Химическая эволюция вселенной кратко

Обновлено: 05.07.2024

  • Химическая эволюция или пребиотическая эволюция — этап, предшествовавший появлению жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развертывания процессов самоорганизации, свойственных всем относительно сложным системам, которыми, бесспорно, являются все углеродосодержащие молекулы.

Также этими терминами обозначается теория возникновения и развития тех молекул, которые имеют принципиальное значение для возникновения и развития живого вещества.

Связанные понятия

Эксперимент Ми́ллера — Ю́ри — известный классический эксперимент, в котором моделировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером.

Альтернативная биохимия изучает возможность существования форм жизни, которым свойственны биохимические процессы, полностью отличающиеся от возникших на Земле. Обсуждаемые отличия включают замену углерода в молекулах органических веществ на другие атомы, либо воды в качестве растворителя на другие жидкости. Подобные явления нередко описываются в фантастической литературе.

Первичный бульон — термин, введённый советским биологом Александром Ивановичем Опариным. В 1924 году он выдвинул теорию о возникновении жизни на Земле через превращение, в ходе постепенной химической эволюции, молекул, содержащих углерод, в первичный бульон.

Анаэробное окисление метана — процесс окисления метана до углекислого газа, производимый некультивируемыми (англ. VBNC) археями групп ANME-1, ANME-2 и ANME-3, близкими к Methanosarcinales при отсутствии в среде молекулярного кислорода. Биохимия и распространённость процесса в природе изучены пока недостаточно.

Мир полиароматических углеводородов — гипотетический этап химической эволюции, когда полициклические ароматические углеводороды (ПАУ), которые, возможно, были в изобилии в первичном бульоне ранней Земли, привели к синтезу молекул РНК, что создало предпосылки для мира РНК и возникновению жизни.

Упоминания в литературе

Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в смектических кристаллах. Такие липотропные жидкокристаллические фазы, дающие в поляризованном свете характерную оптическую картину, при последующем разбавлении легко превращаются в мембраноподобные структуры за счет полиморфных переходов (Чистяков, Селезнев, 1977, с. 38–45). Эти и другие исследования подтвердили тот факт, что на самых ранних стадиях химической эволюции могли возникнуть достаточно простые липидоподобные и липидные молекулы, спонтанно образующие мембранные структуры. Следовательно, и формирование систем, подобных протоклеткам, могло предшествовать синтезу более сложных полимерных молекул. Имеются все основания считать, что в период биопоэза (его первого этапа) на Земле за счет высоких температур в присутствии руд различных металлов и при воздействии на смеси газов ультрафиолетового и у-излучения синтезировались не только аминокислоты, но и некоторые сахара, жирные кислоты и азотистые основания. Жирные кислоты в последующем, соединившись со спиртами, могли образовывать липидные пленки на поверхности водоемов, в которых были растворены азотистые основания, сахара и аминокислоты. Растворенные в водоемах белковые молекулы могли адсорбироваться на поверхности липидной пленки благодаря электрическому притяжению к заряженным обращенным в воду липидным головкам. По-видимому, эти условия и предопределили возникновение мембран и встроенных в них белков.

Связанные понятия (продолжение)

Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул рибонуклеиновых кислот. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году.

Возникновение жизни, или абиогенез, — процесс превращения неживой природы в живую; в узком смысле слова под абиогенезом понимают образование органических соединений, распространённых в живой природе, вне организма без участия ферментов. Альтернативой абиогенеза в этом смысле является панспермия.

Автокатализ — катализ химической реакции одним из её продуктов или исходных веществ. Одним из наиболее широко известных примеров автокатализа является окисление щавелевой кислоты перманганатом.

Гипотеза мира сульфидов железа — гипотетический этап возникновения жизни на Земле и ранней эволюции, предложенный Гюнтером Вэхтерсхойзером, юристом из Мюнхена, имеющим также научную степень по химии. Опубликовал свои идеи при поддержке философа Карла Р. Поппера. Как следует из названия теории, она предполагает, что жизнь могла зародиться на поверхности кристаллов сульфидов железа.

Обра́тный цикл Кре́бса, также известный как обра́тный цикл трикарбо́новых кисло́т, или цикл А́рнона — последовательность химических реакций, которую некоторые бактерии используют для синтеза органических соединений из диоксида углерода и воды.

Анаммо́кс (сокр. от англ. anaerobic ammonium oxidation — анаэробное окисление аммония) — один из ключевых микробных процессов в круговороте азота. Бактерии, осуществляющие этот процесс, были открыты в 1999 году, и в своё время описание этого процесса стало большим сюрпризом для научного сообщества. Уравнение процесса.

Нитрификация — микробиологический процесс окисления аммиака до азотистой кислоты или её самой далее до азотной кислоты, что связано либо с получением энергии (хемосинтез, автотрофная нитрификация), либо с защитой от активных форм кислорода, образующихся при разложении пероксида водорода (гетеротрофная нитрификация).

Биомолекулы — это органические вещества, которые синтезируются живыми организмами. В состав биомолекул включают белки, полисахариды, нуклеиновые кислоты, а также более мелкие компоненты обмена веществ. Биомолекулы состоят из атомов углерода, водорода, азота, кислорода, а также фосфора и серы. Другие атомы входят в состав биологически значимых веществ значительно реже.

Нитрогеназа (КФ 1.18.6.1) — комплекс ферментов (мультифермент), осуществляющий процесс фиксации атмосферного азота. Широко распространён у бактерий и архей, в то время как все эукариоты его лишены.

После́дний универса́льный о́бщий пре́док (англ. Last universal common ancestor, LUCA, или Last universal ancestor, LUA) — наиболее недавняя популяция организмов, от которой произошли все организмы, ныне живущие на Земле. Таким образом, LUCA является последним общим предком всей жизни на Земле. Последнего универсального общего предка не следует путать с первым живым организмом на Земле. Считается, что LUCA жил 3,5—3,8 миллиарда лет назад (в палеоархейскую эру) или 4,5 млрд лет назад. Окаменелых останков.

Изото́пы углеро́да — разновидности атомов (и ядер) химического элемента углерода, имеющие разное содержание нейтронов в ядре. Углерод имеет два стабильных изотопа — 12C и 13C. Содержание этих изотопов в природном углероде равно соответственно 98,93 % и 1,07 %. Известны также 13 радиоактивных изотопов углерода (от 8C до 22C), из которых один — 14C — встречается в природе (его содержание в атмосферном углероде около 10−12). Углерод — лёгкий элемент, и его изотопы значительно различаются по массе, а.

Связывание углерода — общее название совокупности процессов, при которых углекислый газ CO2 преобразуется в органические вещества. Такие процессы используют автотрофы, то есть организмы, которые сами вырабатывают необходимые для себя органические вещества. В частности, процесс связывания углерода является составной частью фотосинтеза.

Денитрификация (восстановление нитрата) — сумма микробиологических процессов восстановления нитратов до нитритов и далее до газообразных оксидов и молекулярного азота. В результате их азот возвращается в атмосферу и становится недоступным большинству организмов. Осуществляется только прокариотами (причём как бактериями, так и археями) в анаэробных условиях и связана с получением ими энергии.

Жизнь во Вселенной — под этим термином следует понимать комплекс проблем и задач, направленных на поиск жизни. В самом общем случае жизнь трактуется максимально широко — как активная форма существования материи, в некотором смысле высшая по сравнению с её физической и химической формами существования. Таким образом, в общей постановке задачи нет требования, чтобы жизнь была похожа на земную, и есть целый ряд теорий, доказывающий, что жизнь может принимать и другие формы. Однако, основной подход.

Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Это явление было открыто в 1889 году русским учёным С. Н. Виноградским. Микроорганизмы, способные к хемосинтезу, Виноградский называл аноргоксиданты. Название хемосинтез ввёл немецкий химик и ботаник Вильгельм Пфеффер в 1897 году.

Фотодиссоциация (или фотолиз) — химическая реакция, при которой химические соединения разлагаются под действием фотонов электромагнитного излучения.

Меченые атомы (изотопные индикаторы) — изотопы, по своим свойствам (радиоактивности, атомной массе) отличающиеся от других изотопов данного элемента, которые добавляют к химическому соединению или смеси, где находится исследуемый элемент. Поведение меченых атомов характеризует поведение элемента в исследуемом процессе. В качестве меченых атомов используют как стабильные (устойчивые) изотопы, так и радиоактивные (неустойчивые) изотопы. Для регистрации радиоактивных меченых атомов применяют счетчики.

Круговорот азота — биогеохимический цикл азота. Большая его часть обусловлена действием живых существ. Очень большую роль в круговороте играют почвенные микроорганизмы, обеспечивающие азотистый обмен почвы — круговорот в почве азота, который присутствует там в виде простого вещества (газа — N2) и ионов: нитритов (NO2-), нитратов (NO3-) и аммония (NH4+). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние.

Восстановительный пентозофосфатный цикл, или цикл Кальвина, — серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2. Цикл Кальвина назван в честь американского биохимика Мелвина Кальвина (1911—1997). Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии.

Бактериохлорофи́ллы — гетерогенная группа фотосинтетических тетрапиррольных пигментов, которые синтезируются различными аноксигенными фототрофными бактериями, осуществляющими фотосинтез без выделения кислорода.

Биоремедиация — комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов — растений, грибов, насекомых, червей и других организмов.

Фотодыхание (гликолатный путь, С2-фотосинтез) — стимулируемое светом выделение углекислого газа и поглощение кислорода у растений преимущественно с С3-типом фотосинтеза. Также под фотодыханием понимают биохимический путь, связанный с регенерацией одной молекулы 3-фосфоглицериновой кислоты (С3) из двух молекул гликолевой кислоты (С2) и лежащий в основе вышеописанного газообмена. Наличие биохимического механизма фотодыхания обусловлено значительной оксигеназной активностью РуБисКО, ключевого фермента.

История молекулярной биологии начинается в 1930-х годах с объединения ранее отдельных биологических дисциплин: биохимии, генетики, микробиологии и вирусологии. Кроме того, в надежде, что новая дисциплина откроет возможности понимания фундаментальных основ жизни, в неё пришли многие химики и физики.

Механизм реакции — это детальное описание процесса превращения реагентов в продукты, включающее в себя как можно более полное описание состава, строения, геометрии, энергии и других свойств интермедиатов, переходных состояний и продуктов. Часто в описание механизма включают обозначения, касающиеся движения электронов в частицах, которыми сопровождается переход от продуктов к реагентам. Приемлемый механизм реакции должен согласоваться с экспериментальными данными, например, стереохимией реакции, её.

Ацетогенез – процесс, в результате которого ацетат получается из CO2 и донора электронов (например, H2, CO, формиат, и т. д.), осуществляемая анаэробными бактериями в последовательности биохимических реакций восстановительного ацетил-КoA пути (Путь Вуда — Льюнгдаля). Группа различные видов бактерий, способных к ацетогенезу, называются ацетогенами. Некоторые ацетогены способны синтезировать ацетат автотрофно, из диоксида углерода и водорода. Суммарная реакция автотрофного синтеза ацетата.

Хемиосмос — биохимический механизм, с помощью которого осуществляется превращение энергии цепи переноса электронов в энергию АТФ. Включает изменение электрохимического потенциала клеточной мембраны.

Метаногенез, биосинтез метана — процесс образования метана анаэробными археями, сопряжённый с получением ими энергии. Существует три типа метаногенеза.

Криохимия — раздел химии, который изучает превращения в жидкой и твёрдой фазах при низких (вплоть до 70 К) и сверхнизких (ниже 70 К) температурах. По изучаемым явлениям имеет пересечения с физикой конденсированных сред и астрохимией.

Кооперативность — это явление в биохимии, характерное для ферментов или рецепторов, которые имеют множественные сайты связывания. Также явление кооперативности отмечено для больших молекул, имеющих многие идентичные субъединицы (ДНК, белки, фосфолипиды), в момент, когда происходят фазовые переходы — плавление, разворачивание, расплетание.

Седиментацио́нный ана́лиз — совокупность методов определения размеров частиц в дисперсных системах и молекулярной массы макромолекул в растворах полимеров по скорости седиментации в условиях седиментационно-диффузного равновесия.

Фотофосфорили́рование — процесс синтеза АТФ из АДФ за счёт энергии света. Как и в случае окислительного фосфорилирования, энергия света расходуется на создание протонного градиента на мембране тилакоидов или клеточной мембране бактерии, который затем используется АТФ-синтазой. Фотофосфорилирование — очень древняя форма фотосинтеза, которая есть у всех фототрофных эукариот, бактерий и архей. Различают два типа фосфорилирования — циклическое, сопряжённое с циклическим потоком электронов в электрон-транспортной.

Сингле́тный кислоро́д — общее название для двух метастабильных состояний молекулярного кислорода (O2) с более высокой энергией, чем в основном, триплетном состоянии. Энергетическая разница между самой низкой энергией O2 в синглетном состоянии и наименьшей энергией триплетного состояния составляет около 11400 кельвин (Te (a1Δg ← X3Σg−) = 7918,1 см−1), или 0,98 эВ. Открыт Х. Каутским.

Субстратное фосфорилирование — характерная для всех живых организмов реакция синтеза АТФ или ГТФ путём прямого переноса фосфата (PO3) на АДФ или ГДФ с высокоэнергетического промежуточного продукта. В ходе катаболического окисления органических соединений в живых клетках неорганический фосфат переносится на органическое вещество с образованием богатых энергией молекул, с которых он переносится на АДФ или ГДФ. При этом перенос может происходить только с молекул с достаточно высоким потенциалом переноса.

Карбоксисо́мы (полиэдральные тела) — микрокомпартменты в клетках бактерий, содержащие фиксирующие углерод ферменты. Они представляют собой многогранные однослойные белковые тела полиэдрической формы от 80 до 140 нанометров в диаметре. Они являются основной частью механизма концентрирования CO2, что помогает преодолеть неэффективность рибулозодифосфаткарбоксилазы (Рубиско) — главного фермента, лимитирующего скорость фиксации углерода в цикле Кальвина. Эти органеллы обнаружены во всех цианобактериях.

Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Фототрофы (др.-греч. φῶς, φωτός = свет, τροϕή = питание) — это организмы, которые используют свет для получения энергии. Они используют энергию света для поддержания различных метаболических процессов. Существует распространенное заблуждение, что фототрофы должны обязательно фотосинтезировать. Многие, хотя далеко не все, действительно фотосинтезируют: они используют энергию света, чтобы преобразовывать углекислый газ в органический материал, который служит для построения их тела, или в качестве источника.

Индукти́вный эффе́кт (полярный эффект) — смещение электронной плотности химической связи по σ-связям. Является разновидностью эффекта поля.

Карбкатион (карбокатион) — частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь. Карбкатион — сильная кислота Льюиса, обладает электрофильной активностью.

Под эволюцией фотосинтеза понимают исторический путь происхождения и последующего развития фотосинтеза или последовательное становление и изменение процесса преобразования солнечной энергии в химическую для синтеза сахаров из углекислого газа, с выделением кислорода в качестве побочного продукта.

Серобактерии (Тиобактерии) — весьма разнородная группа прокариотов, окисляющих восстановленные соединения серы.

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

Кислородная катастрофа (кислородная революция) — глобальное изменение состава атмосферы Земли, произошедшее в самом начале протерозоя, в период сидерий, около 2,45 млрд лет назад. Результатом кислородной катастрофы стало появление в составе атмосферы свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления.

Миксотро́фы (от др.-греч. μῖξις — смешение и τροφή — пища, питание) — организмы, способные использовать различные источники углерода и доноры электронов. Миксотрофы могут быть одновременно фототрофами и хемотрофами, литотрофами и органотрофами. Миксотрофами являются представители как прокариот, так и эукариот.Примером организма с миксотрофным получением углерода и энергии является бактерия Paracoccus pantotrophus из семейства Rhodobacteraceae — хемооргано-гетеротроф, также способная существовать.

Повседневные вещи, которыми мы пользуемся неправильно

Повседневные вещи, которыми мы пользуемся неправильно

Заботливый отец своими руками построил для сына пожарную машинку из мультика

Заботливый отец своими руками построил для сына пожарную машинку из мультика

Еле увернулся: опасный момент в Курске

Чтобы посмотреть новый фильм про

Чтобы посмотреть новый фильм про "Бэтмена", россиянин улетел в Узбекистан

Судьба актеров из сериала

3 действенных способа наконец-то выучить английский

3 действенных способа наконец-то выучить английский

Самый маленький мужчина в СССР: история Константина Морозова

Самый маленький мужчина в СССР: история Константина Морозова

Ноги, крылья, главное хвост: 25 необычных, красивых и просто классных хвостов

Ноги, крылья, главное хвост: 25 необычных, красивых и просто классных хвостов

Мастер своего дела

Подборка гифок на автотему

Для русских женщин нет ничего невозможного

Обычный зимний день в России

Самое короткое ограбление

Парень бросился на помощь мужчине, которого избивали неизвестные

Парень бросился на помощь мужчине, которого избивали неизвестные

На Урале грузовик врезался в автозаправочную станцию

На Урале грузовик врезался в автозаправочную станцию

Торговый автомат готовит пиццу за три минуты

Жены показали привычки своих мужей, которые выбесят любого (10 фото)

Жены показали привычки своих мужей, которые выбесят любого (10 фото)

Почему фюрер панически боялся алой губной помады?

Печальная красота: фотографии заброшенных зданий Абхазии

Печальная красота: фотографии заброшенных зданий Абхазии

Мир глазами собачьей игрушки

В России могу легализовать интернет-пиратов

Самый белоснежный в мире Bugatti знаменитого рэпера ищет нового владельца

Самый белоснежный в мире Bugatti знаменитого рэпера ищет нового владельца


"Они же дети": подростки устроили потасовку с водителем маршрутки

Зритель не смог сдержать чувств

Первый в мире подтвержденный фото-фейк

Этот Ford F-250 1978 года — настоящий игрушечный грузовик Tonka

Этот Ford F-250 1978 года — настоящий игрушечный грузовик Tonka

Дизайнеры показали ванные комнаты знаменитостей

Следы могущественной цивилизации в Арктике

Стоило ехать помедленнее: ДТП на заснеженной трассе в Белгородской области

Стоило ехать помедленнее: ДТП на заснеженной трассе в Белгородской области

Злобный пешеход и мгновенная карма

Рыкари: легенда или сказка?


"Вау, детка, давай познакомимся!": мастера подкатов выходят на охоту

Victoria

Victoria's Secret пригласили на показ модель с синдромом Дауна

Кто так строит? Неудачные решения проектировщиков и дизайнеров

Кто так строит? Неудачные решения проектировщиков и дизайнеров

30 неожиданных находок

Жизнь жирафа начинается с падений

История русского спецназовца, прошедшего пять войн

Способы успокоения нервов

Креативная реклама чебуреков

Гораздо вкуснее обычной морковки

Странные букеты, некоторые из которых можно взять на вооружение

Странные букеты, некоторые из которых можно взять на вооружение

15 непредсказуемых девушек, чьей спонтанности можно позавидовать

15 непредсказуемых девушек, чьей спонтанности можно позавидовать

Задолго до современной цивилизации: амазонки, вершившие судьбы мира

Задолго до современной цивилизации: амазонки, вершившие судьбы мира

20 инженерных чудес, заслуживающих признания

Пока мама крепко спит: cтарший брат пришёл к сестрёнке

Пока мама крепко спит: cтарший брат пришёл к сестрёнке

Англичанка четыре года лечится после таинственного укуса на сафари

Англичанка четыре года лечится после таинственного укуса на сафари

Успешному успеху блогеров приходит конец?

Подборка юмора для автолюбителей

Дверь в СССР: почему у советских граждан была так популярна дерматиновая обивка дверей?

Дверь в СССР: почему у советских граждан была так популярна дерматиновая обивка дверей?

Это третья публикация из цикла статей, в которых популярным языком описываются современные представления развития Вселенной, как целого.

Другие статьи вы можете найти у нас на канале в Яндекс.Дзен или в нашем телеграм канале С другого угла .
Приятного чтения!

Важнейшим фактом является то, что мы живем в эволюционирующей Вселенной. Наша Вселенная расширяется, и это расширение началось 13 с лишним миллиардов лет назад. Таким образом, мы не можем указать на объекты, чей возраст превышал бы эти самые 13 миллиардов лет. Значит, Вселенная имеет конечный возраст, и важно понимать, что это существенный наблюдательный факт. Из того, что Вселенная имеет конечный возраст и расширяется следует еще один интересный вывод. Конечно, мы хотим узнать, Вселенная конечна или бесконечна и хочется обратиться именно к наблюдениям. А наблюдения всегда нам показывают некоторую конечную область, поэтому что за время жизни Вселенной свет, двигаясь со скоростью 300 тысяч километров в секунду мог пройти лишь конечное расстояние. Поэтому, даже если сама наша Вселенная бесконечна, в наблюдениях мы всегда видим какой-то ее кусок и можем изучать непосредственно лишь свойства этого кусочка Вселенной. И должны сказать, что вся Вселенная больше, чем этот наблюдаемый участок, но насколько - мы сказать не можем. Нам приходится изучать Вселенную, наблюдая лишь малую её часть.

Что ещё мы знаем об эволюции Вселенной? Мы знаем, что меняется её химический состав. Вселенная возникла горячей и плотной, после чего началось расширение. В горячем и плотном веществе не могут существовать сложные структуры. В ранней Вселенной не могли существовать сложные структуры, в том числе и ядра атомов. В какой-то момент Вселенная достаточно остывает и становится недостаточно плотной. Возникает водород. Возникают нейтроны, возникают протоны и из них можно начать составлять другие ядра элементов. Но на это отводится очень мало времени - несколько минут. И расчеты показали, что дальше гелия продвинуться очень трудно. Таким образом, Вселенная возникает состоящей из водорода и гелия. Именно из этих двух элементов возникают первые поколения звезд. Эти звезды эволюционируют, в них возникают термоядерные реакции. Они могут доходить до элементов группы железа и после этого происходит взрыв сверхновой. Элементы выбрасываются наружу. В процессе взрыва синтезируются ещё более тяжелые элементы. Следующее поколение звезд возникает из среды уже обогащенной этими тяжелыми элементами. С течением времени тяжелых элементов становится больше, водорода становится меньше. Таким образом, вся Вселенная в химическом смысле эволюционирует. Становится больше элементов тяжелее гелия и меньше водорода. Это также является наблюдательным фактом.

Но Вселенная состоит не только из обычного вещества, входящего в таблицу Менделеева. То есть не только из водорода, гелия, с небольшой примесью тяжелых элементов. Современные данные показывают, что на обычное вещество приходится около 5% от полной плотности Вселенной. 95% определяется чем-то другим. Чем? Достоверно мы не знаем, но есть очень хорошая гипотеза. Скорее всего, основной вклад в массу галактик и скоплений галактик вносит темное вещество. Его примерно в 5 раз больше, чем обычного. То есть оно отвечает за 25% полной плотности Вселенной. Это какой-то вид элементарных частиц, не входящих в стандартную модель. Это вещество может собираться в кучи, поэтому можем сказать: "Вот Галактика, а вот гало тёмной материи вокруг нее. Здесь темной материи больше, а вот здесь темной материи меньше". Точно также темной материи много в скоплениях галактик и мало между скоплениями. С чем же связаны оставшиеся 70%? Сейчас мы думаем, что они связаны с темной энергией. В конце 90-х годов было обнаружено, что наша Вселенная расширяется все быстрее и быстрее. Причем, это произошло относительно недавно. Первые несколько миллиардов лет Вселенная расширялась с замедлением, как мы и могли бы ожидать, а потом вдруг начала расширяться всё быстрее и быстрее. Есть какая-то дополнительная составляющая у Вселенной, которая заставляет галактики отталкиваться и удаляться друг от друга. Для того, чтобы описать этот эффект, понадобилась эта самая темная энергия. И, используя данные наблюдения, мы можем посчитать, сколько темной энергии нужно, чтобы описать тот мир , который открывают перед нами астрономические приборы. И, оказывается, что темная энергия должна отвечать за 70% полной плотности Вселенной.

Канал не позиционирует себя как источник стопроцентно правдивой информации, а лишь претендует быть таковым.

Как Вселенная создавала элементы?

Вселенная, которую мы знаем сегодня, почти полностью состоит из загадочной темной материи и еще более загадочной темной энергии. Обычного же вещества в ней совсем немного. В основном, это водород и гелий - самые легкие элементы периодической таблицы Менделеева. Именно эти вещества образовались после Большого взрыва, и именно из них состоит большинство звезд и межзвездного газа. Здесь на Земле это не так очевидно, поскольку нас окружают самые разные элементы таблицы, а некоторые ученые продолжают искать новые сочетания атомов на ускорителях. Но всё, что мы видим на Земле, и из чего состоим сами - лишь малая часть необъятной Вселенной. Как так вышло? Рассказывает профессор РАН Александр Лутовинов.

Лутовинов Александр Анатольевич – заместитель директора по научной работе Института космических исследований Российской академии наук, профессор РАН.

- Согласно современным представлениям, в том числе модели Большого взрыва, первых химических элементов было совсем немного. Известно, что это был водород и гелий.

- И чуть-чуть лития.

- Почему именно эти элементы?

- В изначальной модели Большого взрыва (кстати, предложенной нашим соотечественником Г. Гамовым) предполагалось, что большинство известных элементов возникло в первые минуты после Большого взрыва. Но вскоре стало понятно, что это не совсем так – из-за отсутствия в природе стабильных элементов с массами 5 и 8 произвести в имеющихся на тот момент условиях более тяжелые элементы практически невозможно. Таким образом, согласно принятой на сегодняшний день модели, в первые минуты после рождения Вселенной появились лишь водород, гелий и немного лития.

- А как развивались события дальше?

- Ранняя Вселенная была очень горячей. Она состояла из полностью ионизированного вещества, т.е. отдельных барионов и свободных электронов, которое находилось в состоянии теплового равновесия с излучением. Фотоны постоянно излучались, поглощались, снова переизлучались. Так продолжалось примерно 380 тысяч лет, пока Вселенная не охладилась настолько, что электроны начали соединяться с протонами или альфа-частицами, тем самым сформировав первые атомы. Тогда на водород приходилось около 92% всех атомов Вселенной, а остальные восемь процентов практически полностью приходились на образовавшийся в первые минуты гелий с малыми примесями лития.

- Тогда откуда появились остальные элементы?

- Другие элементы появились в звездах. Фактически, звезды – это самые мощные фабрики по производству химических элементов во Вселенной.

- Но если первых элементов фактически было всего два, откуда взяться элементам в этих звездах?

- А вот это действительно интересно, и связано с вопросом о происхождении первых звезд. Представьте себе однородную Вселенную, состоящую из водорода и гелия. Здесь каким-то образом должны были образоваться первичные сгустки вещества, которые стали бы зачатками первых плотных объектов, то есть первых звезд. Это достаточно сложный процесс, поскольку газ в такой системе был очень горячий, и его так просто не сожмешь, чтобы создать звезду. Для этого, в первую очередь, необходимо каким-то образом понизить температуру вещества. Это может достаточно эффективно осуществляться с помощью пыли или многоатомных молекул тяжелых элементов, как это происходит в современной Вселенной. Однако на ранних стадиях ни того, ни другого не было. Согласно современным теориям эффективное охлаждение первичной материи осуществлялось молекулярным водородом.

"ЗВЕЗДЫ – ЭТО САМЫЕ МОЩНЫЕ ФАБРИКИ ПО ПРОИЗВОДСТВУ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ВО ВСЕЛЕННОЙ"

Второй проблемой является создание первичных неоднородностей гравитационного поля, где могло бы начать формироваться протозвездные облака и сами звезды. И вот здесь на помощь приходит темная материя. У нее есть замечательное свойство – она напрямую не взаимодействует с электромагнитным излучением, однако оказывает гравитационное воздействие на барионное вещество. Если представить, что в этой темной материи образовываются области с повышенным гравитационным потенциалом, можно сказать гравитационные ямки, то охлаждаемое вещество начнет постепенно туда стекаться, образуя место формирования гравитационно-связанных объектов – первых звезд и галактик.

По разным оценкам, первые звезды сформировались примерно через 300-400 миллионов лет после Большого взрыва, хотя некоторые исследователи считают, что это могло произойти гораздо раньше – уже через 30-70 миллионов. Это очень важный вопрос, от правильного ответа на который может зависеть дальнейшее построение модели развития Вселенной.

Первые звёзды должны были быть очень большими, по некоторым оценкам их массы могли достигать 300 или даже 500 масс Солнца (для сравнения, большинство современных звезд являются маломассивными объектами с массами сравнимыми или меньше солнечной). В ядре такой звезды из-за огромных давлений и температур создавались оптимальные условия для реакций термоядерного синтеза и образования новых элементов.

Вообще, массивные звезды живут недолго. К примеру, характерное время эволюции звезд типа нашего Солнца составляет примерно 10 миллиардов лет. А первые звезды, по некоторым оценкам, жили всего лишь несколько миллионов лет. Они были чрезвычайно яркими, светили в миллионы раз ярче Солнца, очень быстро прогорали и взрывались сверхновыми. Возможно, некоторые из них оставили после себя первые черные дыры.

Название изображения

- Как ученые поняли, что элементы на Земле звездного происхождения?

- А они не могут быть иного происхождения. Сейчас достаточно хорошо разработана теория возникновения Солнечной системы. Считается, что она образовалась из части газопылевого облака, центральные области которого сколлапсировали, образовав Солнце. Внешние части образовали протопланетный диск, в котором образовались локальные центры гравитационного притяжения и планеты.

Откуда взялось это газопылевое облако? Скорее всего, из вещества другой звезды, предположительно массивной, которая когда-то давным-давно взорвалась, выбросив в космическое пространство большое количество химических элементов, образовавшихся в течение ее жизни. И, соответственно, оттуда же и взялись все элементы, которые мы встречаем на Земле. Впоследствии, Земля и дальше обогащалась элементами, поскольку из космоса постоянно прилетали астероиды, кометы и сталкивались с ней.

- А какое количество элементов может выделяться при взрыве звезды?

- Это зависит от множества факторов, но прежде всего от массы звезды. Как уже говорилось выше, если она не очень большая, примерно как наше Солнце, то живет достаточно долго. Миллиарды лет в ней идут термоядерные реакции, основой которых является так называемый pp-цикл (протон-протонный цикл). При протон-протонном цикле сталкиваются протоны, образуя водород, который, сгорая, образует гелий. Когда водород прогорает, начинает гореть гелий. Из гелия в дальнейшем получается углерод.

Всё это – процессы сложных термоядерных реакций, которые идут при температурах 10-15 млн. градусов в случае протон-протонного цикла и существенно более высоких значениях (примерно 100-150 млн. градусов) для горения гелия. Кстати, если сталкиваются два ядра гелия – образуется бериллий 8 Ве. Но дело в том, что он неустойчив, и время его жизни составляет примерно 10 -16 секунды, поэтому он быстро распадается. Но при достаточно высокой плотности и температуре существует вероятность, что за это время с ядром бериллия столкнется еще одно ядро гелия. И эта реакция – ключевая. Образуется углерод – основа жизни.

Далее углерод может захватить еще один гелий, и получится кислород. Также может образоваться азот и, возможно, неон. Но на этом этапе, как правило, процесс заканчивается, поскольку энергии звезды, температуры и давления в ее недрах уже не хватает, чтобы инициировать дальнейшие термоядерные реакции. Из такой звезды со временем образуется белый карлик – звездочка размером с Землю, но с примерно солнечной массой. Этот белый карлик будет состоять, в основном, из углерода, с примесью кислорода и некоторых других элементов. Образно говоря, белые карлики - это самые большие алмазы во Вселенной.

"ЗНАТЬ ОТВЕТЫ НА ВСЕ ВОПРОСЫ, НАВЕРНОЕ, ЗАМАНЧИВО, НО НЕИНТЕРЕСНО. ПОЛУЧАЕТСЯ, ЧТО НЕКУДА ДАЛЬШЕ ДВИГАТЬСЯ. ПОЭТОМУ, КАК МНЕ КАЖЕТСЯ, ВСЕГДА ДОЛЖНО ОСТАВАТЬСЯ ЧТО-ТО НЕПОЗНАННОЕ, КАКОЕ-ТО НОВОЕ ЗНАНИЕ, К КОТОРОМУ ЧЕЛОВЕК ДОЛЖЕН СТРЕМИТЬСЯ. ТОЛЬКО ТАК ОН БУДЕТ РАЗВИВАТЬСЯ"

В какой-то момент центральное ядро уже не может удерживаться от дальнейшего коллапса. Все вещество словно падает внутрь, а затем взрывается и под действием ударных волн разлетается во все стороны во время вспышки сверхновой, разбрасывая химические элементы по Вселенной. Многие из них являются радиоактивными и при дальнейшем распаде излучают рентгеновские и гамма-кванты. Эти кванты излучаются преимущественно в виде линий, которые могут регистрироваться современными космическими обсерваториями, и интенсивность которых позволяет оценить количество того или иного элемента. Например, наблюдая с помощью обсерватории ИНТЕГРАЛ остаток вспышки сверхновой SN1987A в Большом Магеллановом Облаке, мы зарегистрировали излучение в линиях, соответствующих распаду радиоактивного титана-44, и оценили количество этого элемента, родившегося во время этой вспышки.

Важно отметить, что на последних стадиях перед вспышкой сверхновой может происходить процесс нейтронизации, когда железо сталкивается с гамма-квантом и распадается на несколько атомов гелия и нейтроны. Образуется среда, сильно обогащенная нейтронами, где могут проходить процессы так называемого быстрого нейтронного захвата и образовываться элементы тяжелее железа, которые не могут быть синтезированы в термоядерных реакциях. Но и это еще не все.

- А что дальше?

Известно, что после исчерпания запасов топлива и вспышки сверхновой массивная звезда может превратиться в нейтронную звезду. Представьте себе объект с массой примерно равной или немного больше массы Солнца, который сжат до радиуса 10 километров (немногим больше, чем Третье транспортное кольцо Москвы). Внутри этого объекта плотность оказывается настолько велика, что электроны просто вжимаются в протоны, фактически формируя гигантское нейтронное ядро, в самом центре которого плотность может в разы превышать ядерную. Если рядом находилась другая звезда, которая впоследствии тоже превратилась в нейтронную звезду, то может образоваться система из двух нейтронных звезд, вращающихся друг вокруг друга. В соответствие с предсказаниями общей теории относительности в этом случае должны испускаться гравитационные волны.

Название изображения

- То есть белых пятен еще много?

- А на какие вопросы нужно ответить в первую очередь?

- Астрофизика, космология – очень богатые науки. Здесь много неизведанного, непонятного, множество разных объектов для исследований. Сейчас есть несколько ключевых задач, на решение которых или на понимание физики которых направлены большие усилия. Одно из них – темная материя. Из чего она состоит, что это такое? Есть несколько теорий, но наблюдений, подтверждающих какую-то из них, пока нет. Еще более непонятная субстанция – темная энергия, из которой, по современным данным, состоит около 70% Вселенной. Считается, что именно она ответственна за ее ускоренное расширение.

Для меня как ученого, изучающего нейтронные звезды, крайне интересно узнать – из чего они все-таки состоят. Чтобы ограничить возможные сценарии, необходимо постараться наиболее точно измерить массу и радиус этих звезд. И, на самом деле, это очень непростая задача, которую несколько групп в мире, в том числе и наша, пытаются решить. Зная массу и радиус звезды, можно получить ограничения на уравнение состояния, которое как раз связано с составом звезды. Есть разные теории, которые предсказывают в центре звезды кварковое ядро, в котором нейтроны разваливаются на составляющие их кварки, гиперонное ядро из барионов, каонное ядро из двухкварковых частиц с одним странным кварком и т.д. Таким образом, понимание того, какова природа нейтронных звезд, из чего они состоят – это, на мой взгляд, одни из важнейших вопросов. Ответы на них стали бы огромным шагом в понимании устройства Вселенной.

- Как химики взаимодействуют с астрофизиками?

Вопросы происхождения элементов в космосе недавно обсуждались на очень представительном международном астрофизическом симпозиуме, который проходил в рамках Менделеевского съезда в сентябре в Санкт-Петербурге. Это был первый опыт участия астрофизиков в столь масштабном мероприятии, проводимом нашими коллегами-химиками, и, по многочисленным отзывам, он оказался очень позитивным. В частности, один из пленарных докладов на съезде представила президент Международного Астрономического союза, профессор Эвина ван Дисхук. Доклад произвел на всех (а это несколько тысяч человек!) очень большое впечатление, в нем ярко и очень интересно было рассказано о том, как химические элементы или даже молекулы рождаются в космосе.

Сам астрофизический симпозиум был также чрезвычайно интересным. На съезд приехали специалисты и по первичным звездам, и по нуклеосинтезу, и те, кто изучает вспышки сверхновых и слияния нейтронных звезд. Много дискуссий было посвящено звездам в центре галактики, вопросам повышенного содержания металлов в таких объектах.

- Человечество когда-нибудь приблизится к абсолютному знанию о Вселенной?

- Знать ответы на все вопросы, наверное, заманчиво, но неинтересно. Получается, что некуда дальше двигаться. Поэтому, как мне кажется, всегда должно оставаться что-то непознанное, какое-то новое знание, к которому человек должен стремиться. Только так он будет развиваться.

Читайте также: