Ход поршня это кратко

Обновлено: 05.07.2024

2.1 Принцип преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

2.2 Понятия и определения двигателя.

2.3 Рабочие циклы четырехтактных карбюраторных и дизельных двигателей.

2.4 Назначение кривошипно-шатунного механизма.

2.5 Неподвижные и подвижные группы деталей КШМ: блок цилиндров или блок-картер, головка (головки) блока цилиндров, цилиндры, шатунно-поршневая группа, коленчатый вал, подшипники, картер.

2.6 Установка и крепление двигателей на раме.

Содержание лекции

2.1 Принцип преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала

Двигатель внутреннего сгорания состоит из механизмов и систем, выполняющих различные функции. Рассмотрим устройство и принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового ДВС с внешним смесеобразованием (рис. 2.1). В цилиндре 1 находится поршень с поршневыми кольцами, соединенный с коленчатым валом 11 шатуном 8.

При вращении коленчатого вала поршень совершает возвратно-поступательное движение. Одновременно с коленчатым валом вращается распределительный вал, который через промежуточные детали (толкатель, штангу и коромысло) механизма газораспределения открывает или закрывает впускной и выпускной клапаны. Когда поршень опускается вниз, открывается впускной клапан, и в цилиндр поступает (за счет разрежения) горючая смесь (мелкораспыленное топливо и воздух), приготовленная в карбюраторе, которая при движении поршня вверх сжимается.

Рис. 2.1. Схема одноцилиндрового бензинового ДВС с внешним смесеобразованием:

1 – цилиндр (с картером в сборе); 2 – головка цилиндра; 3 – впускной клапан; 4 – свеча зажигания; 5 – выпускной клапан; 6 – поршень; 7 – поршневой палец; 8 – шатун; 9 – маховик; 10 – поддон; 11 – коленчатый вал

В работающем двигателе при появлении электрической искры между электродами свечи зажигания 4 смесь, сжатая в цилиндре, воспламеняется и сгорает. Вследствие этого образуются газы, имеющие высокую температуру и большое давление. Под давлением расширяющихся газов поршень опускается вниз и через шатун приводит во вращение коленчатый вал. Так преобразуется прямолинейное движение поршня во вращательное движение коленчатого вала. При открытии выпускного клапана и при движении поршня вверх из цилиндра удаляются отработавшие газы.

2.2 Понятия и определения двигателя

С работой двигателя связаны следующие параметры.

Верхняя мертвая точка (ВМТ) – крайнее верхнее положение поршня (рис. 2.2).

Нижняя мертвая точка (НМТ) – крайнее нижнее положение поршня.

Радиус кривошипа – расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.

Ход поршня S – расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).

Рис. 2.2. Основные положения кривошипно-шатунного механизма:

S – ход поршня; D – диаметр цилиндра; r – радиус кривошипа

Такт – часть рабочего цикла, происходящая за один ход поршня.

Объем камеры сгорания – объем пространства над поршнем при его положении в ВМТ (рис. 2.2).

Рабочий объем цилиндра – объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.

Полный объем цилиндра – объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем Va цилиндра равен сумме рабочего объема Vh , цилиндра и объема Vc камеры сгорания, т. е. Va = Vh + Vc.

Литраж: двигателя (в л) для многоцилиндровых двигателей – это произведение рабочего объема Vh на число i цилиндров, т. е. Vл = Vh · i.

Степень сжатия ε – отношение полного объема Va цилиндра к объему Vc камеры сгорания, т.е.

Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя. Если отношение S/D 2.3 Рабочие циклы четырехтактных карбюраторных и дизельных двигателей

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов: впуск, сжатие, рабочий ход (сгорание – расширение), выпуск.

Впуск. Поршень перемещается от ВМТ к НМТ, впускной клапан открыт, в цилиндре возникает разрежение, вследствие чего в него поступает горючая смесь, которая перемешивается с отработавшими газами, оставшимися в небольшом количестве в цилиндре от предыдущего цикла, и образует рабочую смесь. Температура смеси в конце впуска равна 100. 130°С, а давление примерно 0,07. 0,08 МПа (0,7. 0,8 кгс/см2).

Сжатие. Поршень перемещается от НМТ к ВМТ. Оба клапана закрыты, рабочая смесь сжимается, вследствие чего ее температура повышается и улучшается испарение бензина.

К концу такта сжатия давление в цилиндре повышается до 0,8. 1,2 МПа (8. 12 кгс/см2), температура смеси достигает 280. 480 °С.

Рабочий ход (сгорание — расширение). Рабочая смесь в цилиндре воспламеняется электрической искрой и сгорает за 0,001. 0,002 с, выделяя при этом большое количество теплоты. Оба клапана закрыты. Температура сгорания свыше 2000 °С, а давление – 3,5. 4,0 МПа (35. 40 кгс/см2).

Под действием силы давления газов поршень перемещается к НМТ, вращая через шатун коленчатый вал. В процессе расширения газов за счет внутренней энергии топлива совершается механическая работа. В конце расширения давление в цилиндре падает до 0,3. 0,4 МПа (3. 4 кгс/см2), а температура снижается до 800. 1100 °С.

Выпуск. Открывается выпускной клапан. Поршень перемещается к ВМТ и очищает цилиндр от отработавших газов, выталкивая их в атмосферу. Давление в цилиндре к концу такта выпуска снижается до 0,11. 0,12 МПа (1,1. 1,2 кгс/см2), а температура до 300. 400 °С.

Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного карбюраторного двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла карбюраторного двигателя. В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура. В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом. Поэтому дизель иногда называют двигателем с воспламенением от сжатия. Горючая смесь в этом двигателе образуется при впрыскивании топлива в цилиндр.

Первый такт — впуск (рисунок 2.3 а). При движении поршня от ВМТ к НМТ в цилиндре создается разрежение. Впускной клапан 5 открывается, и цилиндр наполняется воздухом. В цилиндре воздух смешивается с небольшим количеством отработавших газов. Давление воздуха в цилиндре (у прогретого двигателя) при такте впуска составляет 8 – 9 кПа, а температура достигает 50-80°С.

Рис. 2.3. Схема работы четырехтактного одноцилиндрового дизеля:

а – впуск воздуха, б – сжатие воздуха, в – расширение газов или рабочий ход,

г – выпуск отработавших газов, 1 – цилиндр, 2 – топливный насос,

3 – поршень, 4 – форсунка, 5 – впускной клапан, 6 – выпускной клапан

Второй такт – сжатие (рисунок 2.3 б). Поршень движется от НМТ к ВМТ, впускной 5 и выпускной 6 клапаны закрыты. Объем воздуха уменьшается, а его давление и температура увеличиваются. В конце сжатия давление воздуха внутри цилиндра повышается до 400 — 500 кПа, а температура до 600 — 700°С. Для надежной работы двигателя температура сжатого воздуха в цилиндре должна быть значительно выше температуры самовоспламенения топлива.

Третий такт – расширение газов или рабочий ход (рисунок 2.3 в). Оба клапана закрыты. При положении поршня около ВМТ в сильно нагретый и сжатый воздух из форсунки 4 впрыскивается мелкораспыленное топливо под большим давлением (1300—1850 кПа), создаваемым топливным насосом 2. Топливо перемешивается с воздухом, нагревается, испаряется и воспламеняется. Часть топлива сгорает при движении поршня к ВМТ, т. е. в конце такта сжатия, а другая часть – при движении поршня вниз в начале такта расширения. Образующиеся при сгорании топлива газы увеличивают внутри цилиндра двигателя давление до 600 – 800 кПа и температуру до 1800 – 2000 °С. Горячие газы расширяются и давят на поршень 3, который перемещается от ВМТ к НМТ, совершая рабочий ход.

Четвертый такт – выпуск (рисунок 2.3 г). Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан 6 вытесняет отработавшие газы из цилиндра. Давление и температура в конце выпуска равны соответственно 11 — 12 кПа и 600-700°С. После такта выпуска рабочий цикл дизеля повторяется в рассмотренной выше последовательности.

2.4 Назначение кривошипно-шатунного механизма

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршней, воспринимающих силу давления газов, во вращательное движение коленчатого вала. Детали кривошипно-шатунного механизма можно разделить на две группы: подвижные и неподвижные. К первым относятся поршень с кольцами и поршневым пальцем, шатун, коленчатый вал и маховик, ко вторым – блок цилиндров, головка блока, прокладка головки блока и поддон (картер). В обе группы входят также и крепежные детали.

2.5 Неподвижные и подвижные группы деталей КШМ: блок цилиндров или блок-картер, головка (головки) блока цилиндров, цилиндры, шатунно-поршневая группа, коленчатый вал, подшипники, картер

Блок цилиндров или блок-картер является остовом двигателя. На нем и внутри него располагаются основные механизмы и детали систем двигателя. Блок цилиндров может быть отлит из серого чугуна (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320) или из алюминиевого сплава (двигатели автомобилей ГАЗ, УАЗ и др.). Горизонтальная перегородка делит блок цилиндров на верхнюю и нижнюю части. В верхней плоскости блока и в горизонтальной перегородке расточены отверстия для установки гильз цилиндров. В цилиндре, являющемся направляющей при движении поршня, совершается рабочий цикл двигателя. Гильзы могут быть мокрыми или сухими. Гильзу цилиндра называют мокрой, если она омывается жидкостью системы охлаждения, и сухой, если непосредственно не соприкасается с охлаждающей жидкостью.

Расстояние, которое поршень проходит в цилиндре двигателя, называется ходом поршня. Чем оно больше, тем больше топливно-воздушной смеси поступает в цилиндр, и, следовательно, тем выше давление газов, образующихся при сгорании смеси.

Какие детали двигателя определяют ход поршня?

Ход поршня — это расстояние между верхней и нижней мертвыми точками поршня. Он определяется радиусом кривошипа коленчатого вала.

Радиус кривошипа — это расстояние между осевой линией вращения коленчатого вала и осевой линией шатунной шейки. Радиус кривошипа равен половине хода поршня.


Рис. Ход поршня и объемы цилиндра двигателя: а — а положение поршня в нижней мертвой точке; б — положение поршня в верхней мертвой точке.

В случае замены коленчатого вала другим, имеющим больший ход, верхняя мертвая точка хода поршней может оказаться над верхней плоскостью (плитой) блока цилиндров. Решить эту проблему можно, установив новые поршни, на которых поршневые пальцы стоят выше. Еще один возможный вариант — заменить шатуны более короткими, чтобы уменьшить максимальную высоту подъема поршней в цилиндрах.

При изменении длины шатуна ход поршня не изменяется, изменяется только положение мертвых точек хода поршня.

Тепловым двигателем называют машину, в ходе работы которой внутренняя энергия переходит в механическую. Самую простую модель такой машины можно представить в виде металлического цилиндра и плотно пригнанного поршня, который может двигаться вдоль цилиндра.

Одним из самых распространённых видов теплового двигателя, который мы встречаем в жизни, является двигатель внутреннего сгорания (ДВС). Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Легко догадаться, что отсюда и пошло его название.

В данном уроке мы рассмотрим устройство двигателя внутреннего сгорания и схему его работы.

Устройство двигателя внутреннего сгорания

Тепловые двигатели такого типа работают на жидком и газообразном топливе. Этим топливом могут быть нефть, бензин, керосин, различные горючие газы.

На рисунке 1 изображена схема простейшего двигателя внутреннего сгорания в разрезе.

Двигатель представляет собой прочный металлический цилиндр. Внутри этого цилиндра имеется подвижный поршень 3. Поршень соединения шатуном 4 с коленчатым валом 5.

В верхней части двигателя расположены два клапана 1 и 2. Когда двигатель работает, они автоматически открываются и закрываются в определенные нужные моменты.

Через клапан 1 в цилиндр двигателя поступает горючая смесь. Она воспламеняется с помощью свечи 6.

Горючая смесь — это смесь горючих газов, частиц жидкого топлива и паров топлива с воздухом (кислородом).

Отработавшие газы выпускаются через клапан 2.

Периодически в цилиндре происходит сгорание горючей смеси. Например, сгорает смесь паров бензина и воздуха. Образуются газообразные продукты сгорания. Их температура при этом достигает высоких значений — $1600-1800 \degree C$. В результате этого резко увеличивается давление на поршень.

Эти газы (продукты сгорания) толкают поршень. При движении поршня двигается и коленчатый вал. Таким образом газы совершают механическую работу. Т. е., часть внутренней энергии газов перешла в механическую энергию. Следовательно, внутренняя энергия газов уменьшилась — они начинают охлаждаться.

Мертвые точки, ход поршня и такты двигателя

Для того чтобы более подробно рассмотреть схему работы данного двигателя, нам понадобятся новые определения.

Поршень может двигаться внутри цилиндра. В устройстве самого простого вида, который мы рассматриваем, он может двигаться вверх и вниз.

Мёртвые точки — это крайние точки положения поршня в цилиндре.

Ход поршня — это расстояние, которое проходит поршень от одной мертвой точки до другой.

Рассматриваемые нами двигатели внутреннего сгорания называют четырехтактными.

Четырехтактный двигатель — это двигатель, в котором один рабочий цикл происходит за четыре хода поршня (за четыре такта).

Один такой такт двигателя или ход поршня происходит за половину оборота коленчатого вала.

Схема работы двигателя внутреннего сгорания: четыре такта

Теперь давайте подробно рассмотрим все четыре такта работы двигателя (рисунок 2).

Рисунок 2. Схематическое изображение работы двигателя внутреннего сгорания

Первый такт (рисунок 2, а):

  • При повороте коленчатого вала в самом начале такта поршень начинает двигаться вниз
  • Объем над поршнем увеличивается
  • В цилиндре образуется разрежение
  • Открывается клапан 1. В цилиндр поступает горючая смесь
  • Цилиндр заполняется горючей смесью. Клапан 1 закрывается

Второй такт (рисунок 2, б):

  • Вал продолжает поворачиваться, поршень теперь двигается вверх
  • Таким образом поршень сжимает горючую смесь
  • Поршень доходит до верхней мертвой точки
  • Сжатая горючая смесь воспламеняется от электрической искры (свеча 6) и сгорает

Третий такт (рисунок 2, в):

  • При сгорания смеси образуются газы. Они давят на поршень — толкают его вниз
  • Под действием этих расширяющихся нагретых газов двигатель совершает работу. Поэтому,

Третий такт двигателя — это рабочий ход.

  • Поршень двигается вниз. Его движение передается шатуну и коленчатому валу
  • Получив сильный толчок, коленчатый вал с маховиком продолжают вращение по инерции. При этом они приводят в движение поршень при последующих тактах

Заметьте, что на втором и третьем тактах двигателя клапаны закрыты.

  • В конце такта открывается клапан 2. Продукты сгорания начинают выходить из цилиндра в окружающую среду

Четвертый такт (рисунок 2, г):

  • Идет выход продуктов сгорания из цилиндра (клапан 2 открыт)
  • Поршень движется вверх
  • В конце этого такта клапан 2 закрывается

Цикл двигателя состоит из четырех тактов:
впуск
сжатие
рабочий ход
выпуск

Создание и применение двигателя внутреннего сгорания

Четырехтактный двигатель внутреннего сгорания рассмотренного нами вида изобрел немецкий инженер Рудольф Дизель (рисунок 3).


Рисунок 3. Рудольф Кристиан Карл Дизель (1858 — 1913)

Двигатели внутреннего сгорания имеют очень широкое применение. В ходе их усовершенствования, в мире появлялись новые средства передвижения. Например, автомобили, мотоциклы, самолеты, вертолеты, космические корабли, ракеты, суда на воздушной подушке.

В автомобилях чаще всего стоят четырехцилиндровые двигатели внутреннего сгорания. В каждом цилиндре по очереди происходит рабочий ход. Поэтому коленчатый вал постоянно получает энергию от одного из поршней.

Существуют и двигатели с другим количеством цилиндров. Многоцилиндровые двигатели лучше обеспечивают равномерность вращения вала и имеют большую мощность.

Огнестрельное оружие является простейшим примером ДВС. Цилиндром является ствол оружия, а поршнем — выбрасываемые из оружия пули или снаряды.

Использование ДВС обеспечило быстрый прогресс в военной индустрии: были разработаны танки, истребители, подводные лодки.

В настоящее время двигатели внутреннего сгорания установлены практически на каждом виде транспорта, которым мы пользуемся. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Двигатель внутреннего сгорания и по сей день является самым популярным изобретением. Он предназначен для приведения в действие самые различные механизмы. Вокруг этого изобретения крутится довольно серьезная терминология, которая понятна не всем водителям. Сегодня вы узнаете, что такое рабочий ход двигателя (рабочий ход поршня) и режим холостого хода.

Рабочий ход поршня

Рабочий ход поршня ДВС

Чтобы узнать, что это такое, необходимо понимать принцип действия двигателя внутреннего сгорания. Рабочим ходом называется такое движение поршня, при котором мотор совершает полезную, а именно – преобразует тепловую энергию во вращающий момент.

Рабочий цикл четырехтактного дизеля

Для начала разберем все такты работы двигателя и дойдет до того момента, когда поршень будет совершать эту самую полезную работу. Первым делом идет такт впуска. В это время поршень движется вниз, а клапан, обеспечивающий впуск топливовоздушной смеси, открывается. Она подается в определенном соотношении и полностью заполняет камеру сгорания. Это продолжается до тех пор, пока поршень не достигнет нижней мертвой точки.

Как только поршень пойдет вверх, клапана будут закрыты, в этот момент смесь сжимается и давление внутри камеры повышается. Как только поршень достигнет верхней мертвой точки, наступает момент рабочего хода поршня. На электродах свечи зажигания появится искра, которая воспламенит смесь и станет причиной небольшого взрыва, который заставит поршень пойти вниз. Пока поршень направляется в самую нижнюю точку цилиндра – этот отрезок будет считаться его рабочим ходом. Далее весь цикл повторяется за счет инерции коленчатого вала.

Стоит отметить, что именно рабочий ход является главным показателем эффективности работы двигателя, а значит, целиком определяем его коэффициент полезного действия.

В этом время, вся остальная работа, затрачиваемая на инерцию: сжатие смеси и ее подача – это все создает лишнюю нагрузку на коленвал, тем не менее, без этого работа двигателя невозможна. Многие автомастера увеличивают рабочий ход поршня и увеличивают объем цилиндра, чтобы добиться наибольшей эффктивности за счет увеличения рабочего хода и объема смеси подлежащего сгоранию.

Работа двигателя на холостом ходу

Холостым ходом любого двигателя внутреннего сгорания называют такой режим работы, при котором отсутствует передача вращающего момента на требуемый механизм. Данный режим характерен не только для ДВС, он также активно применяется и для многих других видов силовых установок, однако большее распространение получил именно в таких типах двигателей.

Работа двигателя на холостом ходу позволяет поддерживать его обороты на требуемом уровне без остановки. Дело в том, что при наличии нагрузки на коленчатом валу, ДВС всегда стремится остановиться, так кислород в этом случае потребляется в малом количестве. Такой режим также позволяет выполнить прогрев мотора, а на инжекторных двигателях создает работу, при которой содержание вредных веществ в выхлопном дыме сводится к минимуму.

Устойчивость оборотов холостого хода поддерживает система подачи топлива. Именно от нее зависит то, как мотор будет работать себя, когда нагрузка на валу отсутствует, а дроссельная заслонка, при этом, закрыта.

Вот и все, что нужно знать о самых запутанных терминах теории двигателя внутреннего сгорания. Все это относится не только в автомобильным двигателям, ведь такой мотор устанавливается и на мотоциклы, бензопилы, лодки и даже самолеты.

Читайте также: