Химический состав организма органические вещества нуклеиновые кислоты и атф кратко

Обновлено: 17.05.2024

Химический состав клеточных структур во многом сходен, что доказывает единство живого мира. В организме можно обнаружить фактически все элементы таблицы Менделеева Д.И. В этом уроке познакомимся с химическим составом клеточных структур. Выявим, каково содержание важных веществ в клетке, какую роль они выполняют.

План урока:

Неорганические вещества, их роль в клетке

Всякий организм содержит определенный набор химических элементов, количество которых неодинаково. Познакомимся на схеме с классификацией элементов.

Из схемы видно, что самое большое количество в клетке приходится на макроэлементы. Все они имеют огромное значение для нормальной работы организма. Макроэлементы представлены следующими химическими элементами: кислородом (75%), углеродом (15%), водородом (8%), азотом (3%). Они являются основой жизни на всей планете.

Микроэлементы в организме представлены в небольшом количестве. Однако, они также выполняют свою роль в организме. Микроэлементы входят в состав ферментов и гормонов, содержатся в тканях, принимают участие в процессах обмена веществ.

Все химические элементы составляют вещества, которые представлены двумя группами. Познакомимся с ними на схеме.

Остановимся подробнее на неорганических веществах.

В численном отношении первое место среди неорганических веществ клетки принадлежит воде. Ее содержание колеблется в зависимости от вида организма, условий его местообитания, типа клеток и их функционального состояния. В общем содержание воды в клетке составляет от 40% до 95%.

Причем с возрастом количество воды в клетках любого организма заметно снижается. Соответственно, чем выше функциональная активность клеток и организма в целом, тем больше содержание в них воды, и наоборот.

Наличие воды – обязательное условие жизненной активности клетки. Она составляет основную часть цитоплазмы, поддерживает ее структуру. Роль воды определяется ее физическими и химическими свойствами.

Рассмотрим основные свойства воды:

  1. Данное вещество считается хорошим растворителем. По отношению к воде все вещества делятся на две группы: гидрофильные и гидрофобные.

Гидрофильные вещества имеют хорошую растворимость, так как состоят из частиц, способных при растворении отделяться друг от друга. С такими соединениями вы знакомились в курсе химии 9 класса, их называют ионные.

К ним относят такие классы неорганических соединений как соли, щелочи, кислоты и некоторые другие вещества.

В растворе молекулы или ионы данных соединений имеют возможность быстро передвигаться, что обеспечивает их высокую реакционную способность. При этом вода выполняет в клетке роль среды, в которой осуществляются химические реакции.

Гидрофобные вещества плохо либо вообще не растворимы в воде. К ним относят липиды, нуклеиновые кислоты, кое-какие углеводы, а также белки.

  1. Вода как вещество, обладает физическими свойствами. Для нее характерна высокая теплоемкость, при существенном увеличении тепловой энергии происходит небольшое повышение ее температуры. Данное свойство воды способствует защите тканей живых организмов от перегревания или переохлаждения. Это проявляется, к примеру, в потоотделении у животных, при испарении у растений.
  1. Немаловажным свойством воды является ее высокая теплопроводность. Благодаря этому тепло равномерно распределяется по всему организму, а не сосредоточивается в одном месте. Таким образом, основной функцией воды в клетке считается поддержание оптимального теплового режима.
  1. Вода является основным источником кислорода и водорода, необходимых для протекания процессов фотосинтеза у растений.
  1. Еще одним свойством воды является поверхностное натяжение. Молекулы воды сцепляются между собой с определенной силой и создают на поверхности пленку. Данное свойство обеспечивает движение крови в организме человека и животных, а также минеральных веществ у растений. Как же это происходит? Вот представьте себе, что два человека тянут канат. Каждый тянет его в свою сторону. Так и здесь. Силы, которыми связаны молекулы воды, тянут поверхность в разные стороны. Благодаря этому и происходит транспорт веществ в живом организме.

Значительную роль в организме играет и еще одна группа неорганических веществ – минеральные соли.

Все минеральные вещества могут быть в виде ионов или твердом состоянии. К примеру, цитоплазма содержит соли кальция, фосфора, кремния. Эти элементы используются для формирования опорных структур клетки – раковины моллюсков, хитиновый покров членистоногих.

Хитиновый покров жука носорога

Минеральные вещества в организме распадаются на ионы: катионы и анионы. Они поддерживают кислотно-щелочной баланс цитоплазмы, обеспечивают тургор [1] клеточных оболочек, оказывают влияние на возбудимость нервной и мышечной ткани, активируют ферменты.

Органические вещества, их роль в клетке

Основу жизни на планете составляют органические вещества. Они представлены белками, жирами, углеводами, а также нуклеиновыми кислотами.

Первостепенной группой органических веществ организма считаются углеводы. Клетка животных содержит углеводов 1,5-2%, в клетке растений их количество достигает 86-91%.

Познакомимся с группами углеводов на рисунке.

Состав моносахаридов представлен тремя или более атомами углерода. Примером этой группы могут считаться глюкоза, фруктоза, рибоза, а также дезоксирибоза. Все моносахариды – это бесцветные кристаллические вещества со сладким вкусом, имеют хорошую растворимость.

Как большинство углеводов, моносахариды снабжают организм энергией, а также принимают участие в синтезе веществ. Рибоза и дезоксирибоза являются составными компонентами нуклеиновых кислот и АТФ.

Моносахаридом является и глюкоза, которая считается составной частью полисахаридов – крахмала, целлюлозы, гликогена. Фруктоза же входит в состав олигосахаридов, к примеру, сахарозы.

Соответственно, углеводы, образованные двумя и более моносахаридами получили название олигосахаридов, примерами которых считаются сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

Свойствами олигосахариды схожи с моносахаридами. К примеру, они имеют хорошую растворимость, а также сладкий вкус. С ростом числа мономеров в составе, растворимость олигосахаридов снижается, теряется сладкий вкус.

Полисахариды образуются большим количеством моносахаридов, соединенных ковалентными связями. Полисахаридами являются крахмал, гликоген, целлюлоза, хитин. Полисахариды как вещества обладают сладким вкусом, а также отличной растворимостью. Однако, с возрастанием числа мономеров эти свойства ослабевают.

В живых организмах углеводы выполняют следующие функции:

  1. Энергетическая функция - углеводы снабжают клетку энергией, которая образуется при их распаде.
  2. Запасающая функция – избыточное содержание углеводов приводит к их накоплению в клетке. Данный запас может быть использован организмом для получения энергии, в случае ее нехватки.
  3. Строительная функция – углеводы составляют основу оболочек клетки. К примеру, целлюлоза считается составной частью клеточных стенок растений. Хитин же составляет клеточные оболочки грибов и наружный скелет некоторых животных.

Липиды включают в себя большую группу жиров и подобных им веществ. По физическим свойствам они являются гидрофобными веществами, то есть не растворяются в воде.

Содержание этих веществ различается, посмотрим на рисунке.

Строение липидов отличается, поэтому чаще всего различают две группы: простые и сложные.

Простыми липидами считаются нейтральные жиры, состав которых представлен остатками жирных кислот, молекулой глицерина. Данные соединения при комнатной температуре бывают твердыми и жидкими. Твердые нейтральные жиры чаще всего характерны для животных и встречаются у обитателей северных широт. Жидкие липиды или масла содержатся в клетках растений, например, у подсолнечника, облепихи, оливок.

К простым липидам, помимо нейтральных жиров, принадлежат также и воска.

Представляют они собой сложные эфиры, состоящие из жирных кислот, а также многоатомных спиртов. Данная группа липидов выполняет в организме защитную функцию, предохраняя от внешнего воздействия различные органы. Восковой слой встречается у животных на коже, шерсти, перьях, а у растений – на листьях, стебле, плодах.

Сложные липиды образованы простыми жирами, которые формируют комплексы с иными веществами. К примеру, в фосфолипидах содержатся простые липиды, а также остаток фосфорной кислоты.

Данная группа жиров имеет большое значение в организме. Фосфолипиды считаются основной составляющей клеточных мембран, осуществляя защитную функцию. В организме они не вырабатываются, поступают только с пищей, поэтому фосфолипиды являются незаменимыми соединениями.

Липиды выполняют важные функции в организме. Рассмотрим их.

  1. Энергетическая функция считается первостепенной у липидов. Их распад сопровождается освобождением энергии, в количественном отношении в 2 раза большей, чем выделяется при распаде углеводов, а также белков. Соответственно, 30% всей энергии, необходимой организму, поставляется именно жирами.
  1. Липиды откладываются у живых организмов как запасающее вещество. В течении жизни они могут расходоваться при недостатке энергии или воды. Распад 100г жира освобождает 105г воды. Эта жидкость необходима для некоторых жителей пустыни, например верблюдам. Многие знают, что это животное способно обходиться без воды10-12 дней. Источником воды как раз является жир, который накапливается в горбу верблюда.
  1. Липиды обладают невысокой теплопроводностью, поэтому исполняют защитную функцию в клетке.Благодаря жировой прослойке некоторые виды животных приспособились к холодному климату. Этот слой жира препятствует охлаждению организма.
  1. Также липиды осуществляют строительную функцию. К примеру, фосфолипиды являются компонентами клеточных мембран.

Строение и функции белков

Белки считаются сложными органическими соединениями, в составе которых преобладают аминокислоты. В жизни всех организмов эти вещества имеют первостепенное значение, поэтому их содержание составляет 50-80%.

Структурными единицами белков считаются аминокислоты, соединяющиеся в цепочки. Молекулы данных соединений представляет длинную цепь, состоящую из 50-1500 аминокислот скрепленных пептидной связью.

Аминокислоты выстраиваются в определенной последовательности, образуя полипептидную цепочку белка. Причем не всегда это просто цепочка, часто белки образуют различные конфигурации в пространстве. Поэтому принято выделять несколько уровней организации белковой молекулы.

Последовательная линейная цепочка аминокислот белковой молекулы является простейшим уровнем организации, названная первичной структурой. Она специфична для каждого белка, определяет его свойства, а также функции.

  1. Вторичный уровень организации представлен спирально закрученной цепочкой белковой молекулы. Витки спирали скрепляются водородными связями.
  2. Вследствие дальнейшей укладки спирали образуется специфичная для всякого белка конфигурация, называемая третичной структурой. Прочность обеспечивается водородными, ионными и гидрофобными взаимодействиями.
  3. Четвертичная структура образуется при объединении отдельных молекул белка в единую систему. Такой уровень организации структуры белковой молекулы можно наблюдать у гемоглобина. Причем только при таком сложном строении молекула этого белка способна реализовывать транспорт кислорода.

Под влиянием различных факторов происходит трансформация структуры белка вследствие разрыва связей. Такой процесс получил обозначение денатурация белка.

Денатурацию белка способны вызывать различные физические, а также химические факторы, к примеру, температура, облучение, влияние химических веществ. Причем денатурация структуры белка способна быть обратимой, а может, и нет.

По своему составу и строению белки различаются. Познакомимся с классификацией белков. Часто их делят на две группы: простые и сложные белки или протеины и протеиды.

В состав простых белков входят только аминокислоты. К ним относятся альбумины (сыворотка крови), глобулины (фибриноген крови), гистоны (составные компоненты гемоглобина).

В сложные белки помимо аминокислот входят и некоторые иные соединения – углеводы, липиды. Сложными белками являются фосфопротеины (казеин молока), гликопротеины (плазма крови).

Белки выполняют в клетке ряд значительных функций.

Остановимся на них подробнее.

В природе существует значительное число белков, которые отличаются по строению и функциям. Между тем, роль белков огромна для организмов, они считаются основой жизни на планете.

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты – биополимеры, способствующие хранению и передаче наследственных данных.

Макромолекулы нуклеиновых кислот выявлены в 1869г швейцарским ученым Ф. Мишером в лейкоцитах, содержащихся в гное. Затем данные соединения найдены в клетках абсолютно всех существ.

Как и белки, нуклеиновые кислоты считаются биополимерами. Их мономером стал нуклеотид, строение его представлено на рисунке.

Мономеры соединяются и образуют полинуклеотидную цепь за счет ковалентных связей, появляющихся между углеводом одного нуклеотида и остатком фосфорной кислоты другого.

Имеется 2 типа нуклеиновых кислот – дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Отличия в наименованиях говорят о разном строении: молекула ДНК включает углевод дезоксирибозу, а молекула РНК – рибозу.

Познакомимся со строением ДНК и РНК на рисунке.

Наиболее сложное строение наблюдается у молекулы ДНК, представляющей конфигурацию из двух цепочек, скрученных спирально.

Выделяют 4 типа разнообразных нуклеотидов в молекуле ДНК, но из-за различной их очередности в цепи достигается колоссальное обилие нуклеиновых кислот.

Соединяются 2 полинуклеотидные цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями. Рассмотрим принцип их объединения на рисунке.

Благодаря особенностям строения протяженность молекулы ДНК может достигать сотен тысяч нанометров, что намного больше самой крупной молекулы белка. В клетке ДНК содержится в ядре, где входит в состав хромосом, а также есть в митохондриях и пластидах. Основной функцией ДНК считается хранение наследственной информации.

Строение РНК более простое –молекула представлена одной цепью нуклеотидов, закрученной в спираль. Различают три типа РНК.

  • Информационной РНК насчитывается приблизительно 6%. Основной функцией информационной РНК является перенос информации к рибосомам, где она используется для образования белка.
  • Транспортная РНК образуется в ядрышках, затем перемещается в цитоплазму, где доставляет аминокислоты на рибосомы. Ее находится в клетке 10%. Всякой аминокислоте подходит своя молекула транспортной РНК.
  • Больше всего в клетке имеется рибосомных РНК – 85%. Они синтезируются в ядрышках, а затем связываются с белками, создавая рибосомы. Функция рибосомной РНК: запускать и прекращать процесс присоединения аминокислот при образовании белка.

В любой клетке содержатся такие органические соединения как аденозинтрифосфорная кислота (АТФ). Молекула АТФ снабжает энергией большинство реакций, с ее помощью клетка движется, осуществляется синтез веществ.

Любое вещество играет конкретную роль в протекании жизненных процессов. Нехватка какого-либо вещества способно приводить к нарушению данных процессов. Чтобы этого не происходило, организм приспособился самостоятельно поддерживать постоянство состава своей внутренней среды. Обеспечивается это с помощью нервной и гуморальной регуляции организма. Вспомнить, как осуществляются эти процессы, вы можете, обратившись к уроку Организм как единое целое.

Словарь

Тургор – напряженное состояние клеточных оболочек, возникающее вследствие разного давления.

Урок позволит выявить особенности строения макромолекул, определяющие многообразие белковых молекул, а также обеспечивающие возможность хранения и реализации генетической информации нуклеиновыми кислотами.

Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Белки; аминокислоты; пептидная связь; полипептид; незаменимые аминокислоты; структура белковой молекулы; глобулярные и фибриллярные белки; денатурация белка; ферменты; гормоны; антитела; рецепторы; нуклеиновые кислоты; нуклеотид; ДНК; РНК; АТФ; копмлементарность.

Белки – азотсодержащие высокомолекулярные органические соединения, нерегулярные полимеры, мономерами которых являются аминокислоты.

Аминокислоты – органические соединения, в молекуле которых одновременно содержатся карбоксильная группа (- СООН) и аминогруппа (- NН2).

Пептидная связь – это прочная ковалентная связь, возникающая при образовании белков (пептидов) в результате взаимодействия аминогруппы одной аминокислоты с карбоксильной группой другой аминокислоты.

Полипептид – соединение, состоящее из более 20 аминокислотных остатков.

Незаменимые аминокислоты – необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме. Незаменимыми для взрослого здорового человека являются 8 аминокислот.

Структура белковой молекулы – сложная пространственная структура, обладающая первичным, вторичным, третичным и четвертичным уровнями организации. Особенности структурной организации белковой молекулы определяются первичным уровнем ее организации. Для того чтобы осуществлять свои биологические функции, белки сворачиваются в одну или несколько особых пространственных конфигураций, обусловленных рядом нековалентных взаимодействий, таких, как водородные связи, ионные связи, гидрофобные взаимодействия и др.

Глобулярные белки – белки, в молекулах которых полипептидные цепи плотно свёрнуты в глобулы (компактные шарообразные третичные структуры). Глобулярную структуру имеют ферменты, иммуноглобулины, некоторые гормоны.

Фибриллярные белки – белки, в молекулах которых расположенные параллельно друг другу вытянутые полипептидные цепи образуют длинные нити или слои (коллаген, кератин, фиброин).

Денатурация – это утрата белковой молекулой своей структурной организации. Она может быть вызвана изменением температуры, обезвоживанием, изменением кислотности раствора и другими воздействиями. В результате денатурации белок теряет способность выполнять свою функцию.

Ферменты – органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям.

Гормоны – биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах. По химической природе могут быть белками, производными аминокислот, липидами.

Антитела (иммуноглобулины) – белковые соединения плазмы крови, образующиеся в ответ на введение в организм человека или теплокровных животных бактерий, вирусов, белковых токсинов и других антигенов. Связываясь активными участками (центрами) с бактериями или вирусами, антитела препятствуют их размножению или нейтрализуют выделяемые ими токсические вещества.

Клеточный рецептор – молекула (обычно белок или гликопротеид) на поверхности клетки, клеточных органелл или растворенная в цитоплазме. Специфично реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определённого химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы.

Нуклеиновые кислоты – природные биополимеры, образованные остатками нуклеотидов, обеспечивающие хранение, передачу и реализацию наследственной (генетической) информации в живых организмах.

Нуклеотид – низкомолекулярные вещества, которые выполняют функции биорегуляторов (НАД, НАДФ, АТФ и др.) либо входят в состав полимерных молекул ДНК и РНК. В состав нуклеотида входит азотистое основание, углевод пентоза и остаток фосфорной кислоты.

Дезоксирибонуклеиновая кислота (ДНК) – макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Рибонуклеиновые кислоты (РНК) – макромолекулы, биологическая функция которых связана с реализацией наследственной информации в клетке.

Аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ) – нуклеотид с тремя остатками фосфорной кислоты, имеющий большое значение в обмене энергии и веществ в организмах. АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.

Комплементарность – способность нуклеотидов к избирательному соединению друг с другом. Комплементарность обеспечивается взаимодополнением пространственных конфигураций молекул азотистых оснований, а также количеством водородных связей, возникающих между азотистыми основаниями.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

Обязательная литература:

1. Беляев Д.К., Дымшиц Г.М. Биология. 10 класс: учебник для общеобразовательных организаций: базовый уровень. – М.: Просвещение, 2014. – стр. 20-37;

Дополнительные источники:

2. Тейлор Д., Грин Н., Стаут У. Биология: в 3т. Том 1. – М.: Лаборатория знаний, 2016. – стр. 124-167

6. Открытые электронные ресурсы по теме урока (при наличии);

Теоретический материал для самостоятельного изучения;

Белки — наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров — 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (— NH2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера — белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура — полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S — S (эс — эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты — цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией. Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остается в виде первичной структуры — полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки — это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов — ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок — активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки — антитела — выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК — полимер, мономерами которой являются нуклеотиды — соединения, состоящие из молекулы фосфорной кислоты, углевода — дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

Между А и Т возникают две связи, между Г и Ц — три.

Удвоение молекулы ДНК — ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК — полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК — аденин, гуанин и цитозин — соответствуют таковым ДНК, а четвертое — иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

Эта реакция сопровождается выделением 40 кДж энергии, поэтому фосфорнокислородную связь называют макроэнергетической связью и обозначают знаком [бесконечность]. В АТФ имеются две такие связи. Если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорную кислоту).

АТФ играет центральную роль в превращении энергии в клетке.

Примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

1) состоит из аминокислот

2) пищеварительный фермент

3) денатурирует обратимо при варке яйца

4) мономеры связаны пептидными связями

5) молекула образует первичную, вторичную и третичную структуры

Правильный вариант:

2) пищеварительный фермент

3) денатурирует обратимо при варке яйца

Подсказка: вспомните, какую роль выполняют ферменты.

Соберите из элементов изображение молекулы вещества, являющегося универсальным источником энергии для многих биохимических процессов, протекающих в живых системах.

Изображение необходимо разрезать на тайлы таким образом, чтобы была возможность выбора варианта соединения между разными компонентами молекулы.

Правильные ответы:

Подсказка: универсальным источником энергии для многих биохимических процессов, протекающих в живых системах, является АТФ (аденозинтрифосфат). АТФ – адениловый нуклеотид, к которому присоединены ещё два остатка фосфорной кислоты.

Химический состав клеточных структур во многом сходен, что доказывает единство живого мира. В организме можно обнаружить фактически все элементы таблицы Менделеева Д.И. В этом уроке познакомимся с химическим составом клеточных структур. Выявим, каково содержание важных веществ в клетке, какую роль они выполняют.

План урока:

Неорганические вещества, их роль в клетке

Всякий организм содержит определенный набор химических элементов, количество которых неодинаково. Познакомимся на схеме с классификацией элементов.

Из схемы видно, что самое большое количество в клетке приходится на макроэлементы. Все они имеют огромное значение для нормальной работы организма. Макроэлементы представлены следующими химическими элементами: кислородом (75%), углеродом (15%), водородом (8%), азотом (3%). Они являются основой жизни на всей планете.

Микроэлементы в организме представлены в небольшом количестве. Однако, они также выполняют свою роль в организме. Микроэлементы входят в состав ферментов и гормонов, содержатся в тканях, принимают участие в процессах обмена веществ.

Все химические элементы составляют вещества, которые представлены двумя группами. Познакомимся с ними на схеме.

Остановимся подробнее на неорганических веществах.

В численном отношении первое место среди неорганических веществ клетки принадлежит воде. Ее содержание колеблется в зависимости от вида организма, условий его местообитания, типа клеток и их функционального состояния. В общем содержание воды в клетке составляет от 40% до 95%.

Причем с возрастом количество воды в клетках любого организма заметно снижается. Соответственно, чем выше функциональная активность клеток и организма в целом, тем больше содержание в них воды, и наоборот.

Наличие воды – обязательное условие жизненной активности клетки. Она составляет основную часть цитоплазмы, поддерживает ее структуру. Роль воды определяется ее физическими и химическими свойствами.

Рассмотрим основные свойства воды:

  1. Данное вещество считается хорошим растворителем. По отношению к воде все вещества делятся на две группы: гидрофильные и гидрофобные.

Гидрофильные вещества имеют хорошую растворимость, так как состоят из частиц, способных при растворении отделяться друг от друга. С такими соединениями вы знакомились в курсе химии 9 класса, их называют ионные.

К ним относят такие классы неорганических соединений как соли, щелочи, кислоты и некоторые другие вещества.

В растворе молекулы или ионы данных соединений имеют возможность быстро передвигаться, что обеспечивает их высокую реакционную способность. При этом вода выполняет в клетке роль среды, в которой осуществляются химические реакции.

Гидрофобные вещества плохо либо вообще не растворимы в воде. К ним относят липиды, нуклеиновые кислоты, кое-какие углеводы, а также белки.

  1. Вода как вещество, обладает физическими свойствами. Для нее характерна высокая теплоемкость, при существенном увеличении тепловой энергии происходит небольшое повышение ее температуры. Данное свойство воды способствует защите тканей живых организмов от перегревания или переохлаждения. Это проявляется, к примеру, в потоотделении у животных, при испарении у растений.
  1. Немаловажным свойством воды является ее высокая теплопроводность. Благодаря этому тепло равномерно распределяется по всему организму, а не сосредоточивается в одном месте. Таким образом, основной функцией воды в клетке считается поддержание оптимального теплового режима.
  1. Вода является основным источником кислорода и водорода, необходимых для протекания процессов фотосинтеза у растений.
  1. Еще одним свойством воды является поверхностное натяжение. Молекулы воды сцепляются между собой с определенной силой и создают на поверхности пленку. Данное свойство обеспечивает движение крови в организме человека и животных, а также минеральных веществ у растений. Как же это происходит? Вот представьте себе, что два человека тянут канат. Каждый тянет его в свою сторону. Так и здесь. Силы, которыми связаны молекулы воды, тянут поверхность в разные стороны. Благодаря этому и происходит транспорт веществ в живом организме.

Значительную роль в организме играет и еще одна группа неорганических веществ – минеральные соли.

Все минеральные вещества могут быть в виде ионов или твердом состоянии. К примеру, цитоплазма содержит соли кальция, фосфора, кремния. Эти элементы используются для формирования опорных структур клетки – раковины моллюсков, хитиновый покров членистоногих.

Хитиновый покров жука носорога

Минеральные вещества в организме распадаются на ионы: катионы и анионы. Они поддерживают кислотно-щелочной баланс цитоплазмы, обеспечивают тургор [1] клеточных оболочек, оказывают влияние на возбудимость нервной и мышечной ткани, активируют ферменты.

Органические вещества, их роль в клетке

Основу жизни на планете составляют органические вещества. Они представлены белками, жирами, углеводами, а также нуклеиновыми кислотами.

Первостепенной группой органических веществ организма считаются углеводы. Клетка животных содержит углеводов 1,5-2%, в клетке растений их количество достигает 86-91%.

Познакомимся с группами углеводов на рисунке.

Состав моносахаридов представлен тремя или более атомами углерода. Примером этой группы могут считаться глюкоза, фруктоза, рибоза, а также дезоксирибоза. Все моносахариды – это бесцветные кристаллические вещества со сладким вкусом, имеют хорошую растворимость.

Как большинство углеводов, моносахариды снабжают организм энергией, а также принимают участие в синтезе веществ. Рибоза и дезоксирибоза являются составными компонентами нуклеиновых кислот и АТФ.

Моносахаридом является и глюкоза, которая считается составной частью полисахаридов – крахмала, целлюлозы, гликогена. Фруктоза же входит в состав олигосахаридов, к примеру, сахарозы.

Соответственно, углеводы, образованные двумя и более моносахаридами получили название олигосахаридов, примерами которых считаются сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

Свойствами олигосахариды схожи с моносахаридами. К примеру, они имеют хорошую растворимость, а также сладкий вкус. С ростом числа мономеров в составе, растворимость олигосахаридов снижается, теряется сладкий вкус.

Полисахариды образуются большим количеством моносахаридов, соединенных ковалентными связями. Полисахаридами являются крахмал, гликоген, целлюлоза, хитин. Полисахариды как вещества обладают сладким вкусом, а также отличной растворимостью. Однако, с возрастанием числа мономеров эти свойства ослабевают.

В живых организмах углеводы выполняют следующие функции:

  1. Энергетическая функция - углеводы снабжают клетку энергией, которая образуется при их распаде.
  2. Запасающая функция – избыточное содержание углеводов приводит к их накоплению в клетке. Данный запас может быть использован организмом для получения энергии, в случае ее нехватки.
  3. Строительная функция – углеводы составляют основу оболочек клетки. К примеру, целлюлоза считается составной частью клеточных стенок растений. Хитин же составляет клеточные оболочки грибов и наружный скелет некоторых животных.

Липиды включают в себя большую группу жиров и подобных им веществ. По физическим свойствам они являются гидрофобными веществами, то есть не растворяются в воде.

Содержание этих веществ различается, посмотрим на рисунке.

Строение липидов отличается, поэтому чаще всего различают две группы: простые и сложные.

Простыми липидами считаются нейтральные жиры, состав которых представлен остатками жирных кислот, молекулой глицерина. Данные соединения при комнатной температуре бывают твердыми и жидкими. Твердые нейтральные жиры чаще всего характерны для животных и встречаются у обитателей северных широт. Жидкие липиды или масла содержатся в клетках растений, например, у подсолнечника, облепихи, оливок.

К простым липидам, помимо нейтральных жиров, принадлежат также и воска.

Представляют они собой сложные эфиры, состоящие из жирных кислот, а также многоатомных спиртов. Данная группа липидов выполняет в организме защитную функцию, предохраняя от внешнего воздействия различные органы. Восковой слой встречается у животных на коже, шерсти, перьях, а у растений – на листьях, стебле, плодах.

Сложные липиды образованы простыми жирами, которые формируют комплексы с иными веществами. К примеру, в фосфолипидах содержатся простые липиды, а также остаток фосфорной кислоты.

Данная группа жиров имеет большое значение в организме. Фосфолипиды считаются основной составляющей клеточных мембран, осуществляя защитную функцию. В организме они не вырабатываются, поступают только с пищей, поэтому фосфолипиды являются незаменимыми соединениями.

Липиды выполняют важные функции в организме. Рассмотрим их.

  1. Энергетическая функция считается первостепенной у липидов. Их распад сопровождается освобождением энергии, в количественном отношении в 2 раза большей, чем выделяется при распаде углеводов, а также белков. Соответственно, 30% всей энергии, необходимой организму, поставляется именно жирами.
  1. Липиды откладываются у живых организмов как запасающее вещество. В течении жизни они могут расходоваться при недостатке энергии или воды. Распад 100г жира освобождает 105г воды. Эта жидкость необходима для некоторых жителей пустыни, например верблюдам. Многие знают, что это животное способно обходиться без воды10-12 дней. Источником воды как раз является жир, который накапливается в горбу верблюда.
  1. Липиды обладают невысокой теплопроводностью, поэтому исполняют защитную функцию в клетке.Благодаря жировой прослойке некоторые виды животных приспособились к холодному климату. Этот слой жира препятствует охлаждению организма.
  1. Также липиды осуществляют строительную функцию. К примеру, фосфолипиды являются компонентами клеточных мембран.

Строение и функции белков

Белки считаются сложными органическими соединениями, в составе которых преобладают аминокислоты. В жизни всех организмов эти вещества имеют первостепенное значение, поэтому их содержание составляет 50-80%.

Структурными единицами белков считаются аминокислоты, соединяющиеся в цепочки. Молекулы данных соединений представляет длинную цепь, состоящую из 50-1500 аминокислот скрепленных пептидной связью.

Аминокислоты выстраиваются в определенной последовательности, образуя полипептидную цепочку белка. Причем не всегда это просто цепочка, часто белки образуют различные конфигурации в пространстве. Поэтому принято выделять несколько уровней организации белковой молекулы.

Последовательная линейная цепочка аминокислот белковой молекулы является простейшим уровнем организации, названная первичной структурой. Она специфична для каждого белка, определяет его свойства, а также функции.

  1. Вторичный уровень организации представлен спирально закрученной цепочкой белковой молекулы. Витки спирали скрепляются водородными связями.
  2. Вследствие дальнейшей укладки спирали образуется специфичная для всякого белка конфигурация, называемая третичной структурой. Прочность обеспечивается водородными, ионными и гидрофобными взаимодействиями.
  3. Четвертичная структура образуется при объединении отдельных молекул белка в единую систему. Такой уровень организации структуры белковой молекулы можно наблюдать у гемоглобина. Причем только при таком сложном строении молекула этого белка способна реализовывать транспорт кислорода.

Под влиянием различных факторов происходит трансформация структуры белка вследствие разрыва связей. Такой процесс получил обозначение денатурация белка.

Денатурацию белка способны вызывать различные физические, а также химические факторы, к примеру, температура, облучение, влияние химических веществ. Причем денатурация структуры белка способна быть обратимой, а может, и нет.

По своему составу и строению белки различаются. Познакомимся с классификацией белков. Часто их делят на две группы: простые и сложные белки или протеины и протеиды.

В состав простых белков входят только аминокислоты. К ним относятся альбумины (сыворотка крови), глобулины (фибриноген крови), гистоны (составные компоненты гемоглобина).

В сложные белки помимо аминокислот входят и некоторые иные соединения – углеводы, липиды. Сложными белками являются фосфопротеины (казеин молока), гликопротеины (плазма крови).

Белки выполняют в клетке ряд значительных функций.

Остановимся на них подробнее.

В природе существует значительное число белков, которые отличаются по строению и функциям. Между тем, роль белков огромна для организмов, они считаются основой жизни на планете.

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты – биополимеры, способствующие хранению и передаче наследственных данных.

Макромолекулы нуклеиновых кислот выявлены в 1869г швейцарским ученым Ф. Мишером в лейкоцитах, содержащихся в гное. Затем данные соединения найдены в клетках абсолютно всех существ.

Как и белки, нуклеиновые кислоты считаются биополимерами. Их мономером стал нуклеотид, строение его представлено на рисунке.

Мономеры соединяются и образуют полинуклеотидную цепь за счет ковалентных связей, появляющихся между углеводом одного нуклеотида и остатком фосфорной кислоты другого.

Имеется 2 типа нуклеиновых кислот – дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Отличия в наименованиях говорят о разном строении: молекула ДНК включает углевод дезоксирибозу, а молекула РНК – рибозу.

Познакомимся со строением ДНК и РНК на рисунке.

Наиболее сложное строение наблюдается у молекулы ДНК, представляющей конфигурацию из двух цепочек, скрученных спирально.

Выделяют 4 типа разнообразных нуклеотидов в молекуле ДНК, но из-за различной их очередности в цепи достигается колоссальное обилие нуклеиновых кислот.

Соединяются 2 полинуклеотидные цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями. Рассмотрим принцип их объединения на рисунке.

Благодаря особенностям строения протяженность молекулы ДНК может достигать сотен тысяч нанометров, что намного больше самой крупной молекулы белка. В клетке ДНК содержится в ядре, где входит в состав хромосом, а также есть в митохондриях и пластидах. Основной функцией ДНК считается хранение наследственной информации.

Строение РНК более простое –молекула представлена одной цепью нуклеотидов, закрученной в спираль. Различают три типа РНК.

  • Информационной РНК насчитывается приблизительно 6%. Основной функцией информационной РНК является перенос информации к рибосомам, где она используется для образования белка.
  • Транспортная РНК образуется в ядрышках, затем перемещается в цитоплазму, где доставляет аминокислоты на рибосомы. Ее находится в клетке 10%. Всякой аминокислоте подходит своя молекула транспортной РНК.
  • Больше всего в клетке имеется рибосомных РНК – 85%. Они синтезируются в ядрышках, а затем связываются с белками, создавая рибосомы. Функция рибосомной РНК: запускать и прекращать процесс присоединения аминокислот при образовании белка.

В любой клетке содержатся такие органические соединения как аденозинтрифосфорная кислота (АТФ). Молекула АТФ снабжает энергией большинство реакций, с ее помощью клетка движется, осуществляется синтез веществ.

Любое вещество играет конкретную роль в протекании жизненных процессов. Нехватка какого-либо вещества способно приводить к нарушению данных процессов. Чтобы этого не происходило, организм приспособился самостоятельно поддерживать постоянство состава своей внутренней среды. Обеспечивается это с помощью нервной и гуморальной регуляции организма. Вспомнить, как осуществляются эти процессы, вы можете, обратившись к уроку Организм как единое целое.

Словарь

Тургор – напряженное состояние клеточных оболочек, возникающее вследствие разного давления.

Задумайтесь! Мы с вами состоит из миллиардов атомов. Все атомы находятся в круговороте, и все атомы, которыми мы обладаем, в ком-то и где-то находились те 4,5 млрд. лет, которые существует Земля. Они были частями животных, растений, грибов и бактерий - а сейчас принадлежат нам на короткое время.

Круговорот атомов

С химической точки зрения ответ на вопрос "Жив ли изучаемый объект?" - не представляется возможным. Понятию "жизнь" дано колоссальное количество определений. Жизнь - это самовоспроизведение с изменением, способ существования белковых тел, постоянный обмен веществ с внешней средой.

Мы приступаем к изучению неорганических и органических веществ клетки. Начнем с неотъемлемого компонента клетки, благодаря которому жизнь на Земле в принципе стала возможна - вода.

Составляет 60-80% массы клетки. Молекула воды обладает уникальным свойством - полярностью, которое возникает из-за разницы в электроотрицательности (ЭО) между атомами кислорода и водорода (у кислорода ЭО больше).

Вода полярная молекула

Поскольку молекула воды полярна, ее называют диполь. Между молекулами воды возникают непрочные водородные связи: водородная связь начинается от отрицательно заряженного атома кислорода (2δ - ) одной молекулы воды и тянется до положительно заряженного атома водорода другой молекулы воды (δ + )

  • Гидрофильные (греч. hydro - вода и philéo - люблю) - вещества, которые хорошо растворяются в воде. Гидрофильными веществами являются сахара, соли, альдегиды, спирты, аминокислоты.
  • Гидрофобные (греч. hydro - вода и phobos — страх) - вещества, которые не растворяются в воде. Гидрофобными веществами являются жиры.

    Вода - универсальный растворитель

Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет ей быть отличным растворителем для других гидрофильных (полярных) веществ.

Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее "спасение" для клеток: чуть только температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

Она не только создает среду для реакций в клетке, но и сама активно участвует во многих из них. Расщепление питательных веществ, попавших в клетку, происходит за счет реакции гидролиза (греч. hydro - вода и lysis - расщепление).

Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов обмена веществ.

Транспортная функция воды

Вода придает тканям тургор (лат. turgor — наполнение) - внутреннее осмотическое давление в живой клетке, создающее напряжение оболочек клеток. Вода составляет от 60 до 95% цитоплазмы, придает клеткам форму. Изменение тургора клеток растений приводит к перемещениям их частей, раскрытию устьиц, цветков.

Осмотическое давление - избыточное гидростатическое давление на раствор, отделенный от чистого растворителя с помощью полупроницаемой мембраны.

Главное - понимать суть: если мы поместим живую клетку в гипертонический раствор, то вода (растворитель) устремится из клетки в раствор (в сторону большей концентрации соли) - это приведет к сморщиванию клеток.

Если же клетка окажется в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей), приводя при этом к разбуханию (и возможному разрыву) клетки.

Эритроциты в гипер- и гипотоническом растворе

Элементы

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится нормальное образование эритроцитов без должного уровня Fe и Cu.

Микроэлементы

В водной среде клетки соли диссоциируют (распадаются) на положительно заряженные ионы - катионы (Na + , K + , Ca 2+ , Mg 2+ ) и отрицательно заряженные - анионы (Cl - , SO4 2- , HPO4 2- , H2PO4 - ).

Для процессов возбуждения клетки (нейрона, миоцита - мышечной клетки) внутри клетки должна поддерживаться низкая концентрация ионов Na + и высокая концентрация ионов K + . В окружающей клетку среде все наоборот: много Na и мало K. В мембране существует специальный натрий-калиевый насос, который поддерживает необходимое равновесие. Если это соотношение нарушится, то нейрон не сможет сгенерировать нервный импульс, а клетка мышцы - сократиться.

Натрий-калиевый насос

  • Участвуют в активации ферментов
  • Создают буферные системы (бикарбонтаную, фосфатную, белковую)
  • Поддерживают кислотно-щелочное состояние (КЩС)
  • Создают осмотическое давление клетки
  • Создают мембранный потенциал клеток (натрий-калиевый насос)
  • Являются основным минеральным составляющим скелета внутреннего и наружного (у моллюсков)

Функции солей в клетке

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Белки, или пептиды (греч. πεπτος - питательный)

Белки - полимеры, мономерами которых являются аминокислоты. Белки представляют линейную структуру, образованную из длинной цепи аминокислот, между которыми возникают пептидные связи. Пептидная связь образуется между карбоксильной группой (COOH) одной аминокислоты и аминогруппой другой аминокислоты (NH2).

Образование пептидной связи

Между понятиями пептиды и белки существует определенная разница. Белки состоят из сотен тысяч аминокислот. Пептидами называют небольшие белки, содержащие до 10 аминокислот. Ими являются некоторые гормоны: окситоцин, вазопрессин, тиреолиберин - эти пептиды выполняют регуляторную функцию.

  • Первичная - полипептидная цепь, в которой аминокислоты расположены линейно
  • Вторичная - полипептидная цепь закручивается в спираль, формируется α или β структура
  • Третичная - спирали скручиваются в глобулу (лат. globulus - шарик)
  • Четвертичная - образуется у сложных белков путем соединения нескольких глобул

Структуры белка

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от высших структур организации к низшим, или "раскручивание белка". Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Осмелюсь сделать заявление: вы часто начинаете свой день с денатурации белка. Простейший способ провести такой эксперимент - пожарить яичницу. Заметьте, что изначально яичный белок прозрачный и текучий, но по итогу жарки эти свойства утрачиваются: он становится непрозрачным и вязким.

Денатурация белка

    Каталитическая (греч. katalysis - разрушение)

Белки - природные катализаторы, ускоряющие реакции в организме в десятки и сотни тысяч раз. Эту роль главным образом выполняют белки-ферменты (энзимы).

Иногда в состав белков входят так называемые ко-факторы - небелковые соединения, которые необходимы ферменту для его биологической активности (в роли ко-факторов могут выступать Zn 2+ , Mg 2+ ).

Белки входят в состав клеточных мембран. Сложные белки: коллаген, эластин - входят в состав соединительных тканей организма, придавая им некоторую прочность и эластичность.

Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон, адренокортикотропный гормон (АКТГ).

Говоря об этой функции, прежде всего, стоит вспомнить об антителах - иммуноглобулинах, которые синтезируют B-лимфоциты. Антитела нейтрализуют чужеродные организму антигены (разрушают бактерии).

Антитела иммуноглобулины

Помимо антител, защитную функцию выполняют также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

Фибриноген и фибрин

При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

Некоторые белки крови способны присоединять к себе и переносить различные молекулы. Альбумины участвуют в транспорте жирных кислот, глобулины - гормонов и некоторых ионов (Fe, Cu). Основной белок эритроцитов - гемоглобин - способен переносить кислород, углекислый и угарный газы (угарный конечно нежелательно ему переносить, будет отравление)

Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

Двигательные белки

На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

Жиры, или липиды (греч. lipos - жир)

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна, а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Моющее действие мыла

При окислении жиров выделяется много энергии: 1 г - 38,9 кДж. Это вдвое больше выделяющейся энергии при расщеплении 1г углеводов.

Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах. Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам) жировые запасы помогают длительное время обходиться без воды.

Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех клеток органов и тканей!

Так, к примеру, холестерин - обязательный компонент мембраны, придает ей определенную жесткость и совершенно необходим для нормальной жизнедеятельности (заболевания возникают только при нарушении липидного обмена).

Строение мембраны

Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой. Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

Некоторые гормоны по строению относятся к жирам: половые (андрогены - мужские и эстрогены - женские), гормон беременности (прогестерон), кортикостероиды.

Производное жира - витамин D - принимает важное участие в обмене кальция и фосфора в организме. Он образуется в коже под действием ультрафиолетового излучения (солнечного света). При недостатке витамина D возникает заболевание - рахит.

Рахит

Углеводы

    Моносахариды (греч. monos — единственный)

Простые сахара, легко растворяющиеся в воде и имеющие сладкий вкус. Моносахариды подразделяются на гексозы (имеют 6 атомов углерода) - глюкоза, фруктоза, и пентозы (имеют 5 атомов углерода) - рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот.

При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков. Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза, мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

Олигосахариды

Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой, нерастворимы в воде, на вкус несладкие.

Крахмал, целлюлоза, гликоген, хитин и муреин - все это биополимеры. Давайте вспомним, где они находятся.

Клеточная стенка образована: у растений - целлюлозой, у грибов - хитином, у бактерий - муреином. Запасным питательным веществом растений является крахмал, животных - гликоген.

Целлюлоза

В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет нам оставаться в сознании и быть активными между приемами пищи.

Гликоген представляет собой разветвленную молекулу, состоящую из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам быстро отщеплять множество молекул глюкозы одновременно.

Гликоген

Существуют заболевания, при которых распад гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку грибов и наружный скелет членистоногих.

Классификация углеводов

Нуклеиновые кислоты (от лат. nucleus — ядро)

Для ДНК характерны следующие азотистые основания: аденин - тимин, гуанин - цитозин; для РНК: аденин - урацил, гуанин - цитозин. Исходя из принципа комплементарности, данные основания соответствуют друг другу, в результате чего между ними образуются связи.

Между аденином и тимином образуется 2 водородные связи, а между гуанином и цитозином - 3.

Азотистые основания

Именно по этой причине количество аденина в молекуле ДНК всегда совпадает с количеством тимина. К примеру, если в ДНК 20% аденина, то с уверенностью можно сказать, что в ней 20% тимина. Выходит на оставшиеся основания - цитозин и гуанин - остается 60%, значит, цитозин и гуанин составляют в ДНК 30% каждый. Таким нехитрым образом, зная процент содержания одного основания, можно подсчитать все остальные.

В ДНК остаток сахара - дезоксирибоза, в РНК - рибоза.

Строение ДНК

    Рибосомальная РНК (рРНК)

Синтезируется в ядрышке. рРНК входит в состав малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

Синтезируется в ядре в ходе процесса транскрипции (лат. transcriptio — переписывание). Фермент РНК-полимераза строит цепь иРНК по принципу комплементарности с ДНК. Исходя из данного принципа, гуанин (Г) в молекуле ДНК соединяется с цитозином (Ц) в РНК. Далее соответственно: цитозин (Ц) - гуанин (Г), аденин (А) - урацил (У), тимин (Т) - аденин (А).

Комплементарность ДНК и РНК

Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

тРНК

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: