роль интегрального исчисления в будущей профессии юриста……. 14

Список использованной литературы……………………………………..18

Интегральное исчисление, вместе с исчислением дифференциальным, составляет основу математического анализа. Интегральным исчислением называют раздел математики, занимающийся изучением интегралов, их свойств и методов вычисления.
Метод исчерпывания - начало интегрального исчисления.
Интегральное исчисление появилось во времена античного периода развития математической науки и началось с метода исчерпывания, который был разработан математиками Древней Греции, и представлял собой набор правил, разработанных Евдоксом Книдским. В начале своего построения Евдокс дал аксиоматику для сравнения величин. Все однородные величины сравнимы между собой, и для них определены две операции: отделение части и соединение (взятие кратного). По этим правилам, по которым вычисляли площадей и объёмы. Далее метод получил своё развитие в работах Евклида. Особым искусством и разнообразием применения метода исчерпывания прославился Архимед.
Рассмотрим типичную схему доказательств, используемую в методе исчерпывания. Она выглядела следующим образом. Для того, чтобы определить величину A строилась некоторая последовательность величин C 1 , C 2 , …, C n , … такая, что.Предполагалось также известным такое B , что для любого целого N можно найти достаточно большое n , удовлетворяющее условию:
Где величина d – константа. В результате трудоёмких вычислений, из последнего выражения удавалось получить следующее:
Таким образом, видим, что рассматриваемый метод был основан на аппроксимации рассматриваемых объектов ступенчатыми фигурами или телами, составленными из простейших фигур или пространственных тел (прямоугольников, параллелепипедов, цилиндров и т.п., обозначенных последовательностью А 1 , А 2 , …, А n , …). Таким образом метод исчерпывания можно представить как античный интегральный метод. Определение основных понятий и принципов интегрального исчисления.

Известно, что кризис и упадок древнего мира привёл к забвению многих ценных научных достижений. Не повезло и методу исчерпывания - о нём вспомнили лишь в XVII веке. Дальнейшее его развитие связано с такими известными в математике именами, как Исаак Ньютон, Готфрид Лейбниц, Леонард Эйлер и ряда других выдающихся учёных. Они положили основу современного математического анализа.
Все возрастающие запросы практики и других наук в конце XVII и в XVIII веке побудили ученых максимально расширить область и методы исследований математики. На первое место выдвинулись понятия бесконечности, движения, функциональной зависимости. Они стали основой новых методов математики.
Глава I. История развития интегрального исчисление

Основанные на идеях, сформулированных в начале XVII веке великим математиком и астрономом Иоганном Кеплером, в конце XVII века были разработаны основные понятия и теория интегрального и дифференциального исчислений, связь операций дифференцирования и интегрирования, а также их применение к решению прикладных задач.

Известна следующая забавная история. В ноябре 1613 года королевский математик и астролог австрийского двора И. Кеплер праздновал свадьбу. Для подготовки к ней ему нужно было приобрести несколько бочек виноградного вина. При их покупке Кеплер был удивлен тем, как продавец определял вместимость бочки, производя одно единственное действие - измеряя расстояние от наливного отверстия до самой дальней от него точки днища. Такое измерение совершенно не учитывало форму бочки! Кеплер сразу увлёкся этой интереснейшей математической задачей - по нескольким измерениям вычислить вместимость бочки. Размышляя над ней, Кеплер вывел формулы не только для объёма бочек, но и для объёма самых различных тел: лимона, яблока, айвы и даже турецкой чалмы. Кеплеру для каждого из изучаемых тел создавал новые, нередко очень хитроумные методы, что оказалось крайне неудобно. Позднее именно попытка найти общие, простые методы решения подобных задач и привела к возникновению современного интегрального счисления. Но это уже была заслуга совсем другого математика.

Не найти другого учёного, исследования которого оказали бы столь сильное влияние на историю мировой науки и культуры, как Исаак Ньютон. Известный математик и историк науки Б. Л. Ван-дер-Варден в своей книге “Пробуждающаяся наука” написал: “Каждый естествоиспытатель, безусловно, согласится, что механика Ньютона есть основа современной физики. Каждый астроном знает, что современная астрономия начинается с Кеплера и Ньютона. И каждый математик знает, что самим значительным наиболее важным для физики отделом современной математики является анализ, в основе которого лежат дифференциальное и интегральное исчисления Ньютона. Следовательно, труды Ньютона являются основой огромной части точных наук нашего времени”. И не только наук: “Математика и техника влияют даже на нашу духовную жизнь, и настолько. Что мы редко можем представить это себе полностью. Вслед за необычайным взлётом, которое пережило и XVII веке естествознание, последовал неизбежно

Из биографии Исаака Ньютона известно, что он родился в 1643 году, посещал сначала сельскую школу, а в двенадцать лет его отправили учиться в ближайший город. Директор школы обратил внимание на способного мальчика и настоял, чтобы мать Ньютона отправила сына учиться в Кембриджский университет. Ньютона приняли университет как бедного студента, обязанного прислуживать бакалаврам, магистрам и студентам старших курсов.

Жизнь связала Ньютона с молодым блестящим учёным Исааком Барроу, который занимал тогда Кафедру математики в Кембридже. Он заинтересовался талантливым молодым человеком и скоро стал не только учителем, но и другом Ньютона, а спустя несколько лет уступил своему великому ученику кафедру математики. К этому времени Ньютон получил уже степени бакалавра и магистра. В 1665-1667 годах Ньютон начал работать над созданием математического аппарата, с помощью которого можно было бы исследовать и выражать законы физики. Ньютон первый построил дифференциальное и интегральное исчисления, он назвал его методом флюксий. Это дало возможность решать самые разнообразные, математические и физические, задачи. До Ньютона многие функции определяли только геометрически, и к ним невозможно было применять алгебру или новое исчисление флюксий. Ньютон нашел новый общий метод аналитического представления функции - он ввел в математику и начал систематически применять бесконечные ряды.

Такое представление функции с помощью ряда очень удобно. С помощью рядов, как писал Ньютон, “удается преодолеть трудности, в другом виде представляющиеся почти неодолимыми”.
К аналогичным идеям, одновременно с Ньютоном, пришёл другой выдающийся учёный - Готфрид Вильгельм Лейбниц.

Познакомимся с его биографией. Лейбниц родился в Германии в г. Лейпциге в 1646 г. Любознательный мальчик уже 6 лет вел интересные беседы по истории со своим отцом, профессором Лейпцигского университета. К 12 годам он изучил латинский язык и увлёкся древнегреческим. Особенно его интересовали древние философы, и он любил подолгу размышлять о философских теориях Аристотеля, Демокрита. В 15 лет Лейбниц поступил в Лейпцигский университет, где старательно изучал право и философию. Он очень много читал, его любимыми книгами были книги Р. Декарта, Г. Галилея, II. Кеплера и Д. Кампанеллы. Колоссальные знания но математике Лейбниц приобрел, как ни странно, самоучкой. Через три года, окончив университет, Лейбниц, обиженный отказом ученого совета университета присвоить ему, степень доктора прав покинул Лейпциг. Отказ объяснили тем, что Лейбниц был. слишком молод!
Так для молодого учёного началась жизнь, полная напряженного труда и далёких бесконечных путешествий. Нетрудно представить, как неудобно было путешествовать в неуклюжих каретах по тряским дорогам Европы тех времен. Лейбниц старался никогда не терять время даром. Много удачных мыслей родилось в его талантливой голове именно во время этих продолжительных поездок.
Лейбниц обладал исключительной способностью быстро понимать в задачу и решать ее наиболее общим способом. Размышляя над философскими и математическими вопросами, он убедился, что самым надежным средством искать и находить истину в науке может стать математика. Всю свою сознательную жизнь он стремился выразить законы мышления, человеческую способность думать в виде математического исчисления. Для этого необходимо, учил Лейбниц, уметь обозначать любые понятия или идеи определенными символами, комбинируя их в особые формулы, и сводить правила мышления к правилам в вычислениях, но этим символическим формулам. Лейбниц стремился избавить наши рассуждения от любой неопределенности и возможности ошибиться самому или вводить в заблуждение других, заменяя общие слова четко определенными символами.

Лейбниц мечтал, что если вдруг между людьми возникнут разногласия, то решаться они будут не в длинных и утомительных спорах, а так, как решаются задачи или доказываются теоремы. Спорщики возьмут в руки перья и, сказав: “Начнем вычислять” - примутся за расчеты.
Лейбниц одновременно с Ньютоном, как уже отмечалось, и независимо от него открыл основные принципы дифференциального и интегрального исчислений.

Теория приобрела силу только после того, как Лейбницем было доказано, что дифференцирование и интегрирование - взаимно обратные операции. Об этом свойстве хорошо знал и Ньютон, но только Лейбниц увидел здесь ту замечательную возможность, которую открывает применение символического метода.
Так любой человек, изучив небольшое число правил действия с символами, обозначающими операции дифференцирования и интегрирования, становится обладателем мощного математического метода.

§1.1. Геометрический смысл неопределённого интеграла.

Пусть задан неопределённый интеграл F(х) + С для функции f(х) в некотором интервале. При фиксированном значении С = С1 получим конкретную функцию у1 = F(х) + С1, для которой можно построить график; его называют интегральной кривой. Изменив значение С и положив С = С2, получим другую первообразную функцию С соответствующей новой интегральной кривой.

Аналогично можно построить график любой первообразной функции. Следовательно, выражение у = F(х) + С можно рассматривать как уравнение семейства интегральных кривых неопределённого интеграла F(х) + С. Величина С является параметром этого семейства – каждому конкретному значению С соответствует единственная интегральная кривая в семействе. Интегральную кривую, соответствующую значению параметра С2, можно получить из интегральной кривой, соответствующей значению параметра С1, параллельным сдвигом в направлении оси Оу на величину /С2 – С1/. На рис. 3 изображён неопределённый интеграл х 2 + С от функции f(х) = 2х, то есть, семейства парабол.

Функция F(x) называется первообразной функцией для функции f(x) на множестве XН R, если в каждой точке этого множества F'(x) = f(x).

Например, функция F(x) = x 2 /2 является первообразной для функции f(x) = x, так как (x 2 /2)' = x. Очевидно, что если F(x) - первообразная функция для функции f(x) на множестве X, то функция F(x)+C, где C - некоторая постоянная, также является первообразной для функции f(x), xО X, так как (F(x)+C)' = F'(x) = f(x). Геометрически это означает, что если найдена одна кривая y = F(x), являющаяся первообразной, то, сдвигая ее вдоль оси ординат, мы снова получим кривые, удовлетворяющие условию (F(x)+C)' = f(x).

Метод подстановки

Замена переменной интегрирования является одним из эффективных методов сведения интеграла к табличному. Этот прием интегрирования называется методом подстановки.

функция x = f (t) определена и дифференцируема на некотором множестве T, а X - множество значений этой функции, на котором определена f(x). Тогда, если функция f(x) имеет первообразную на X, то на T справедлива следующая формула

Доказательство. Пусть F(x) – первообразная для f(x) на X, то есть F' (x) = f(x). Используя правило дифференцирования сложной функции, получим

∫ f(f (t))f'(t)dt=F(f(t))+C. Так как ∫ f(x)dx = F(x)+C

Интегрирование по частям :

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные производные. Тогда, по правилу дифференцирования произведения,

d(uv)= udv + vdu или udv = d(uv) -vdu.Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

Эта формула выражает правило интегрирования по частям. Оно приводит интегрирование выражения udv=uv'dx к интегрированию выражения vdu=vu'dx.

Пусть, например, требуется найти x cosx dx. Положим u = x, dv = cos x dx, так что du=dx, v=sinx. Тогда

∫ x cos x dx = ∫ x d(sin x) = x sin x - ∫ sin x dx = x sin x + cos x + C.Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫ x k ln m x dx, ∫x k sin bx dx, ∫ x k cos bx dx, ∫x k e ax dx

и другие, которые вычисляются именно с помощью интегрирования по частям.

∫(х-4)*sin3xdx│u=x-4,du=dx dv-sin3xdxv=∫sin3xdx=- cos3x│-cos3x+∫cos3xdx=-xcos3x= +sin3x+C

Найти ∫ arctg x dx.

Решение. Обозначим u=arctg x, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫ arctg x dx = x arctg x - ∫ x dx/(x 2 +1) = x arctg x + 1/2 ln(x 2 +1) +C; так как
∫x dx/(x 2 +1) = 1/2 ∫ d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Вычислить ∫ e x sin x dx.

Решение. Обозначим u = e x , dv = sin x dx, тогда du = e x dx, v = ∫ sin x dx= - cos x → ∫ e x sin x dx = - e x cos x + ∫ e x cos x dx. Интеграл ∫ e x cos x dx также интегрируем по частям: u = e x , dv = cos x dx Þ du=e x dx, v=sin x. Имеем:
∫ e x cos x dx = e x sin x - ∫ e x sin x dx. Получили соотношение ∫ e x sin x dx = - e x cos x + e x sin x - ∫ e x sin x dx, откуда 2 ∫ e x sin x dx = - e x cos x + e x sin x + С.

§1.2. Символьный метод, операторы

В наше время такие символы операций называют операторами. Операторы дифференцирования d() и интегрирования действуют на функции, “перерабатывая” их в другие, точно вычисляемые функции. Лейбниц разрабатывает особую алгебру действий с этими операторами. Он доказывает, что обычное число, а можно выносить за знак оператора. Одинаковые операторы можно выносить за скобку.
Сокращенно все перечисленные свойства можно выразить соотношением: где a и b - числа.
Однако в подходе Ньютона-Лейбница крылось серьёзное противоречие.
Операторы, которые обладают таким свойством. называются линейными. Теория линейных операторов, которую с таким успехом начал развивать, Лейбниц,. в современной математике является хорошо разработанной и полезной в приложениях теорией.
Многократное применение операторов можно принимать как степень оператора, например, для d( ) :
То, что основные операторы математического анализа являются взаимно обратными Лейбниц подчёркивал своей символикой, утверждая, что в d(x) и также взаимно обратны, как степени и корни в обычном исчислении. Употребляя так же обозначение, аналогичное обозначению a -1 числа, обратного a , причём произведение a Ч a -1 =1. Обозначая операторы или наоборот:
и понимая под их произведением последовательное их применение, имеем, т. е. произведение есть “единица”, не меняющая функцию.

ИНТЕГРАЛ (от лат. Integer - целый) - одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой - измерять площади, объемы, длины дуг, работу сил за определенный промежуток времени и т. п.

СВЕДЕНИЯ ИЗ ИСТОРИИ

О ПРОИСХОЖДЕНИИ ТЕРМИНОВ И ОБОЗНАЧЕНИЙ

Символ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integero, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования “восстанавливает” функцию, дифференцированием которой получена подынтегральная функция.) Возможно происхождение слова интеграл иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же , в 1696г., появилось и название новой ветви математики - интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные вам термины, относящиеся к интегральному исчислению, появились значительно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее “примитивная функция”, которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как “начальный”: F(x)= - начальная (или первоначальная, или первообразная) для функции f(x), которая получается из F(x) дифференцированием.

Самое важное из истории интегрального исчисления!

Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был решен математиками древней Греции. Античная математика предвосхитила идеи интегрального исчисления в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывающий метод, созданный Евдоксом Книдским (ок. 408 - ок. 355 до н. э.) и широко применявшийся Архимедом (ок. 287 - 212 до н. э.).

Однако Архимед не выделил общего содержания интеграционных приемов и понятий об интеграле, а тем более не создал алгоритма интегрального исчисления. Ученые Среднего и Ближнего Востока в IX - XV веках изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в интегральном исчислении они не получили.

Деятельность европейских ученых в это время была еще более скромной. Лишь в XVI и XVII веках развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождение квадратур (задачи на вычисление площадей фигур), кубатур (задачи на вычисление объемов тел) и определение центров тяжести .

Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов развития интегрального исчисления. Архимед предвосхитил многие идеи интегрального исчисления. Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции. Например, криволинейную трапецию они представляли себе составленной из вертикальных отрезков длиной f(x) , которым тем не менее приписывали площадь, равную бесконечно малой величине f(x)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме S = бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571 - 1630 гг.) в своих сочинениях “Новая астрономия” (1609 г.) и “Стереометрия винных бочек” (1615 г.) правильно вычислил ряд площадей (например площадь фигуры, ограниченной эллипсом) и объемов (тело резалось на бесконечно тонкие пластинки).

Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598 - 1647 годы) и Э. Торричелли (1608 -1647 годы).

В XVII веке были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П. Ферма уже в 1629 году решил задачу квадратуры любой кривой y =, где N - целое (т. е. вывел формулу ), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет, фактически опирался на идею приближенного интегрирования. И. Барроу (1603-1677 года), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функции в виде степенных рядов.

Однако при всей значимости результатов, полученных математиками XVII столетия, исчисления еще не было. Необходимо было выделить общие идеи, лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно точный алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известный вам под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801 - 1862 гг.), В. Я. Буняковский (1804 - 1889 гг.), П. Л. Чебышев (1821 - 1894 гг.). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке, Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков немецкого ученого Б. Римана (1826 - 1866 гг.), французского математика Г. Дарбу (1842 - 1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1826 - 1922 гг.) теории меры.

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875 - 1941 гг.) и А. Данжуа (1884 - 1974) советским математиком А. Я. Хичиным (1894 -1959 гг.)

Список использованной литературы

1). Афанасенко Е. И. Детская энциклопедия т.2., М., “Просвещение”, 1964.

2). Вавилов В. В. Задачи по математике. Начало анализа., М., “Наука”, 1990.

3).Евграфов Н. Н. Курс физики для подготовительных отделений вузов., М., “Высшая школа”, 1984.

4). Колмогоров А. Н. Алгебра и начала анализа., М., “Просвещение”, 1990.

Интегральное исчисление зародилось еще в античной Греции для вычисления объема фигур и их площадей. В работах Евклида можно найти описания того, как решить неравенство при помощи так называемого метода исчерпывания – прародителя интегрального исчисления. С упадком Древнего мира об открытиях в этой области на некоторое время забыли. Вспомнили о научных достижениях в этой математической сфере только в XVII веке. Именно в конце этого периода были разработаны основные теории и принципы интегрального исчисления.

тригонометрия

Интересные факты

Основной вклад в развитие этой научной сферы был сделан известным средневековым математиком и астрономом Иоганном Кеплером. В истории упоминается, что впервые его интерес к интегральному исчислению зародился совершенно случайно, когда перед собственной свадьбой он отправился на рынок, чтобы купить вина. Там его поразил продавец, который с точностью определял размер любой бочки, просто замеряя расстояние от днища до наливного отверстия. Форма сосуда при этом полностью игнорировалась! Кеплер очень заинтересовался подобным методом исчисления и после этого попробовал применить его для расчета объема самых разных тел: фруктов, овощей, предметов. Каждый раз приходилось придумывать новую формулу, что было крайне неудобно. Но впоследствии именно эти труды Кеплера легли в основу современного интегрального исчисления.

Далее изучение этого вопроса практически одновременно продолжили сразу два выдающихся математика: Исаак Ньютон и Готфрид Лейбниц. Отдельно друг от друга они разработали важнейшие принципы интегрального исчисления, а также доказали, что дифференцирование является обратной ему операцией. Несмотря на то, что впоследствии между двумя учеными возникли серьезные противоречия по изучаемому вопросу, им удалось самое важное - перевести графические изображения в алгебраические формулы.

Сегодня все эти знания удалось объединить. Сервис решения интегралов онлайн за несколько секунд производит все нужные вычисления и выдает правильный результат. Еще несколько столетий назад для этого могло бы потребоваться несколько часов кропотливой работы.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Описание презентации по отдельным слайдам:

Из истории интегрального исчисления

ИНТЕГРАЛ (от лат. integer — целый), одно из важнейших понятий математики. Оно возникло в связи с потребностью, с одной стороны, отыскивать функции по их производным. Например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки. А с другой — измерять площади, объёмы, длины дуг, работу сил за определённый промежуток времени и т. п. В соответствии с этим различают неопределённые и определённые интегралы, вычисление которых является задачей интегрального исчисления.

Интегральный метод зародился в трудах древнегреческого учёного Архимеда(III век до нашей эры) при вычислении им площадей и объёмов некоторых фигур и тел. Архимед предвосхитил многие идеи этого метода, но потребовалось свыше полутора тысяч лет, прежде чем они получили чёткое математическое оформление и превратились в интегральное исчисление.

Основные понятия и теория интегрального и дифференциального исчислений, прежде всего связь операций дифференцирования и интегрирования, а также их применение к решению прикладных задач были разработаны в конце XVII века, но основывались на идеях, сформулированных в начале XVII века немецким учёным И. Кеплером. В 1615 г. он нашёл формулы для вычисления объёма бочки и для объёмов самых различных тел вращения: лимона, яблока, айвы и даже турецкой чалмы. Для каждого из тел Кеплеру приходилось создавать новые, зачастую очень хитроумные, методы, что было крайне неудобно. Попытка найти общие, но главное простые методы решения подобных задач и привела к возникновению интегрального исчисления.

Немецкий учёный Г. Лейбниц одновременно с английским учёным И. Ньютоном и независимо от него открыл основные принципы дифференциального и интегрального исчислений в 80-х годах XVII века. Теория приобрела силу после того, как Лейбницем и Ньютоном было доказано, что дифференцирование и интегрирование – взаимно обратные операции. Об этом свойстве хорошо знал и Ньютон. Но только Лейбниц увидел здесь ту замечательную возможность, которую открывает применение символического метода. Всю свою сознательную жизнь он стремился выразить законы мышления, человеческую способность думать в виде математического исчисления.

Интеграл у Ньютона (флюента) выступал, прежде всего, как неопределённый, т. е. как первообразная. Понятие интеграла у Лейбница выступало, напротив, прежде всего в форме определённого интеграла в виде суммы бесконечного числа бесконечно малых дифференциалов, на которые разбивается та или иная величина.

И. Ньютону, Г. Лейбницу и некоторым их современникам принадлежит применение методов графического интегрирования. При вычислении интегралов с определёнными пределами с помощью неопределённых интегралов как Ньютон, так и Лейбниц пользовались носящей их имя формулой, однако современная терминология была создана только в конце XVIII века.

Читайте также: