Геотермальная энергетика это кратко

Обновлено: 07.07.2024

Кто не мечтает хотя бы раз в жизни найти клад. И мало кто подозревает, что драгоценные ресурсы находятся прямо у нас под ногами. Мы владеем величайшим богатством – геотермальной энергией.

Геотермальная энергия – тепло, исходящее из земли, это естественный, возобновляемый ресурс для производства электричества. Тепло Земли по объемам неисчерпаемо, оно в миллионы раз превышает все энергетические ресурсы вместе взятые.

Даже 1% энергии Земли заменяет не одну сотню электрических станций. Осталось только научиться использовать ее.

Геотермальная энергия – одна из самых перспективных в мире.

Геотермальные источники энергии

Геотермальная энергетика не изобретена человеком. Тепловой энергией наделен сам земной шар с момента возникновения планеты.

Нередко нагретые от природы подземные водоемы располагаются очень близко к поверхности. В таком случае геотермальное тепло визуально определяется невооруженным глазом. Это извергающаяся лава вулканов, геотермальные источники – гейзеры.

Преимущества геотермальной энергии в том, что запасы такого тепла в 10 раз превышают запасы органических ископаемых, основного топлива планеты.

Особенности использования геотермальной энергии

В теории неисчерпаемых ресурсов энергии планеты хватит на нужды человеческой цивилизации. Но на практике мы встречаем проблемы с добычей и переработкой геотермальной энергии. Так первоначальные вложения составляют от 200 до 5000 долларов на 1КВт мощности.

Плюсом считается бесплатный теплоноситель. Для сравнения на ТЭС и АЭС затраты на энергопотребление составляют от 50 до 80%.

Плюсы геотермальной энергии Недостатки геотермальной энергии
Неисчерпаемость источника Требуется бурить скважины глубиной до нескольких километров. Не во всех регионах это целесообразно.
Автономность в любое время года, суток, при любых погодно-климатических условиях и других факторах внешней среды Большие теплопотери при добыче и транспортировке.
Эффективность. Коэффициент использования установленной мощности (КИУМ) – 80% Легкость добычи в районах вулканических извержений и гейзерных месторождениях, где горячая вода залегает на поверхности.
Не требуются большие площади, как при строительстве гидроэлектростанций. Присутствие токсических и радиоактивных примесей.
Не загрязняют атмосферу. Невозможность сбросов отработанных отходов в наземные водоемы.
Низкое водопотребление по сравнение с ГЭС и ТЭС, АЭС. 20 л на 1 Квт. В других – до 1000 л. Обратная закачка воды – технически сложна и энергозатратна.
Разработка и техническая эксплуатация скважин провоцируют землетрясения.
Тепло-, шумо- и химическое воздействие на окружающую среду. Накопление твердых опасных отходов.

Геотермальная энергетика: откуда берется энергия?

Применение геотермальной энергии отталкивается от исходной температуры. Теплоноситель, нагретый естественным образом до +30 – +1000С пригоден для отопления без дополнительной трансформации. Вода, пар высокой температуры применяются для выработки электричества.

Принцип работы термальной электростанции похож на устройство ТЭС. Рабочим элементом в обоих случаях служит нагретый пар. А вот методы нагрева различаются. На теплоэлектростанциях воду в пар превращают, используя для нагрева уголь, мазут или природный газ. Термальные установки и теплоноситель берут уже готовым.

Петротермальная энергетика

Верхние слои почвы прогреваются или промерзают естественным образом под воздействием солнечного тепла или при его отсутствии. Играют роль и другие внешние факторы.

Чуть глубже температура держится на одном уровне независимо от солнечной активности. Это ощущали многие, кто спускался в пещеры или подземелья.

Основную роль начинает играть раскаленное земное ядро. Геотермальная энергетика основана на увеличении температуры Земли по мере погружения внутрь. Температура в среднем увеличивается на 2,5 0С каждые 100 метров. В горнодобывающих шахтах жарко, температура держится в пределах 300С.

  • на глубине 5 км t=1250C;
  • 10 км t=2500C;
  • 100 км t=15000C;
  • 400 км t=16000C;
  • 600 км (ядро земли) t=50000C.
Суть петротермальной энергетики:

Чтобы получить тепло из недр земли бурят две скважины. В одну закачивают воду. Под воздействием температуры она испаряется, пар перетекает во вторую скважину, из которой извлекается уже в виде электроэнергии.

При кажущейся простоте геотермальная энергетика остро ставит проблему рентабельности. Сложность заключается в подъеме глубинного тепла на поверхность и использовании отработанной воды.

Гидротермальная энергетика

Иногда проблему добычи геотермальной энергии решает сама природа. Нагретые вода или пар – естественный теплоноситель – выходят на поверхность или залегают на небольшой глубине. При этом их температура хоть не на много, но выше окружающего воздуха.

Это и есть геотермальная энергия. Она пригодна для отопления, но встречается в природе реже чем петротермальная, которая присутствует везде, но добывать ее гораздо труднее.

Ресурсы гидротермальной энергии в 100 раз ниже. Соответственно, 35 и 3500 триллионов тонн топлива.

Сферы применения

Эксплуатация геотермальной энергии началась еще в XIX веке. Первым был опыт итальянцев, живущих в провинции Тоскана, которые использовали теплую воду источников для отопления. С ее же помощью работали установки бурения новых скважин.

Тосканская вода богата бором и при выпаривании превращалась в борную кислоту, бойлеры работали на тепле собственных вод. В начале XX века (1904 год) тосканцы пошли дальше и запустили электростанцию, работающую на водяном паре. Пример итальянцев стал важным опытом для США, Японии, Исландии.

Сельское хозяйство и садоводство

Геотермальная энергия используется в сельском хозяйстве, в здравоохранении и быту в 80 странах мира.

Первое, для чего применяли и применяют термальную воду, это обогрев теплиц и оранжерей, что дает возможность получать урожай овощей, фруктов и цветов даже зимой. Теплая вода пригодилась и при поливе.

Перспективным направлением у сельхозпроизводителей считается выращивание сельскохозяйственных культур на гидропонике. Некоторые рыбхозяйства используют подогретую воду в искусственных водоемах, для разведения мальков и рыбы.

Эти технологии распространены в Израиле, Кении, Греции, Мексике.

Промышленность и ЖКХ

Больше века назад горячий термальный пар уже был основой для выработки электричества. С тех пор он служит промышленности и коммунальному хозяйству.

В Исландии 80% жилья отапливаются термальной водой.

Разработано три схемы производства электричества:

  1. Прямая, использующая водяной пар.
    Самая простая: применяется там, где есть прямой доступ к геотермальным парам.
  2. Непрямая, использует не пар, а воду.
    Она подается в испаритель, преобразуется в пар техническим методом и направляется в турбогенератор.

Вода требует дополнительной очистки, потому что содержит агрессивные соединения, способные разрушить рабочие механизмы. Отработанный, но еще не остывший пар пригоден для нужд отопления.

  1. Смешанная (бинарная).
    Вода заменяет топливо, которое подогревает другую жидкость с более высокой теплоотдачей. Она приводит в действие турбину.

Бинарная система на основе геотермальной энергии

Используют гидротепловую энергетику США, Россия, Япония, Новая Зеландия, Турция и другие страны.

Геотермальные системы отопления для дома

Для отопления жилья пригоден носитель тепла, нагретый до +50 – 600С, таким требованием соответствует геотермальная энергия. Города с населением в несколько десятков тысяч человек могут отапливаться теплом земных недр. В качестве примера: отопление города Лабинск Краснодарского края работает на естественном земном топливе.

Использование Геотермальной энергетики в ЖКХ

Не нужно тратить силы и время на подогрев воды и строить котельную. Теплоноситель берут напрямую из гейзерного источника. Эта же вода подходит и для горячего водоснабжения. В первом и во втором случае она проходит необходимую предварительную техническую и химическую очистку.

Полученная энергия обходится вдвое-втрое дешевле. Появились установки для частных домов. Стоят они дороже, чем традиционные топливные котлы, но в процессе эксплуатации оправдывают затраты.

геотермальная энергия в отоплении дома

Крупнейшие производители геотермальной энергии

В использовании геотермальная энергия по объемам уступает другим разрабатываемым восполняемым энергетическим ресурсам. Но там, где иные полезные ископаемые отсутствуют или нет возможности их использовать, при поддержке государственных программ она получила основное развитие.

Геотермальная энергетика распространена в странах Юго-Восточной Азии, Восточной Африки и Центральной Америки.

Однако страны, использующие геотермальную энергию, есть в разных частях света.

  • В Европе – Исландия, Италия, Франция, Литва.
  • В Америке – США, Мексика, Никарагуа, Коста-Рика.
  • В Азии – Япония, Китай, Филиппины, Индонезия, Таджикистан.
  • В Африке – Кения.
  • В Австралии – Новая Зеландия.

Энергию горячих источников дают вулканизированные территории Земли. Это Камчатка и Курилы, Японские и Филиппинские острова, горные системы Кордильер и Анд.

Крупнейший на сегодня страна-производитель, которая обладает запасами геотермальной энергии, это Соединенные Штаты Америки. В Штатах построено 77 ГеоТЭС. За короткое время с момента разработок и начала эксплуатации страна стала экспортером энергии и самих технологий.

В Филиппинах треть электроэнергетики подземная. 3 позиция в мире принадлежит Мексике.

Освоение перспективных технологий в этом разделе энергетичекой отрасли связывают с Исландией. На ее территории почти 3 десятка действующих и потухших вулканов, что и обуславливает специализацию энергопроизводства.

Геотермальная энергия в Исландии составляет 25-30% от производимой. Энергетика страны пользуется горячими гейзерными источниками, которые здесь представлены в изобилии. Так главный город государства Рейкьявик обслуживается электростанцией такого принципа действия, а всего их в государстве пять.

Исландия – эталон экологического устройства жизни на планете, так как основную часть энергии берет из Земли, а в остальном использует возобновляемую энергию воды.

Кроме этого прирученное тепло земли помогло Исландии за короткое время из экономически отсталой страны превратиться в стабильное процветающее государство.

Перспективы освоения геотермальных ресурсов в России

Геотермальную энергетику в России использовали с середины прошлого века. Первая паровая геотермальная электростанция заработала еще в 1967 году на Камчатке (Паратунская ГеоТЭС). Камчатка для России – передовой край подобных разработок. 40% электроэнергии, производимой на Камчатке, это результат преобразования подземного тепла. Ее потенциал оценен в 5000 МВт.

Использование геотермальной энергии в России промышленным способом практикуют на 20 месторождениях. Всего их разведано 56.

Самые известные территории месторождений:

  • Камчатка;
  • Ставропольский край;
  • Краснодарский край;
  • Дагестанская республика;
  • Карачаево-Черкесская республика.

Большие запасы открыты на Кавказе: Ингушетия, Чечня, Осетия, Кабардино-Балкария, Закавказье. В Кавказском регионе используется тепловая энергия подземных вод. На Камчатке строятся геоэлектростанции.

В России тепло земных недр имеет серьезную конкуренцию – месторождения нефти, газа, каменного угля, а также лесные угодья.

Геотермальные электростанции прекрасная альтернатива традиционным методам получения энергии.

Геотермальная энергия имеет прямую географическую зависимость и концентрируется в зонах с тектоническими трещинами горных массивов и сейсмической активностью. Поэтому в общей массе энергетики ее доля составляет всего лишь 1%, а в некоторых регионах повышается до 25-30%.

Технологически производство геотермальной энергии намного проще, чем выработка ветряной и солнечной электроэнергии. Дальше она будет распространяться и расти, так как имеет высокие показатели доступности и экологичности. Это при том, что альтернативные источники традиционной энергии неуклонно дорожают, рано или поздно будут исчерпаны и просто не останется иного выхода.

Геотермальные электростанции: плюсы и минусы выработки электроэнергии ГеоТЭС

Альтернативная энергетика и экология: виды и пути развития

Нетрадиционные и возобновляемые источники энергии

Тепловое загрязнение окружающей среды: источники и последствия

Достоинства и недостатки солнечной энергетики

Закон о скважинах на воду в частном доме и на даче 2022

Принцип работы волновых электростанций

Системы утилизации тепла дымовых и отходящих газов

Что такое гидроэнергия, ее источники, плюсы и минусы

Плюсы и минусы приливных электростанций

Альтернативная энергетика своими руками для дома

Основные источники загрязнения воды

геотермальная энергия занимает значительное место.

Геотермальная энергия переводится как тепло Земли.
Их строят в районах где наблюдается высокая и устойчивая сейсмическая активность, где природное тепло расположено на относительно небольшой глубине

Несьявеллир ГеоТЭС, Исландия

Запасы тепла Земли практически неисчерпаемы — при остывании только ядра Земли (не считая мантии и коры) на 1 °C выделится 2*10 20 кВт⋅ч энергии, что в 10000 раз больше, чем содержится во всем разведанном ископаемом топливе, и в миллионы раз больше годового энергопотребления человечества. При этом температура ядра превышает 6000 °C, а скорость остывания оценивается в 300-500 °C за миллиард лет.

Тепловой поток, текущий из недр Земли через её поверхность, составляет 47±2 ТВт тепла (400 тыс. ТВт⋅ч в год, что в 17 раз больше всей мировой выработки, и эквивалентно сжиганию 46 млрд тонн угля), а тепловая мощность, вырабатываемая Землей за счет радиоактивного распада урана, тория и калия-40 оценивается в 33±20 ТВт, т.е. до 70% теплопотерь Земли восполняется [1] . Использование даже 1% этой мощности эквивалентно нескольким сотням мощных электростанций. Однако, плотность теплового потока при этом составляет менее 0,1 Вт/м 2 (в тысячи и десятки тысяч раз меньше плотности солнечного излучения), что затрудняет её использование.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее +100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика. Ниже описана гидротермальная энергетика [2] .

Геотермальная энергетика

Сегодня геотермальная энергетика как альтернативное направление выработки электроэнергии широко распространена по всему земному шару. Этот способ доступа к энергетическим ресурсам открывает неограниченные возможности в области получения и потребления дешевого электричества. Далее мы ознакомимся с существующими источниками тепловой энергии, а также со способами ее получения с последующим преобразованием в привычные для нас виды энергоносителей.

Геотермальные электростанции или что такое геотермальная энергия

При знакомстве с категориями, имеющими отношение к рассматриваемой теме, обычно упоминают геотермальную энергию, получаемую за счет тепловых источников земных недр. Практически она исходит от ядра планеты, температура которого составляет порядка 3600 градусов, и излучается в направлении земной поверхности. Тепло от подземных источников (гейзеров, в частности) выводится через специальные скважины в виде разогретого до высокой температуры пара, вращающего лопасти генераторных турбин.

Реализующие описанный процесс промышленные комплексы (геотермальные электростанции) позволяют получить используемую для нужд рядового потребителя электрическую энергию. Последняя подобно обычным гидроэлектростанциям распределяется по разветвленной сети электрических линий и поступает в нагрузку на стороне конечного пользователя. Геотермальные станции, как правило, включаются в энергетический комплекс конкретного региона или всего государства.

Геотермальные ресурсы

Источником энергии для геотермических станций служат недра земли, в которых тепло накапливается за счет непрерывно происходящих в ядре процессов. Рассмотрим подробно историю открытия этих глубинных источников и проследим хронологию создания средств преобразования энергии теплоносителя в электричество.

История развития

Способы практического использования энергии геотермальных источников были известны человеку еще в древние века (в 1-м столетии нашей эры). Она традиционно применялась в следующих формах:

  • Купание в открытых водоемах с горячей водой (вблизи гейзеров, например).
  • Принятие банных процедур, основанных на использовании тех же термальных вод.
  • В виде эффективной системы городского теплоснабжения.

В Древнем Риме представители высшего сословия любили отдыхать в изотермах (так назывались бани с подогревом от источников тепла из земных недр). Позднее, в 14-м веке, изобретательные французы соорудили первую в истории планеты систему теплоснабжения, также использующую геотермальный потенциал земного шара. В промышленных масштабах он начал применяться в Италии в 1827 году. Энергия тепла земли использовалась итальянскими инженерами для извлечения борной кислоты из вулканических пород. Со временем специалисты научились различать источники на петротемальные и гидротермальные.

Петротермальная энергетика

Такого градиента температур вполне достаточно для того, чтобы практически использовать его в целях получения электроэнергии.

Гидротермальные источники

Гидротермальные источники тепла – подземные воды естественного происхождения, которые по эффективности отдачи энергии намного превосходят петротермальные аналоги. К тому же описываемый способ не нуждается в значительных затратах средств и трудовых ресурсов.

Обратите внимание: Создание и реализация таких систем возможны только в местах, где геотермальные воды присутствуют в достаточном количестве и доступны для разработки.

Пример такого места – разведанные зоны скрытой вулканической деятельности. В связи с этим из годных для использования геотермальных ресурсов на долю гидротермальных приходится лишь около 1%. Оставшиеся 99 процентов составляют петротермальные источники, которые могут быть обнаружены практически в любом месте земной поверхности.

Основные черты геотермальной энергетики

К особенностям геотермальной энергетики относят следующие характерные черты:

  • Сравнительная сложность доступа к возобновляемым источник тепла.
  • Сложности с выбором нужного способа получения и преобразования энергии.
  • Необходимость учета плюсов и минусов геотермальных электростанций, сооружаемых в выбранных областях страны.

Дополнительная информация: Источником тепла служат либо сухие горные породы, либо геотермальные воды, расположенные в недрах земли и доступные к использованию.

Для получения энергии из тепловых запасов недр задействуют один из следующих известных способов:

  • Традиционный подход.
  • Добыча с применением насосных станций.
  • Фонтанный способ.
  • Геоциркуляционный метод.

Традиционный способ предполагает прямой доступ к источнику тепла с выводом энергии по скважинному каналу. При реализации фонтанного метода происходит самоизливание ресурса за счет внутреннего давления скопившегося в недрах пара. Насосное оборудование применяется в ситуациях, когда второй вариант с самостоятельным доступом к скважине практически нереализуем. Последний способ примечателен тем, что полностью отработанный ресурс отправляют обратно в земные недра.

Геотермальные электростанции преимущества и недостатки

К бесспорным плюсам использования геотермальной энергетики относят:

  • значительные запасы тепловой энергии, которые при грамотной эксплуатации могут считаться возобновляемыми;
  • экономичность, достигаемая за счет отказа от традиционных видов топлива;
  • экологическая чистота геотермальных источников и станций, не выбрасывающих в атмосферу вредных веществ;
  • самодостаточность, исключающая необходимость применения сторонних источников энергии (помимо первого запуска системы в работу).

Обратите внимание: Геотермальные тепловые станции (ГеоТЭС) также не нуждаются в значительных эксплуатационных затратах.

К преимуществам геотермальной электростанции причисляют и возможность попутного использования для выполнения определенных функций. При расположении станции на берегу моря, в частности, она нередко задействуется с целью опреснения соленой воды. При таком совмещении функций последняя дистиллируется, а в дальнейшем применяется для искусственного орошения земель или в других практических целях.

К числу недостатков использования ГС следует отнести определенные сложности и опасности, связанные с их расположением в сейсмически активных зонах. Размещение сооружений такого масштаба вблизи объектов вулканической деятельности всегда влечет за собой определенные риски. Обычно при поиске места для станций стараются выбирать зоны, где подземная активность наблюдалась очень давно и в настоящий момент проявляется слабо.

Сферы применения

Несмотря на то, что Гео ТЭС занимают скромное место в ряду других энергетических объектов – станции, работающие на тепле недр земли, все чаще используются в народном хозяйстве. С учетом рассмотренных ранее преимуществ и недостатков геотермальных электростанций последние могут применяться в рассмотренных ниже случаях.

В сельском хозяйстве и садоводстве

В сельскохозяйственных отраслях геотермальная электростанция может применяться в следующих целях:

  • для обогрева посадок растений, выращиваемых в оранжереях или в тепличных комплексах;
  • с целью ухода за ними (для их полива, в частности);
  • для отопления комплексов, где содержатся домашние животные и пернатые (фермы, коровники и птичники).

Возможность использования геотермальных станций для указанных целей зависит от качества и состава поступающей из недр воды. В сельском хозяйстве и садоводстве они чаще всего применяются в таких государствах, как Израиль, Гватемала, Греция, Мексика и Кения.

В промышленности и ЖКХ

Промышленность и коммунальные хозяйства считаются поэтому одними из основных потребителей в этой отрасли. В коммерческих масштабах геотермальная энергия для заявленных нужд вырабатывается в Новой Зеландии, России, в Исландии и в США.

В частном секторе

Получать геотермальную энергию в незначительных объемах можно и самостоятельно, используя ее для автономного отопления или дополнительного обогрева частных домов вместо газа, например. Принцип работы такой системы схож с функционированием обычного кондиционера, используемого в режиме обогрева помещений. В отличие от него источник геотермального тепла способен работать при любых уличных температурах и практически не потребляет электроэнергии.

Построить частную геотермальную станцию удается, если в выбранном месте на нужной глубине установить специальные коллекторы, наполненные антифризом, например. За счет естественных обменных процессов они будут концентрировать тепло, а затем отдавать его в систему отопления жилого дома. Расходы на обустройство такого комплекса минимальны (частнику придется потратиться лишь на приобретение необходимого оборудования и его монтаж).

Геотермальная электростанция принцип работы

При рассмотрении принципа работы геотермальных станций важно учитывать существующие методы получения электроэнергии. В соответствие с состоянием используемого энергоносителя в геотермальной практике различают следующие способы:

  • Прямой доступ, при реализации которого для вращения турбин используется сухой пар.
  • Непрямой метод, предполагающий применение водяного пара с рабочей температурой более 180 градусов.
  • Бинарный или смешанный способ, при котором в горячую жидкую среду добавляется особый хладагент.

Принцип работы геотермальных электростанций во всех рассмотренных случаях один: скопившийся в скважинах пар под давлением вырывается наружу и начинает раскручивать лопасти турбины. Последняя в свою очередь вырабатывает электрический ток нужного качества и величины, поступающий в нагрузку потребителя.

Геотермальные электростанции в России

При рассмотрении этого вопроса учитываются особенности земных недр страны-производителя. Геотермальные электростанции в России располагаются в сейсмически неопасных районах, где разрывы в тектонических плитах не слишком велики. Специалисты выбирают для их размещения места, где геотермический градиент имеет максимальное значение, что снижает издержки на обустройство скважин (не нужно бурить ее на большую глубину). Наиболее оптимальный вариант – использовать для этих целей гейзеры, при активности которых вода под давлением выходит на поверхность и достигает требуемой температуры.

Паужетская ГеоЭС

Это первая в РФ геотермальная электростанция, построенная с целью обеспечения электроэнергией южных районов Камчатки (изолированных от материка поселков) Она –единственный источник электричества, в котором нуждается проживающее здесь население. От этой станции энергию также получают местные комбинаты по переработке рыбы и целый ряд объектов сельскохозяйственного сектора.

Причиной начавшихся в 1966 году работ на Камчатке явилась необходимость в снабжении электроэнергией жилых поселений и новых строящихся объектов. Корпуса станции разместились на Камбальном месторождении парогидротерм, находящемся в юго-западном окончании Камчатского полуострова (пос. Паужетка). Общая площадь территории, занимаемой Паужетской ГС, составляет порядка 1,9 гектара.

Проектная мощность ГеоЭС составляет порядка 12 МВт (6+6 МВт), а тот же показатель в реальном выражении равен 5,8 МВт. Рассматриваемый параметр ограничен объемами вырабатываемого в недрах геотермального пара. Паужетская ГеоЭС оборудована собственной системой водозабора и сброса охлажденной жидкости. Кроме того, в ее состав входит специальное электрооборудование с устройствами регулировки мощности в нагрузках потребителя.

Верхне-Мутновская ГеоЭС

Представленная ГеоЭС (мощность – 12 МВт) построена в 1999 году; она проектировалась как пилотный проект местного геотермального месторождения. Основная цель ее создания – подтвердить возможность и целесообразность освоения технологий получения электроэнергии из имеющихся на территории России геотермальных источников.

Обработанный и сконденсированный пар поступает в реинжекционное устройство, после чего он откачивается компрессорами и растворяется в конденсате.

Обратите внимание: Попадание сопутствующих газов в атмосферу за счет особой технологии переработки пара сводится к минимуму.

Вследствие этого в геотермальном комплексе удается реализовать концепцию экологически чистой станции. Всего в составе ГеоЭС насчитывается 14 модулей-вагончиков, объединенных закрытыми переходами.

Верхне-Мутновская ГеоЭС

Мутновская ГеоЭС

Представленная в этом разделе ГеоЭС с заявленной мощностью до 50 МВт – одна из современнейших технологических разработок, не имеющая аналогов в России. Первая очередь электростанции включает в свой состав следующие функциональные модули:

  • Основное здание с турбинным залом.
  • Сепараторная станция с комплектом насосного оборудования.
  • Несколько градирен.
  • Вспомогательный корпус.
  • Строение с элегазовым комплексным распределительным устройством (КРУЭ-220 кВ).
  • Комплект распределительного электрооборудования.
  • Станционные очистные сооружения и т. п.

При проектировании ГеоЭС-1 принимались в расчет новейшие открытия в области электроэнергетики, а при ее постройке были применены самые современные технологические решения

Тепловая схема станции позволила добиться экологической чистоты использования теплоносителя, минуя его непосредственный контакт с окружающей средой. Сделать это удалось за счет применения воздушных конденсаторов особой конструкции, а также путем полной реинжекции рабочего тела.

Мутновская ГеоЭС

Океанская

Океанская ГеоЭС, на возведение которой было потрачено более десятилетия, введена в эксплуатацию только в 2007 году. В течение нескольких лет она успешно выполняла свои функции, но с февраля 2013 года в ее работе начали наблюдаться постоянные сбои. Когда один из действующих энергоблоков получил серьезное повреждение – электростанция была полностью остановлена.

После этого второй модуль частично удалось запустить, но он работал не на неполную мощность. Спустя какое-то время и он был признан нерабочим и неремонтопригодным, после чего в ноябре 2015 года станцию законсервировали. Работающие на Итурупе объекты вновь стали получать электроэнергию от дизельных установок.

Океанская ГеоЭС

Менделеевская ГеоТЭС

Менделееевская ГеоТЭС – это геотермальная электростанция, располагающаяся на острове Кунашир неподалеку от вулкана имени Д. И. Менделеева. С ее помощью налажено теплоснабжение и электроснабжение п. Южно-Курильск. Номинальная электрическая мощность электростанции – 7,4 МВт.

Геотермальные станции в мире

Общая мощность ГеоЭС в Исландии на начало века составляла 790 Мегаватт. В стране работают 5 теплофикационных электростанций, одна из которых обслуживает ее столицу – Рейкьявик. Имеются подобные сооружения и в такой небольшой стране, как Кения. В 2005 их суммарная мощность составляла 160 Мегаватт. В Филиппинах в 2003 году этот показатель для геотермальных станций составлял порядка 1930 Мегаватт. Попытки перейти на пользование геотермальными источниками делаются и в Японии, но доля работающих в этой островной стране электростанций пока ничтожно мала.

Будущее геотермального электричества

Согласно исследованиям специалистов в земных недрах на глубинах от 3-х до 5-ти километров сконцентрированы запасы тепла, способные обеспечить человечество не на одно тысячелетие. Однако на практике потребляемая от геотермальных источников энергия по отношению к другим ее видам (получаемой из угля, например) составляет не более половины процента. В перспективе за счет дополнительных капитальных вложений в мировых масштабах эту часть предполагается увеличить до 50%.

Важно! Уже сегодня потенциал этого сектора повышается приблизительно на 2-3 процента ежегодно.

В РФ этому виду энергетики не уделяется должного внимания, что объясняется небольшим количеством разведанным в стране источников и низким КПД геотермальных электростанций. Несмотря на это, развитие в указанном направлением – приоритетная задача, решаемая правительством нашей страны.


Геотермальная энергетика — направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика. Ниже описана гидротермальная энергетика. [1]

Содержание

Ресурсы

Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.

Россия
На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).

Достоинства и недостатки

Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.

Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным [источник не указан 489 дней] , в Западной Сибири имеется подземное море площадью 3 млн м 2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.

Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.

Геотермальная электроэнергетика в мире

Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.

Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт [2] .

Установленная мощность по странам
Страна Мощность , МВт
2007 [3]
Мощность , МВт
2010 [4]
Доля от общей выработки электроэнергии, 2010 [источник не указан 537 дней]
США 2687 3086 0.3%
Филиппины 1969.7 1904 27%
Индонезия 992 1197 3.7%
Мексика 953 958 3%
Италия 810.5 843
Новая Зеландия 471.6 628 10%
Исландия 421.2 575 30%
Япония 535.2 536 0.1%
Сальвадор 204.2 204 14%
Кения 128.8 167 11.2%
Коста-Рика 162.5 166 14%
Никарагуа 87.4 88 10%
Россия 79 82
Турция 38 82
Папуа-Новая Гвинея 56 56
Гватемала 53 52
Португалия 23 29
КНР 27.8 24
Франция 14.7 16
Эфиопия 7.3 7.3
Германия 8.4 6.6
Австрия 1.1 1.4
Австралия 0.2 1.1
Таиланд 0.3 0.3
Всего 9,731.9 10,709.7

Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновляемой электроэнергии. В 2009 году суммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт [5] . До 2013 года планируется строительство более 4400 МВт.

Важно отметить тот факт, что американские компании являются мировыми лидерами в этом секторе, несмотря на то, что геотермальная энергетика начала активно развиваться в стране сравнительно недавно. По данным Министерства Торговли, геотермальная энергия является одним из немногих возобновляемых источников энергии, чей экспорт из США больше, чем импорт. Кроме того, экспортируются также и технологии. 60% [8] компаний-членов Геотермал Энерджи Ассошиэйшн (Geothermal Energy Association) в настоящее время стремятся делать бизнес не только на территории США, но и за ее пределами (в Турции, Кении, Никарагуа, Новой Зеландии, Индонезии, Японии и пр.)

Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.

Филиппины

На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27% всей электроэнергии в стране.

Мексика

Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.

Италия

В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.

Исландия

В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.

Одна из таких станций снабжает столицу Рейкьявик. Станция использует подземную воду, а излишки воды сливают в гигантский бассейн.

Кения

В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт., существуют планы по росту мощностей до 576 МВт.

Россия

Впервые в мире неводяные пары как тепловой носитель применены на Паратунской ГеоТЭС в 1967 году. [9]

По данным института вулканологии Дальневосточного Отделения Российской Академии наук, геотермальные ресурсы Камчатки оцениваются в 5000 МВт. [10] Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):

    Мутновское месторождение:
      установленной мощностью 12 МВт·э (2011) и выработкой 69,5 млн кВт·ч/год (2010) (81,4 в 2004), установленной мощностью 50 МВт·э (2011) и выработкой 360,5 млн кВт·ч/год (2010) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт·э и выработку до 577 млн кВт·ч)

    В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

    В Краснодарском крае эксплуатируется 12 геотермальных месторождений. [11]

    Классификация геотермальных вод [12]

    По температуре

    Слаботермальные до 40°C
    Термальные 40-60°C
    Высокотермальные 60-100°C
    Перегретые более 100°C

    По минерализации (сухой остаток)

    ультрапресные до 0,1 г/л
    пресные 0,1-1,0 г/л
    слабосолоноватые 1,0-3,0 г/л
    сильносолоноватые 3,0-10,0 г/л
    соленые 10,0-35,0 г/л
    рассольные более 35,0 г/л

    По общей жесткости

    По кислотности, рН

    По газовому составу

    сероводородные
    сероводородно-углекислые
    углекислые
    азотно-углекислые
    метановые
    азотно-метановые
    азотные

    По газонасыщенности

    слабая до 100 мг/л
    средняя 100-1000 мг/л
    высокая более 1000 мг/л

    Петротермальная энергетика

    Данный тип энергетики связан с глубинными температурами Земли, которые с определённого уровня начинают подниматься. Средняя скорость её повышения с глубиной – около 2,5°С на каждые 100 м. На глубине 5 км температура составляет примерно 125°С, а на 10 км – 250°С. Добыча тепла производится посредством бурения двух скважин, в одну из которых закачивается вода, которая, нагреваясь, попадает в смежную скважину и выходит в виде пара. Проблема данной энергетики на сегодня - её рентабельность. [1]

    Читайте также: