Химический состав земли кратко

Обновлено: 30.06.2024

Земная кора состоит по большей части всего из нескольких соединений: Оксида кремния, оксида алюминия и оксида кальция.

Состав земной коры

Континентальная часть земной коры состоит из оксида кремния (SiO2) на 60,6%, тогда как океаническая часть земной коры состоит из кремнезёма на 48,6%.

Вторым по распространённости является глинозём (Al2O3). В земной коре его чуть более 15%. В континентальной части коры содержание глинозёма равно примерно 15,9%, а в океанической 16,5%.

Третьим по распространённости соединением является оксид кальция (CaO). В континентальной части земной коры его примерно 6,41%, а в океанической части коры около 12,3%.

Также распространены оксиды магния (4,6%), оксиды железа (6,71%), оксиды натрия (3,07%), оксиды калия (1,81%), диоксид титана (0,72%), оксиды фосфора (0,13%)

А если рассматривать структуру земной коры по элементам, то соотношение будет следующим:

  • Кислород 46%
  • Кремний 28%
  • Алюминий 8,3%
  • Железо 5,6%
  • Кальций 4,2%
  • Натрий 2,5%
  • Магний 2,4%
  • Калий 2,0%
  • Титан 0,61%
  • Другие элементы 0,39%

Наша планета уникальна тем, что она имеет земную кору сразу двух типов: континентальную и океаническую. На других планетах земного типа (Венера, Марс) планетная кора однородна.

Строение планеты

Планета Земля в разрезе

Но земная кора — это лишь малая часть планеты. Основную часть массы планеты составляют мантия и ядро. Масса земной коры оценивается в 2,8×10 19 тонн (из них 21 % приходится на океаническую кору, и 79 % на континентальную). Кора составляет всего 0,473 % общей массы Земли.

Океаническая кора

Возраст океанической коры. Красным показаны самые молодые участки, синим — наиболее древние

А мантия и ядро кардинально отличаются по своему химическому составу от земной коры.

В земной коре преобладает кислород. А какова структура мантии и ядра планеты?

Структура мантии

  • Кислород: 44,8%
  • Кремний: 21,5%
  • Магний: 22,8%
  • Железо: 5,8%
  • Алюминий: 2,2%
  • Кальций: 2,3%
  • Натрий: 0,3%
  • Калий: 0,03%

Мантия Земли на 46% состоит из диоксида кремния и на 38% из оксида магния. Можно заметить сходство в химическом составе мантии и земной коры. И это не удивительно, ведь земная кора представляет собой застывшую миллионы лет назад поверхность планеты.

Ядро у нашей планеты состоит из железо-никелевого сплава с примесью других сидерофильных элементов. Существует несколько гипотез относительно размеров ядра планеты, но по средним оценкам диаметр ядра составляет 7 000 км.

Ядро планеты имеет внушительную массу: 1,932×10 24 кг.

Масса планеты

Масса всей Земли составляет приблизительно 5,97×10 24 кг.

Вам также может понравиться


Астрономы открыли самую дальнюю планету в нашей солнечной системе

12.11.2015 Dudec Комментарии к записи Астрономы открыли самую дальнюю планету в нашей солнечной системе отключены


Интересные факты о Меркурии

Церера

Всё о возможной колонизации Цереры, планеты в астероидном поясе

03.04.2019 Dudec Комментарии к записи Всё о возможной колонизации Цереры, планеты в астероидном поясе отключены


Химический состав Земли схож с составом других планет земной группы, например Венеры или Марса (см. рисунок 1).

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см3.

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.


Рис. 1. Химический состав Земли


Ядро

Ядро расположено в центре Земли (см.рис 3), его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см3 (сравните: вода — 1 г/см3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.


Рис. 3. Строение Земли: ядро, мантия и земная кора

Мантия

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см3.

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.


Рис. 4. Строение земной коры

" alt="" width="311" height="300" />

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

" alt="" width="456" height="261" />

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Размер облом кон (частиц)

Песок и песчаники

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

" alt="" width="480" height="316.9111969112" />

Рис. 7. Классификация горных пород по происхождению

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

" alt="" width="480" height="441.41176470588" />

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

" alt="" width="312" height="213" />

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Как подсчитали содержание химических элементов в Земле?

Интересно

Внешние оболочки нашей планеты и даже космическое пространство изучено лучше, чем внутреннее строение Земли. Тем не менее, многолетние исследования дали нам представление о том, из каких слоев и веществ состоит планета. Рассмотрим химический состав Земли и методы, которыми пользуются ученые.

Химический состав и структура Земли

Земля неоднородная, поскольку ученым удалось выделить несколько слоев, отличающихся по физическим, а также химическим параметрам. Она принадлежит к планетам земной группы (расположенным во внутренней области Солнечной системы).

Структура Земли в масштабе

Структура Земли в масштабе

Структура по химическим параметрам:

  • земная кора;
  • мантия (верхняя и нижняя);
  • ядро (внешнее и внутреннее).

Структура по физическим параметрам:

  • литосфера;
  • астеносфера;
  • мезосфера;
  • ядро.

В массе планеты преобладает железо (32,1%), кислород (30,1%), кремний (15,1%), магний (13,9%), а также сера, никель, кальций, алюминий. Доля прочих веществ составляет около 1,2%.

Толщина слоев Земли

Толщина слоев Земли

Ядро (центр планеты) отличается высокой плотностью. Оно состоит преимущественно из железа и никеля. Внутренняя часть твердая, а внешняя – жидкая. По предварительным предположениям, радиус внутреннего ядра – 1200 км, а внешнего – примерно 2200 км.

Мантия – самый толстый слой. В ее составе преобладают силикатные породы с большим количеством железа, магния. Вещество твердое, невзирая на температуру – всему виной высокое давление. Лишь некоторые слои мантии отличаются вязкостью и пластичностью.

Океаническая и материковая кора разительно отличаются свойствами и составом. Океаническая кора образуется в основном базальтом – железо-магниевой силикатной породой. Материковая состоит из кислорода, кремния, алюминия и других веществ.

Как определили, из каких элементов состоит Земля?

Изучение химического состава Земли можно разделить на две группы. В первую входят породы, химический состав которых уже известен. Определить, в каком процентном соотношении представлены те или иные вещества на всей планете, ученые могут на основании геологических исследований и данных.

Сейсмографы используют для обнаружения и регистрации сейсмических волн всех типов

Сейсмографы используют для обнаружения и регистрации сейсмических волн всех типов

С распространенными веществами все намного проще, но также существует такое понятие, как редкоземельные элементы. Это группа из 18 элементов, которые редко встречаются в земной коре. Все они являются металлами, например, скандий, тулий, лантан и др. Так как редкоземельные элементы рассеяны по всей планете, их долю в массе рассчитывают по средним данным.

Интересный факт: самым редким на Земле является радиоактивный элемент астат (At). Изначально его синтезировали искусственным путем и только после этого обнаружили в природе. Содержание астата в земной коре – не более 1 грамма.

Что касается состава глубоких слоев планеты, то современные технологии все еще не дают возможности изучить их напрямую. Для исследований ученым доступна лишь малая часть земной коры, толщиной около 10 км, не говоря уже о недосягаемости мантии.

Поэтому остается лишь строить гипотезы и определять внутреннее строение Земли по косвенным признакам. Для этого используются топографические, гравиметрические (связанные с силой притяжения) данные. Исследуется подводный рельеф Мирового океана в целом и отдельных его составляющих.

В геологии случаются обнажения горных пород, которые оказываются на поверхности в ходе различных процессов, природных и техногенных. В результате вулканической активности происходит подъем пород с больших глубин – они становятся доступными для изучения в первозданном виде.

Еще один метод – анализ сейсмических волн, проходящих сквозь Землю. Зачастую это делается искусственным путем при помощи мощного взрыва на поверхности. Специальные приборы и датчики отмечают, насколько быстро образовавшиеся колебания распространяются по земной коре.

Кольская сверхглубокая скважина до закрытия

Кольская сверхглубокая скважина до закрытия

Узнать внутреннее строение пытаются и путем бурения сверхглубоких скважин. Самой глубокой (среди имеющих научное значение) считается Кольская скважина в Мурманской области. Она занесена в Книгу рекордов Гиннеса. Бурение завершено в 1991 году на глубине 12 262 м. В настоящее время скважина закрыта, но власти намерены сделать ее туристическим объектом.

Если химический состав горных пород известен, то содержание тех или иных элементов устанавливается на основании геологических данных. Внутреннее строение Земли определено гипотетически за счет различных наблюдений, анализа горных пород, сейсмологических волн, сверхглубокого бурения и других методов.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Артем Оганов

Облик нашей планеты и ее эволюция обусловлены процессами, которые происходят в ее глубинах. Каков химический состав мантии и ядра Земли? Каковы температуры и давления там? Из каких химических веществ они состоят, и каковы их свойства? Есть ли связь между химией высоких давлений и появлением жизни на Земле (а также периодическими глобальными вымираниями)? Что нового мы узнали о своей планете благодаря изучению ее вещества при высоких температурах и давлениях? Об этом и пойдет речь в лекции Артёма Оганова, химика, кристаллографа-теоретика, профессора РАН, члена Европейской Академии, профессора Сколтеха.

Сегодня я расскажу вам об одном из основных своих направлений работы. У меня несколько направлений, одно — это дизайн материалов, а другое — изучение вещества в недрах планеты. Тема на самом деле общая — мы изучаем вещество, его строение, и то, как это строение обуславливает свойства и поведение вещества. Найдя ключ к пониманию строения вещества, научившись предсказывать строение вещества, мы можем изучать вещество на самых разных просторах — от приборов и технологий до недр планет.

Поговорим немного о планетах — какие они бывают, какое место среди них занимает наша Земля. В Солнечной системе планеты бывают каменные (их также называют планетами земного типа) — это Меркурий, Венера, Земля, Марс, и газовые гиганты — Юпитер, Сатурн, Уран, Нептун. Уже известно несколько тысяч планет за пределами Солнечной системы, их называют экзопланетами. Кстати, среди каменных экзопланет известны планеты намного более крупные, чем Земля — вплоть до 20 земных масс, их называют суперземлями.

Мы знаем температуру и давление внутри Земли — например, давление в центре Земли 3,64 млн атмосфер, а температура примерно 6 тыс градусов Кельвина. Менее точно мы знаем давление и температуру в недрах других планет.


Уран и Нептун — другие. Они состоят из смеси воды, метана и аммиака. Из этих двух планет Нептун тоже характеризуется большим избытком теплового потока. Предполагают, что в недрах Нептуна образуются алмазы. Нептун и Уран — это тоже жидкие планеты, газово-жидкие. В недрах Нептуна, как считают, образуется алмаз — он плотный, твердый, эти кристаллики падают в недрах Нептуна в огромных количествах, и за счет этого генерируется тепло. За счет падения огромного количества алмазов. Пока еще эта гипотеза вызывает вопросы, но это пока что лучшее, что у нас есть.


В этой лекции мы говорим про давления на один-два порядка меньше, чем те, при которых это происходит. При такого рода давлениях химия по-прежнему существует, но значительно меняется. Например, мы нашли — теоретически и экспериментально — новую стабильную структуру бора, где один тип атомов бора отдает электроны, а другие атомы бора притягивают электроны на себя. В результате часть атомов заряжена положительно, часть — отрицательно, но это атомы одного и того же элемента, просто они играют разную роль в кристаллической структуре. А вот еще более удивительное предсказание, тоже подтвержденное экспериментом: что при высоких давлениях натрий перестает быть металлом. Мы привыкли называть натрий и другие элементы I группы щелочными металлами, но под давлением натрий уже не металл, а прозрачный диэлектрик. И здесь вы видите экспериментальный образец натрия в просвечивающем свете, и видно, что он, действительно, прозрачен и имеет оранжевый цвет. Это совершенно удивительные предсказания и их экспериментальные подтверждения.

Итак, химия под давлением меняется очень сильно. Мы говорим про давления, присущие недрам Земли. Из чего она состоит, как устроена? Мы знаем это из разных источников. Конечно, мы можем изучать горные породы и минералы с поверхности Земли, даже пробурить внутрь Земли, но это нас заведет не очень далеко. Самая глубокая скважина — Кольская сверхглубокая — имеет глубину чуть больше 12 километров (а радиус Земли почти 6400 км), и пробурить даже на 12 км было очень трудно. Таким образом, мы должны исходить из каких-то косвенных данных. Самый важный метод косвенного изучения недр Земли — сейсмология, когда мы изучаем прохождение упругих волн через недра нашей планеты. Волны достаточной мощности генерируются в землетрясениях. Когда у вас есть сейсмическая волна, упругая или звуковая волна — это одно и то же — она распространяется по всем направлениям, следуя, как ни странно, законам геометрической оптики: отражаясь или преломляясь от границ сред с разными скоростями распространения волн. И вот, применяя законы геометрической оптики для распространения в данном случае сейсмических волн, и решая обратную задачу, мы много смогли узнать о недрах Земли. Где находится сейсмическая граница между, скажем, ядром и мантией, или между внутренним ядром и внешним ядром, и так далее. Все эти границы удалось достаточно точно локализовать и описать. Как меняются свойства вещества при пересечении каждой из этих границ? Например, как меняется плотность? Удалось построить сейсмическую модель Земли. Надо сказать, что эта история до сих продолжается, хотя самые великие геофизические открытия, наверное, уже были сделаны за последние 100 лет. Эта эпопея началась чуть больше 100 лет назад, но последние важные открытия были сделаны в начале 2000-х годов, то есть, люди до сих пор находят что-то новое.

Мы узнали кое-что о составе Земли, хотя и не можем добурить до центра, но все же кое-что знаем. Модели состава Земли основаны на составе особого типа метеоритов, углистых хондритов CI, которые, как считается, представляют первичное вещество Вселенной. И считается, что этот состав соответствует составу вещества Земли и вещества Солнца (если брать нелетучие элементы). В Солнце, конечно, очень много летучих элементов — водород, гелий, но если вы уберете эти летучие элементы, то соотношение всех остальных элементов на Земле и на Солнце будет одинаково, потому что они произошли из одного и того же газово-пылевого облака.

Итак, у нас есть представление о среднем составе всей Вселенной. Если мы уберем водород и гелий, а также и другие летучие элементы, то получим то, что считаем составом Земли. И то же самое касается Солнца и метеоритов. Но состав Земли очень сильно дифференцирован. Средний состав — это если бы мы взяли всю Землю, перемешали бы ее на миксере, и провели химический анализ. На самом деле, земная кора, земное ядро, земная мантия имеют совершенно разные составы. Мы знаем, что земное ядро — это, грубо говоря, железо-никелевый сплав. Это сильно сжатое и горячее железо в сплаве с никелем. А мантия Земли — это, в основном, силикаты магния. А земная кора — это, в основном, продукты выплавления из мантии, обогащенные щелочными металлами и другими элементами — например, фосфором, литием, бором, ураном, а также обогащенные элементами жизни — углеродом, водородом, азотом.


Это очень важный процесс, который формирует нашу жизнь: землетрясения, вулканизм, дрейф континентов — все это происходит благодаря конвекции в мантии Земли. Сам по себе этот процесс очень интересен, потому что мантия Земли не является жидкостью или газом. Мы привыкли к конвекции в жидкости или газе, мы видим конвекцию в воздухе у костра или в чашке чая. В твердой мантии Земли конвекция тоже происходит, но с меньшей скоростью, примерно сантиметр в год. Казалось бы, пустяк, но если помножить эту скорость на геологические масштабы времени, на сотни миллионов лет, и станет понятно, что за это время вещество земной мантии может много раз пройти по кругу как через мясорубку.

Конвекция также присуща ядру Земли. Внешнее ядро Земли жидкое, расплавленное, а внутреннее — кристаллическое, твердое. И внешнее ядро Земли находится в состоянии довольно быстрой конвекции. Эта конвекция расплавленного электропроводящего вещества и генерирует наше магнитное поле. Оно связано не с тем, что ядро железное, а железо магнитное, нет. При давлениях и температурах ядра Земли железо уже немагнитное. Ядро создает магнитное поле не потому, что там магнитное железо, железо там размагнитилось, а благодаря тому, что там есть конвективное движение электропроводящей жидкости.Например, Юпитер обладает еще более сильным магнитным полем, чем Земля. Скорее всего, там нет или почти нет железного ядра, зато там есть вихревые потоки металлического водорода. Экспериментально магнитные поля планет изучают, помещая расплавленные металлы, такие, например, как натрий, в большие объемы, где происходит их помешивание. Помешивая расплавленный металл, вы можете сгенерировать магнитное поле примерно такого же типа, как у Земли. Магнитное поле Земли очень важно, потому то оно защищает нашу планету от потока заряженных частиц, в частности, от солнечного ветра. Если бы магнитного поля не было, то солнечный ветер — этот поток заряженных частиц — уничтожил бы жизнь. Собственно, он не дал бы ей даже зародиться. Поэтому мы знаем, что жизнь могла возникнуть только на планете, на которой есть магнитное поле.

Если говорить про минералы, то на поверхности Земли известно около 5000 минеральных видов, но доминирующими минералами являются полевые шпаты и кварц — больше 80% объема земной коры. Когда мы спускаемся ниже, считается, что минеральное разнообразие уменьшается. Минералы, которые мы предполагаем найти в недрах Земли, можно уже пересчитать по пальцам. В верхней мантии это оливин, пироксены, гранаты. В переходной зоне появляется новый минерал — вадслеит. Когда мы пересекаем границу 670 км и попадаем в нижнюю мантию Земли, то минералогия и химия претерпевают большие изменения, и тут доминируют перовскиты. Кстати, собственно перовскит это титанат кальция, встречающийся в маленьких количествах на поверхности Земли. В нижней мантии Земли возникают магниевый и кальциевый силикатные перовскиты. Магний-силикатный перовскит это минерал бриджманит, и это самый важный минерал на Земле, составляющий примерно 40% от объема всей Земли или же около 80% объёма нижней мантии. На поверхности Земли этот минерал был найден всего лишь несколько лет назад. И недавно открыли (с моим участием) минерал пост-перовскит, из самой нижней мантии Земли, он составляет примерно 80% объёма слоя D", у самой границы мантии с ядром.

Минералогические превращения обусловливает множество интересных вещей. В частности, некоторые глубинные землетрясения на Земле, вероятно, связаны с ними. Землетрясения малых глубин связаны просто с хрупкой деформацией — одна плита надвигается на другую, происходит хрупкая деформация. Глубинные землетрясения так не объяснить, потому что вещество становится гораздо более пластичным. Как считается, происходит фазовое превращение минералов. Например, минерал как серпентин, содержащий довольно много воды, на глубине обезвоживается, и это резкое обезвоживание и связанное с ним изменение объёма может объяснить некоторые из глубинных землетрясений.


До недавнего времени кристаллические структуры веществ можно было изучать только экспериментально. Предсказывать, какую структуру будет иметь ещё не полученное вещество, считалось невозможным. Эту задачу нам удалось решить, разработав эволюционный метод USPEX, где компьютер генерирует разные модели кристаллических структур, отбраковывает наименее стабильные из них, а на основе более стабильных конструирует новые модели кристаллических структур, пока не находит наилучшую. Это оказался эффективный метод, который даже при небольших ресурсах позволяет решать сложные задачи. Используют его уже тысячи ученых, как для предсказания новых материалов, так и для изучения вещества в экстремальных условиях.


А объясняется это тем, что образуется новая структура, вот этот самый пост-перовскит, который я только что вам показал. И эта структура слоистая и, разумеется, в любой слоистой структуре свойства будут различаться в разных направлениях. И если эти кристаллы ориентировать неким образом, то свойства будут зависеть от направления. Удалось выяснить еще много чего. С помощью предсказанного поля стабильности этой фазы удалось объяснить, почему этот загадочный слой имеет такую сильно меняющуюся толщину. Дело в том, что область стабильности этой фазы зависит от температуры. Если температура высокая, то пост-перовскит устойчив в очень маленьком диапазоне давлений, а там, где температура низкая, он устойчив в большем диапазоне давлений. Это объяснило, почему в каких-то местах этот слой отсутствует, а в каких-то местах он очень толстый. Мы видим, что с ростом температуры стабильность пост-перовскита падает. Когда Земля еще только-только образовалась и была очень горячей, температуры были такими высокими, что этого слоя не было. Этот слой родился в процессе охлаждения Земли, и даже до сих пор этот слой растет. Мы знаем еще одну оболочку Земли, которая растёт в процессе охлаждения Земли — твердое внутреннее ядро, по мере охлаждения Земли оно медленно выкристаллизовывается из жидкого ядра. Из условий, необходимых для стабильности пост-перовскита, можно заключить, что нет никакого пост-перовскита на таких планетах, как Марс или Меркурий. Он может быть на Венере, которая таких же размеров, как Земля, он есть на Земле. Он будет на более крупных планетах, но не на более мелких.

Кстати говоря, свойства этого самого пост-перовскита позволили объяснить еще одну загадку: периодическое изменение продолжительности суток. С периодом около 10 лет она меняется на несколько миллисекунд. И это связано с тем, что пост-перовскитовый слой D" имеет высокую электропроводность, и его взаимодействие с магнитным полем Земли оказывает влияние на скорость вращения Земли вокруг своей оси. Это было показано геофизиками достаточно давно, но не было известно, откуда берется эта электропроводность. Сейчас мы знаем, что за неё отвечает пост-перовскит.

Кстати, фазовый переход из перовскита в пост-перовскит должен ускорять конвекцию Земли. Есть фазовые переходы, которые являются барьерами для этой конвективной динамики, а есть переходы, которые ее подстегивают — и пост-перовскитовый переход относится именно к этому типу. Это означает, что в тот момент, когда пост-перовскит возник — не с момента образования Земли, а через сколько-то сотен миллионов лет, и точнее пока что сказать нельзя, ведь мы пока еще не очень хорошо понимаем, как менялись температуры в ходе эволюции Земли — динамика Земли изменилась. Конвективное движение должно было ускориться. Возможно, в тот момент возникла тектоника плит. Что это означает для нас? Эта самая конвекция и является механизмом, который приносит летучие элементы к поверхности Земли — углерод, водород, кислород, азот, и многие другие. Без этого не возникла бы жизнь. Это красивая идея, которую высказали японские учёные. Если так, то именно благодаря пост-перовскиту жизнь и возникла, потому что с его появлением был ускорен механизм экстракции летучих элементов из глубин на поверхность Земли. Что мне нравится в нашей науке и в науке вообще — удивительные связи между, казалось бы, несвязанными вещами. Казалось бы, где жизнь и мы с вами, и где пост-перовскит. Но без него, возможно, и нас бы не было.

Как я уже сказал, поведение элементов меняется, они ведут себя под давлением совсем не так, как обычно. Мы научились с помощью нашего метода предсказывать стабильные химические составы — и оказывается, что под давлением возникают соединения, о которых мы даже и не подумали бы, что они возможны. Например, сплавы железа с разными элементами — кремнием, серой, углеродом, водородом, кислородом. Изучая эти системы и сравнивая результаты моделирования с измеренными свойствами внутреннего кристаллического ядра Земли, можно сделать первую гипотезу о том, каков может быть состав. Можно правдоподобно описать внутреннее ядро, используя только углерод. Можно, используя только кислород. Есть еще также модели, в которых содержится кремний и водород, или сера и водород. Нам удалось еще сузить пространство поиска. Вот здесь показана одна из лучших моделей — 88% железо-никелевого сплава, 5% серы, 5% водорода и 2% кислорода. Это одна из лучших моделей на сегодняшний день, но мы продолжаем и дальше ограничивать пространство возможных составов. Может быть, в скором времени у нас будет возможность представить на ваш суд окончательную модель состава ядра.


В системах Fe-H и Fe-C возникает множество необычных соединений. Но самая яркая иллюстрация к таким необычным соединениям — это система Na-Cl. Мы привыкли, что хлорид натрия — это соль, NaCl. Другого состава классическая химия нам не разрешает. Под давлением образуются новые соединения. Вот результаты предсказаний, полученных с помощью нашего метода: под давлением возникают Na2Cl, Na3Cl, Na4Cl3, NaCl3, NaCl7, большинство из которых являются — подумайте! — металлами, то есть соединениями, проводящими электроны. Можно сказать, что это металлический сплав. И это не та химия, к которой мы привыкли. Удивительно. Эти соединения были получены экспериментально.

Такого рода необычные соединения возникают практически во всех химических системах при достаточно высоких давлениях. Любая система, если ее хорошенечко сдавить, тоже даст такие странные соединения.

Система Si-O — тут возникают SiO и SiO3. При нормальных условиях стабиле только SiO2, а под давлением SiO3 и SiO тоже будут стабильны. Смотрим на систему Mg-O: при нормальных условиях только MgO стабилен, а при высоких давлениях также стабильны МgO2, MgO3, Mg3O2.

Вот ещё один совершенно новый поворот: мы предсказали и экспериментально доказали, что под давлением гелий образует соединения Na2He, очень устойчивое и полученное экспериментально. Мы также предсказали, что гелий вступит в реакцию с оксидом натрия Na2O, и образует соединение Na2HeO. После нашей работы вышел ряд работ, в которых было показано, что гелий реагирует с такими соединениями, как H2O, SiO2, MgF2, CaF2, FeO2. Напомню, что геохимики до недавних пор считали, что гелий химически абсолютно инертен и не может удерживаться в недрах Земли — очевидно, что эти представления ошибочны, и гелий под давлением способен образовывать множество устойчивых соединений. Напомню, что гелий — распространённости элемент во Вселенной.

Я надеюсь, что то, что я вам рассказал сегодня, доказало то, что наука едина: химия, физика, геология, астрономия — границы между ними достаточно сильно размыты. Изучая строение и свойства вещества, в частности, при высоких давлениях, мы можем понять очень много и про нашу планету, и про другие миры.

Читайте также: