Источники энергии в звездах кратко

Обновлено: 02.07.2024

Наиболее очевидным свойством звезд является то, что они светятся, точнее, являются самосветящимися телами. За счет чего покрываются их энергетические потери? Этот вопрос возник, как только был сформулирован закон сохранения энергии, однако найти исчерпывающий ответ на него сумели лишь век спустя.

Обычно думают, что главная трудность проблемы – в огромной мощности выделения энергии на Солнце и звездах. В действительности дело вовсе не в этом. Удельный темп энерговыделения на Солнце и в звездах более чем скромный. Так, в расчете на один грамм своего вещества Солнце ежесекундно выделяет всего по 2 эрга. По обыденным земным меркам это совершенно ничтожный темп энерговыделения – как в куче гниющих осенних листьев. В человеческом теле темп выделения энергии на четыре порядка (!) выше, чем в Солнце. Однако чтобы поддерживать такой уровень производства энергии, нам нужно трижды в день есть. А Солнце (и звезды) светят миллиарды лет, не питаясь.

Итак, истинная проблема состоит в том, что звезды светят очень и очень долго. За это время они успевают высветить действительно огромные количества энергии. Откуда же она черпается?

Как уже говорилось, вопрос был поставлен в 40-е годы XIX века, с открытием закона сохранения энергии. Сразу же стало ясно, что источником энергии в принципе может быть гравитация. Так, Роберт Мейер, один из отцов закона сохранения энергии, полагал, что Солнце светится за счет кинетической энергии выпадающего на него метеорного вещества. Любопытно, что в течение многих десятилетий гипотеза Мейера считалась чуть ли не смехотворной и упоминалась лишь как исторический курьез. Однако теперь мы знаем, что модернизированный вариант механизма Мейера – аккреция – играет в мире звезд важную роль.

Другой пионер принципа сохранения энергии Герман Гельмгольц предположил, что свечение Солнца может поддерживаться его медленным вековым сжатием, что приводит, разумеется, к выделению гравитационной энергии. Вскоре вслед за Гельмгольцем Дж. Томсон (более известный нам как лорд Кельвин; титул лорда он получил за научные заслуги) уточнил его оценку времени такого сжатия, учтя неоднородность в распределении солнечного вещества вдоль радиуса. За счет такого, как мы теперь говорим, кельвиновского сжатия Солнце могло бы, заметно не меняясь, светить лишь десятки миллионов лет. Любопытно, что сам Кельвин, а вслед за ним и многие другие, рассматривали это как серьезный аргумент против правильности дарвиновских представлений о биологической эволюции, требовавшей по крайней мере на порядок больших времен. В конце XIX века вера в закон сохранения энергии была незыблема – а никакого другого источника энергии звезд, кроме самогравитации, видно не было. Правда, оценки возраста Земли, получавшиеся средствами геологии, давали по крайней мере сотни миллионов лет, что указывало на необходимость поиска какого-то дополнительного источника солнечной энергии.

Ситуация резко обострилась, можно сказать стала катастрофической, вскоре после открытия радиоактивности. Первые же надежные определения возраста Земли показали, что он не менее 1.5 миллиарда лет (современная оценка – 4.6 миллиарда). Отыскание источника энергии Солнца и звезд стало одной из жгучих проблем естествознания.

К середине 20-х годов выяснилось, что таким источником в принципе могли бы служить ядерные реакции, ведущие к превращению водорода в гелий. Масса четырех протонов слегка превосходит массу ядра атома гелия – альфа-частицы, так что при таком процессе превращалось бы энегрию около 0.7% массы покоя. Но по соотношению Эйнштейна E = mc 2 при превращении в энергию даже очень малой массы m выделяется колоссальная энергия, так как множитель пропорциональности – квадрат скорости света c 2 – очень велик (в системе СГС — порядка 10 21 ). Горячим проповедником идеи термоядерного горения водорода в 20-е годы был фактический создатель теории внутреннего строения звезд А.Эддингтон. Однако поначалу эта идея встретила серьезные возражения Резерфорда и его коллег. Температура в центре Солнца, рассчитанная самим же Эддингтоном (20 млн кельвинов) и оказавшаяся, как мы теперь твердо знаем, близкой к действительной (15.5 млн кельвинов), явно недостаточна для того, чтобы за счет кинетической энергии своего теплового движения протоны могли преодолеть электростатическое кулоновское отталкивание и сблизиться настолько, чтобы вступили в игру ядерные силы. Расхождение было очень серьезным – на три порядка по температуре. "Пойдите поищите местечко погорячее" – вот что постоянно слышал Эддингтон от своих коллег-физиков.

Решение проблемы пришло с развитием квантовой механики. Согласно принципу неопределенности Гейзенберга, говорить о точном местоположении частицы не имеет смысла – она как бы размазана по некоторой области пространства и с разной вероятностью может быть обнаружена в разных местах. Это, в частности, делает возможным присутствие частицы и в тех областях пространства, где классические законы сохранения энергии и импульса это строго запрещают. В итоге непреодолимый для классической частицы кулоновский потенциальный барьер становится как бы "полупрозрачным" (так называемый туннельный эффект). Первыми на роль этого эффекта для решения загадки источников звездной энергии в 1929 г. указали Р.Аткинсон и Ф.Хаутерманс. Созданная в это же примерно время Г.А.Гамовым теория альфа-распада дала математический аппарат, положенный в конце тридцатых годов в основу количественной теории термоядерных реакций в недрах звезд. В 1937–1939 годах появляется, наконец, долгожданное окончательное решение давней загадки источника звездной энергии (Г.Бете и – независимо – К.Вейцзекер).

Слить четыре протона в альфа-частицу за один акт практически невозможно: вероятность четверного столкновения пренебрежимо мала, поэтому процесс идет в несколько шагов. Детальный анализ всех возможных при температурах порядка 20 млн кельвинов ядерных реакций в газе космического химического состава привел к открытию двух возможных способов построить альфа-частицу из протонов.

Первый способ – это знаменитый CN-цикл, или цикл Бете. Вот эта цепочка реакций:

Ее итогом является, очевидно, слияние четырех протонов в a -частицу, а углерод, азот и кислород выступают лишь как катализаторы. При всей кажущейся очевидности последнего утверждения оно нуждается в оговорке, имеющей важное значение для астрономов: на начальном этапе работы цикла, пока еще не установился стационарный режим, большая часть углерода превращается в азот, а оставшийся углерод приобретает специфический изотопный состав, резко отличающийся от того, который имеется на Земле и в атмосфере Солнца. По этим признакам можно с уверенностью опознавать вещество, подвергшееся переработке в CN-цикле.

Второй способ синтеза альфа-частиц в звездах – так называемая pp-цепочка:

Первые две реакции происходят по два раза, так как надо выработать два ядра 3 He, прежде чем сможет произойти заключительная реакция, синтезирующая 4 He.

Первоначально считалось, что наше Солнце вырабатывает свою энергию по первой схеме, т.е. за счет цикла Бете. В 50-е годы, однако, стало ясно, что это не так, и преобладающую роль играют pp-цепочки. Причина в том, что, как показал более внимательный анализ, центральная температура Солнца немного ниже, чем принималось ранее, а рост темпа выделения энергии с температурой у цикла Бете происходит существенно быстрее, чем для pp-цепочек. Однако в звездах с массами, превосходящими 1.2 массы Солнца, доминирует в выделении энергии CN-цикл.

Простой энергетический расчет показал, что в Солнце выгорание водорода в его центральной части займет около 10 млрд лет. Проблема источников энергии Солнца и подавляющего большинства звезд, в частности, всех звезд так называемой главной последовательности, была тем самым окончательно решена. Однако ее решение сразу же дало и другой, важнейший для всей астрономии результат: стало ясно, что рождение звезд – это непрерывный процесс, который происходит буквально на наших глазах. Так как запасы ядерной энергии, очевидно, пропорциональны массе звезды, а темп ее расходования – светимость звезды – пропорциональна, грубо говоря, кубу массы, ясно, что все массивные звезды должны быть по астрономическим меркам совсем молодыми. Взяв в качестве примера массивную звезду Y Лебедя, Бете в своей эпохальной работе пришел к выводу, что возраст этой звезды должен быть менее 3.5·10 7 лет. "Приходится предположить, что Y Лебедя и подобные ей другие массивные звезды родились сравнительно недавно" – писал он в 1939 г. Отождествление источников энергии звезд открыло прямой путь к пониманию эволюции звезд – другому великому достижению естествознания XX века.

Поскольку водород – основная составляющая звездного вещества (около 70% по массе) и поскольку при синтезе гелия выделяется большая часть ядерной энергии, запасенной в веществе, основную часть своей жизни звезды светят, сжигая водород. Последующие стадии ядерного горения, начинающиеся с весьма нетривиального процесса – слияния трех альфа-частиц в ядро 12 C – важны, пожалуй, в первую очередь не с точки зрения энергетики, в этом отношении ничего принципиально нового здесь нет. Гораздо важнее другое: как выяснилось в 50-е годы, на этих последующих этапах ядерной жизни звезд произошел (и продолжает происходить) синтез всех "тяжелых" элементов, кроме водорода и частично гелия. Эти последние достались нам от Большого Взрыва. Поскольку именно тяжелые элементы – это основа жизни, без преувеличения можно сказать, что первым принципиальным шагом к созданию возможности появления жизни во Вселенной стали те ядерные процессы, которые происходят в недрах звезд после выгорания там водорода. Но это уже другая тема.

18 октября 2000 г.

Примечание. Статья написана по заказу для сборника "Сто крупнейших открытий XX века", издание которого подготавливается Институтом прикладной астрономии РАН.


Солнечная система. Звезды.

Солнечной системой называется совокупность небесных тел, движущихся вокруг Солнца, которое является динамическим центром этой системы. Солнечная система состоит из Солнца и планетной системы, включающей в себя все естественные космические объекты, которые обращаются вокруг Солнца. Обращаются вокруг Солнца 8 больших планет со своими спутниками и кольцами: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Они делятся на планеты земной группы, похожие на Землю, и планеты – гиганты, похожие на Юпитер. Эти группы сильно отличаются по своим физическим характеристикам. К естественным космическим объектам в солнечной системе относятся карликовые планеты и их спутники, а также малые тела: астероиды, метеоры и метеориты, кометы, космическая пыль. Между орбитами Марса и Юпитера расположен пояс астероидов.

Возраст Солнечной системы приблизительно 4,6 млрд лет.

Основные особенности Солнечной системы.

· Планеты движутся вокруг Солнца по орбитам, близким к круговым. Кометы же движутся по очень вытянутым орбитам, при движении вблизи Солнца у кометы образуется хвост.

· Орбиты всех планет лежат практически в плоскости экватора Солнца.

· Масса всех планет системы в 750 раз меньше массы Солнца. Масса Солнца составляет 99.8 % массы С.с.. Солнце удерживает своим тяготением планеты и прочие тела Солнечной системы.

· Планеты земной группы (расположены внутри пояса астероидов): меньше гигантов по массе и размерам, более медленное вращение. У них большая средняя плотность вещества. У трёх планет — Венеры, Земли и Марса — имеется атмосфера. Атмосфера у Венеры и Марса состоит из углекислого газа. Только у Земли есть естественный спутник — Луна, а у Марса – Фобос и Деймос. Венера самая горячая планета нашей системы, температура её поверхности составляет свыше 500 °C.

· Планеты – гиганты (Юпитер, Сатурн, Уран, Нептун) за поясом астероидов: в десятки и сотни раз массивнее планет земной группы. Превосходят и по размеру. Юпитер, например, превосходит Землю по объёму в 1320 раз, а по массе – в 318 раз. окружены плотными протяженными водородно-гелиевыми атмосферами с небольшим содержанием аммиака и метана. У всех планет-гигантов низкая средняя плотность (большая плотность у Нептуна — 1,66 г/см 2 , самая малая у Сатурна — 0,7 г/см 2 ). Они очень быстро вращаются вокруг своих осей (для Юпитера один оборот за 10 часов). Планеты-гиганты отличаются большим числом спутников и имеют кольца, но только кольцевая система Сатурна видна с Земли. У Сатурна имеется больше всех спутников — 62. Юпитер массивнее всех остальных планет, вместе взятых. Самая отдалённая планета от Солнца – Нептун.


Планеты Солнечной системы

Звезды и источники их энергии

На небе (в одном пулушарии) мы можем увидеть 2500 звезд. Солнце – ближайшая к нам звезда. Из-за близости Земли к Солнцу мы имеем возможность изучать на нем процессы и по ним судить об аналогичных процессах в звездах, которые не видимы из-за их удаления. Солнце влияет на жизненные процессы на Земле. Судить о температуре Солнца (и звезд) мы можем только по его (их) излучению. Температура на поверхности Солнца T=6000 0 К. Оно является источником излучения различных длин волн – от радио — до рентгеновского и гамма-излучения.


Спектральный класс

Источником энергии Солнца и звезд главной последовательности являются термоядерные реакции синтеза гелия из водорода. Солнце состоит на 70% из водорода. Реакции протекают в центре, в ядре звезды при температурах свыше 10 6 K.




Галактика

Наблюдения установили, что все звезды образуют огромную звездную систему — Галактику (от греческого слова галактикос — молочный). Млечный Путь – наша Галактика представляет собой гигантскую спиральную галактику, заполненную звездными скоплениями, газом и пылью. Солнечная система входит в нее. В Галактике около 100 млрд звезд! Среднее расстояние между звездами в Галактике 5 св. лет. Галактика вращается. Солнце, находящееся на расстоянии 26 000 св. лет от центра Галактики, обращается со скоростью 220 км/ч вокруг центра Галактики. Газ и пыль скрывают от нас центр Млечного Пути, где спрятана массивная черная дыра.

Наряду со спиральными галактиками существуют эллиптические и неправильные галактики. Эллиптические галактики не вращаются, в них отсутствуют газ и пыль. Они состоят в основном из старых звезд.

Б-26 Солнечная система. Звезды и источники их энергии. Галактика

Солнечная система


Солнечная система. Звезды.

Солнечной системой называется совокупность небесных тел, движущихся вокруг Солнца, которое является динамическим центром этой системы. Солнечная система состоит из Солнца и планетной системы, включающей в себя все естественные космические объекты, которые обращаются вокруг Солнца. Обращаются вокруг Солнца 8 больших планет со своими спутниками и кольцами: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Они делятся на планеты земной группы, похожие на Землю, и планеты – гиганты, похожие на Юпитер. Эти группы сильно отличаются по своим физическим характеристикам. К естественным космическим объектам в солнечной системе относятся карликовые планеты и их спутники, а также малые тела: астероиды, метеоры и метеориты, кометы, космическая пыль. Между орбитами Марса и Юпитера расположен пояс астероидов.

Возраст Солнечной системы приблизительно 4,6 млрд лет.

Основные особенности Солнечной системы.

· Планеты движутся вокруг Солнца по орбитам, близким к круговым. Кометы же движутся по очень вытянутым орбитам, при движении вблизи Солнца у кометы образуется хвост.

· Орбиты всех планет лежат практически в плоскости экватора Солнца.

· Масса всех планет системы в 750 раз меньше массы Солнца. Масса Солнца составляет 99.8 % массы С.с.. Солнце удерживает своим тяготением планеты и прочие тела Солнечной системы.

· Планеты земной группы (расположены внутри пояса астероидов): меньше гигантов по массе и размерам, более медленное вращение. У них большая средняя плотность вещества. У трёх планет — Венеры, Земли и Марса — имеется атмосфера. Атмосфера у Венеры и Марса состоит из углекислого газа. Только у Земли есть естественный спутник — Луна, а у Марса – Фобос и Деймос. Венера самая горячая планета нашей системы, температура её поверхности составляет свыше 500 °C.

· Планеты – гиганты (Юпитер, Сатурн, Уран, Нептун) за поясом астероидов: в десятки и сотни раз массивнее планет земной группы. Превосходят и по размеру. Юпитер, например, превосходит Землю по объёму в 1320 раз, а по массе – в 318 раз. окружены плотными протяженными водородно-гелиевыми атмосферами с небольшим содержанием аммиака и метана. У всех планет-гигантов низкая средняя плотность (большая плотность у Нептуна — 1,66 г/см 2 , самая малая у Сатурна — 0,7 г/см 2 ). Они очень быстро вращаются вокруг своих осей (для Юпитера один оборот за 10 часов). Планеты-гиганты отличаются большим числом спутников и имеют кольца, но только кольцевая система Сатурна видна с Земли. У Сатурна имеется больше всех спутников — 62. Юпитер массивнее всех остальных планет, вместе взятых. Самая отдалённая планета от Солнца – Нептун.


Планеты Солнечной системы

Звезды и источники их энергии

На небе (в одном пулушарии) мы можем увидеть 2500 звезд. Солнце – ближайшая к нам звезда. Из-за близости Земли к Солнцу мы имеем возможность изучать на нем процессы и по ним судить об аналогичных процессах в звездах, которые не видимы из-за их удаления. Солнце влияет на жизненные процессы на Земле. Судить о температуре Солнца (и звезд) мы можем только по его (их) излучению. Температура на поверхности Солнца T=6000 0 К. Оно является источником излучения различных длин волн – от радио — до рентгеновского и гамма-излучения.


Спектральный класс

Источником энергии Солнца и звезд главной последовательности являются термоядерные реакции синтеза гелия из водорода. Солнце состоит на 70% из водорода. Реакции протекают в центре, в ядре звезды при температурах свыше 10 6 K.

Галактика

Наблюдения установили, что все звезды образуют огромную звездную систему — Галактику (от греческого слова галактикос — молочный). Млечный Путь – наша Галактика представляет собой гигантскую спиральную галактику, заполненную звездными скоплениями, газом и пылью. Солнечная система входит в нее. В Галактике около 100 млрд звезд! Среднее расстояние между звездами в Галактике 5 св. лет. Галактика вращается. Солнце, находящееся на расстоянии 26 000 св. лет от центра Галактики, обращается со скоростью 220 км/ч вокруг центра Галактики. Газ и пыль скрывают от нас центр Млечного Пути, где спрятана массивная черная дыра.

Наряду со спиральными галактиками существуют эллиптические и неправильные галактики. Эллиптические галактики не вращаются, в них отсутствуют газ и пыль. Они состоят в основном из старых звезд.

blank

Звёзды: разнообразие звёздных характеристик и их закономерности. Источники энергии звёзд

В данной статье рассмотрены работы по подготовке к ЕГЭ по физике, а конкретно подраздел элементов астрофизики раздела квантовой физики. Одной из важных тем, встречающихся на ЕГЭ, является квантовая физика, поэтому к изучению данной темы следует подойти ответственно.

В тексте подробно рассмотрены темы звёзд, их характеристики, и закономерности. Немаловажное значение имеет тема об энергии, которая необходима звёздам и источниках, из которых они её берут.

Данная тема может встречаться в заданиях ЕГЭ по физике в виде тестовой части.

В настоящее время насчитывается много информации о звёздах и их закономерностях. Информация получена благодаря исследованиям многих учёных.

Звёздами называют газовые шары с высокой температурой. Они излучают электромагнитные волны. Звёзды являются основными телами во Вселенной. Солнце также является одной из звёзд.

blank

Итак, перейдём к рассмотрению основных свойств звезд:

— Светимость и расстояние;

У перечисленных характеристик есть определённая связь. Она отображена с помощью диаграммы Герцшпрунга – Рассела. Рассмотрим данную диаграмму (рис. 1).

blank

Светимость и расстояние

Светимость звёзд определяют, исходя из известного расстояния до неё и величины. Расстояние до звёзд найти не так легко. Оно определяется с помощью метода тригонометрии, который заключаются в работе с малыми звёздами и в разное время года. Данный метод нахождения расстояния более точен. Но он не будет подходить для звёзд, которые находятся на большом расстоянии.

Величина звезды, называемая абсолютной, является характеристикой светимости. Есть ещё одно понятие, называемое видимой звёздной величиной, она зависит от светимости, цвета, а также расстояния. Чаще всего для оценки размера звезды используют понятие абсолютной величины. Чтобы вычислить величину, следует определить звёзды на некоторое расстояние, например, 10ПК. Звёзды, имеющие высокий уровень светимости будут иметь отрицательные значения. Например, величина Солнца составляет -26,8. Если задать расстояние до звезды в 10 ПК, то будет +5 (это слабые звёзды, которые можно рассмотреть невооружённым глазом).

Температура

blank

Если знать класс звезды, являющийся спектральным, можно найти её температуру. Мощность, которую изучают звёзды можно вычислить по формуле Стефана Больцмана, называемой постоянной Больцмана.

Мощность, с которой излучают звёзды, равна произведению радиуса и температуры.

В термодинамике существуют законы, позволяющие определять температуру предметов. Для этого следует заняться измерением длины волны, которая происходит при излучении чёрного цвета. Например, если температура будет составлять примерно три-четыре тысячи К, то цвет звезды будет красным, при температуре 6 – 7 тысячи К звезда будет жёлтой и так далее. Рассмотрим длины волн и цвета тел на примере таблицы:

ЦветДиапазон длины
Фиолетовый / синий3900 — 4550
Голубой4550 — 4920
Зеленый4920 — 5570
Желтый5570 — 5970
Оранжевый5970 — 6220
Красный6220 — 7700

Последовательность звёзд, которые мы получаем при изменении их слоёв, принято обозначать, как О, B, A, F и так далее. Обозначение от горячих звёзд переходит к холодным.

Рассмотрим классификацию звёзд спектрального класса на примере таблицы:

Масса

Один из основных различий звёзд является их масса. Сложно найти звезду, у которой масса будет в десять раз более или менее массы Солнца.

В процессе изучения звёзд по их массе и времени жизни, учёные сортируют их по времени рождения. Известно, что вероятность рождения пропорциональна квадрату массы звезды. Формула: F(M) – M-7/3.

На самом деле, во Вселенной не так много звёзд с большой массой.

Радиус звёзд имеет свойство меняться. После создания спектрального анализа стали известны химические составы звёзд. Согласно ему, звёзды состоят из водородных и гелиевых плазм и других мелких элементов.

Учёные пытались построить звёзды в последовательности в соответствии с потерей массы звёздами. Но попытки не удались.

Источники энергии звёзд

Первая характеристика звёзд – их величина. В древности эти величины обозначали, как m. Астроном Гиппарх во втором веке до нашей эры разделил звёзды по их яркости. Как правило, m для наиболее ярких составляет 1, у наименее ярких -6.

В 1842 году Майэром был открыт закон о сохранении энергии. После открытия этого закона было множество предположений об энергии звёзд. Но из всех них достоверными являются всего две:

Рассмотрим гравитационное сжатие. Потенциальная энергия звёзд обозначается, как Е. Таким видом энергии называют работу на распыление вещества звезды. Данную энергию можно освободить, это происходит при уменьшении радиуса звезды. Вычисление производят по формуле: Е = 5,9*10 ^41 Дж.

В процессе исследования сжатия звезды стало известно, что половина энергии излучается звездой при повышении температуры.

Таким образом, сжатие является источником энергии на небольшом промежутке времени.

Перейдём к теме термоядерного синтеза. Сформулировали германские учёные Карл Вейцзеккер и Ганс Бете в 1938 году.

В данной формуле с – скорость света.

Одной из реакций синтеза является процесс создания атома гелия из четырёх протонов. Важным моментом является дефект массы, масса гелия равна 4,003…, а масса указанного числа протонов – 4,032…

Синтез гелия образует реакцию, протекающую двумя способами:

В обоих случаях протон образует нейтрон.

После того, как в недрах у звёзд заканчивается водород, температура повышается до ста миллионов кельвинов. Такая особенность есть у звёзд, достигающих массу более 1,2 m.

В настоящее время в астрономии известны методы для определения основных характеристик звёздных тел. Характеристики являются зависимыми функционально, эта зависимость связана с радиусом звёзд, светимостью и температурой.

После подробного изучения данной темы и просмотра рисунков, содержащихся в тексте, ваши результаты ЕГЭ по физике будут зависеть от того, как вы усвоили тему. Также дополнительные материалы по данной теме содержатся в рабочих программах по физике, поэтому рекомендуем также изучить дополнительные источники.

Солнце и звёзды

На уроке мы изучим строение внутренних и внешних слоев Солнца, узнаем, как внутри Солнца выделяется и передается энергия, и обсудим вопрос его происхождения и перспектив. Солнце – это одна из множества звезд во Вселенной. Мы изучим, какие бывают звезды, чем они отличаются между собой, как они образуются и преобразуются со временем.

Какой мощи должна быть эта энергия, что её хватает на миллиарды лет? Хороший вопрос, учитывая, что подсчитано: если бы Солнце состояло из лучшего угля, то, получай оно для этого в достаточном количестве кислород, полностью сгорело бы примерно за 1500 лет.

Некогда существовало мнение, что энергия Солнца поддерживается падением на него метеоритов. Их энергия превращается при падении в теплоту, поддерживающую излучение Солнца. Такой способ питания помог бы Солнцу не больше, чем нам, если бы мы вздумали вскипятить бочку воды, ставя на ее крышку горячие утюги.

Кроме того, метеоритов должно было бы сыпаться на Солнце невероятно много, и они так быстро увеличивали бы массу Солнца, что это было бы заметно.

Может быть, тогда, энергия Солнца пополняется за счет его сжатия, то есть постоянного уменьшения в размерах? Звучит логично, ведь при сжатии, энергия тяготения к центру переходила бы в энергию тепловую. Но и эта теория разбилась о математику.

Было вычислено, что даже если бы Солнце было некогда бесконечно большим, чем сейчас, то и в этом случае его сжатия до современного размера хватило бы на поддержание энергии всего лишь в течение 20 миллионов лет. Между тем доказано, что земная кора существует и освещается Солнцем гораздо дольше – как минимум 4,5 миллиарда лет. Сжатие может иметь и наверное имеет место, но не оно служит главным источником солнечной энергии.

Наше Солнце - громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Наше Солнце – громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Тогда, возможно, недра звезд состоят из радиоактивных элементов, таких, как торий, уран и радий? Распадаясь, эти элементы выделяют теплоту.

Но, если бы Солнце целиком состояло из радия, то оно излучало бы… больше энергии, чем действительное Солнце! Тем более, что при большой начальной расточительности, неизбежной при радиоактивном распаде, интенсивность его излучения спадала бы слишком быстро. Радий не мог бы поддерживать наше Солнце так долго, как это необходимо. Допустить же существование тяжелых, сверх-радиоактивных элементов (неизвестных на Земле), да еще сгустившихся в недрах Солнца, современная физика и теория внутреннего строения звезд не позволяют.

Вас может заинтересовать

Ответ на этот вопрос дала людям ядерная физика.

Ядерные реакции в недрах звезд

Как известно, большую часть любой звезды составляет водород, а как известно из школьного курса химии, этот газ очень хорошо горит. Правда “звездное горение” водорода отличается от привычного нам, ведь кислорода там очень мало.

Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов.

При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями.

Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.

Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода.

Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.

Как бы не были велики запасы солнечного водорода, они все-таки не бесконечны. Тревожиться на этот счет не стоит – при современной мощности излучения Солнцу хватит “топливо” ещё минимум на 10 миллиардов лет (при том, что само Солнце появилось примерно 5 миллиардов лет назад).

Что же происходит когда звезда начинает “стареть” и “выгорать”? Водород превращается в гелий, а гелий, вероятно, превращается в более тяжелые элементы; следовательно, химический состав Вселенной подвержен непрерывному изменению. Отсюда напрашивается и вывод – на заре зарождения нашей Вселенной, большая её часть состояла из водорода.

С течением времени доля тяжелых элементов по отношению к водороду увеличивается. Часть звездного вещества, обогащенная тяжелыми элементами, возвращается обратно в межзвездную газовую среду, может быть, в форме протуберанцев или более грандиозных взрывов, и поэтому сам межзвездный газ обогащается тяжелыми элементами. Однако даже в настоящее время атомов водорода в 2000 раз больше, чем атомов тяжелых элементов.

Это, как минимум, свидетельствует о том, что наша Вселенная ещё сравнительно молода и до её “старости” осталось не так уж мало времени.

Читайте также: