Газообразующая способность муки кратко

Обновлено: 05.07.2024

Газообразующая способность муки – это способность приготовленного из нее теста образовывать диоксид углерода.

При спиртовом брожении, вызываемом в тесте дрожжами, сбраживаются содержащиеся в нем моносахариды. Молекула простейшего сахара гексозы (глюкозы или фруктозы) зимазным комплексом ферментов дрожжевой клетки разлагается с образованием двух молекул этилового спирта и двух молекул диоксида углерода с выделением теплоты.

С6Н12О6= 2С2Н5ОН + 2СО2+ 117,6 кДж

Это суммарное уравнение спиртового брожения. Дрожжевые клетки в пшеничном тесте получают необходимую для их жизнедеятельности энергию за счет сбраживания моносахаридов. Этот тип обмена веществ дрожжей называется анаэробным. Процесс сбраживания углеводов в отсутствии кислорода с образованием конечных продуктов – этилового спирта и диоксида углерода – осуществляется через целый ряд промежуточных продуктов с участием многочисленных ферментов. Фактический баланс спиртового брожения, вызываемого дрожжами, при рН 6,0 (характерная для пшеничного теста) включает следующие продукты: диоксид углерода, этиловый спирт, глицерин, уксусная кислота, молочная кислота, муравьиная кислота, янтарная кислота, масляная кислота 2,6- Бутиленгликоль. Больше всего в процессе спиртового брожения образуется этилового спирта и диоксида углерода и поэтому именно по количеству этих продуктов можно судить об интенсивности спиртового брожения.

За показатель газообразующей способности принято количество диоксида углерода в мл, образующегося за 5 ч брожения при температуре 30° С теста, приготовленного из 100 г муки, 60 мл воды и 10 г дрожжей.

Газообразующая способность зависит от содержания собственных сахаров в муке и от сахарообразующей способности муки (рисунок 2).

Содержание сахаров в муке зависит от ее выхода. Чем выше выход муки, тем больше в ней содержится сахаров. Собственные сахара муки (глюкоза, фруктоза, сахароза, мальтоза и др.) сбраживаются в самом начале процесса брожения. А для получения хлеба наилучшего качества необходимо иметь интенсивное образование диоксида углерода как при брожении теста, так и при окончательной расстойке и в первый период выпечки. Кроме того, для реакции меланоидинообразования (образования окраски корки, вкуса и запаха хлеба) также необходимы моносахариды. Поэтому более важным является не содержание сахаров в муке, а ее способность образовывать сахара в процессе созревания теста.

Сахарообразующая способность муки – это способность приготовленной из нее водно-мучной смеси образовывать при установленной температуре и за определенный период времени то или иное количество мальтозы.

Рисунок 2- Факторы, влияющие на газообразующую способность пшеничной муки

Сахарообразующая способность муки обусловливается действием амилолитических ферментов на крахмал и зависит как от наличия и количества амилолитических ферментов (a- и b-амилаз) в муке, так и от атакуемости крахмала муки. В муке из непроросшего зерна пшеницы содержится только b-

амилаза. В муке из проросшего зерна наряду с b-амилазой содержится активная a-амилаза. Гидролиз крахмала под действием этих ферментов протекает по разному. Наличие a-амилазы обеспечивает более полный гидролиз крахмала, а следовательно, более высокую сахарообразующую способность и ,как следствие, более высокую газообразующую способность муки.

Количество b-амилазы в муке более чем достаточно. Поэтомусахарообразующая способность пшеничной муки из нормального непроросшего зерна обычно обусловлена не количеством в ней активной b-амилазы, а доступностью и податливостью (атакуемостью) субстрата, на который она действует, т. е. крахмала.

Атакуемость крахмала зависит в основном от размеров частиц крахмальных зерен и степени их механического повреждения при помоле зерна. Чем мельче частицы, чем мельче зерна крахмала, чем больше они повреждены при помоле, тем выше атакуемость крахмала. Следовательно, сахарообразующая способность муки из нормального непроросшего зерна ввиду избыточного содержания b-амилазы обусловлена, главным образом, атакуемостью крахмала, а сахарообразующая способность муки из проросшего зерна обусловлена наличием активной a-амилазы.

Технологическое значение газообразующей способности. Газообразующая способность муки имеет большое значение при выработке хлеба, рецептура которого не предусматривает внесение сахара. Зная газообразующую способность муки, можно предвидеть интенсивность брожения теста, ход окончательной расстойки и качество хлеба.




Газообразующая способность муки влияет на окраску корки. Цвет корки обусловлен в значительной мере количеством несброженных сахаров перед выпечкой. При прогреве тестовой заготовки несброженные сахара на поверхности корки вступают в реакцию с продуктами распада белка и образуют меланоидины, придающие корке специфическую окраску, а побочные и промежуточные продукты этой реакции участвуют в формировании вкуса и аромата хлеба.

Методы определения газообразующей способности. В разных странах для определения газообразующей способности применяются приборы, которые можно отнести к двум группам: приборы, измеряющие количество выделившегося диоксида углерода волюмометрически – по его объему, и приборы, в которых количество диоксида углерода определяется манометрически – по его давлению.

Сила муки

Сила муки – это способность муки образовывать тесто, обладающее после замеса и в ходе брожения и окончательной расстойки определенными реологическими свойствами. По силе муку подразделяют на: сильную, среднюю и слабую.

Сильной считается мука, способная поглощать при замесе теста относительно большее количество воды. Тесто из сильной муки устойчиво сохраняет свои свойства, медленнее достигает оптимальных свойств, требует более длительной окончательной расстойки.

Тесто из слабой муки при замесе теста поглощает меньшее количество воды. Реологические свойства теста из такой муки в процессе замеса и брожения быстро ухудшаются. Тесто к концу брожения сильно разжижается, становится малоэластичным, мажущимся, окончательная расстойка тестовых заготовок заканчивается достаточно быстро.

Средняя по силе мука занимает промежуточное положение.

Сила муки определяется состоянием ее белково-протеиназного комплекса. На силу муки могут влиять следующие факторы: содержание липидов, содержание пентазанов, крахмал, его свойства и состояние, наличие ферментов.

Белково-протеиназный комплекс пшеничной муки – это белковые вещества муки,протеолитические ферменты, активаторы и ингибиторы протеолиза.

Белковые вещества. В зерне пшеницы содержится 9–26% белковых веществ. Содержание в муке белковых веществ, их состав, состояние и свойства имеют первостепенное значение и в значительной мере определяют и пищевую ценность хлеба, и технологические свойства муки. От них зависят такие свойства теста, как эластичность, вязкость, упругость. Белковые вещества пшеничной муки представлены на 2/3(3/4) глиадиновой и глютениновой фракциями, которые являются основными компонентами клейковины. Их называют клейковинными белками. В пшеничной муке глиадиновой фракции содержится несколько больше, чем глютениновой.

Протеолитические ферменты. Это ферменты, расщепляющие белки по их пептидным связям. Их называют протеиназами. При действии протеиназы на белок образуются пептоны, полипептиды, свободные аминокислоты. Протеиназа, содержащаяся в пшенице относится к типу папаиназ, для которых характерна способность активироваться соединениями восстанавливающего действия, содержащими сульфгидрильную группу (цистеин, глютатион) и инактивироваться соединениями окислительного действия (кислород воздуха, KJO3, H2O2и др.). Эти соединения называют активаторами и ингибиторами протеолиза.

Начальной формой действия протеиназы является дезагрегация белка, нарушение его четвертичной и третичной структур. Действие протеиназы на клейковину и тесто приводит к сильному их разжижению, понижению упругости и увеличению текучести. Принято считать, что протеиназа пшеницы имеет зону оптимума рН в пределах 4–5,5 и температурный оптимум около 45° С. Однако существенную роль могут играть и протеиназы нейтральные с оптимумом рН 6,75.

Активатором протеолиза, содержащимся в зерне, муке и дрожжах, а следовательно, и в тесте, является глютатион.

Чем больше в муке белка, чем плотнее и прочнее его структура и, следовательно, ниже его атакуемость протеиназой, чем меньше в муке активность протеиназы и активаторов протеолиза (восстановленного глютатиона), тем сильнее мука и тем лучше и устойчивее будут реологические свойства теста из нее. Поэтому, чем выше содержание в муке клейковины и чем лучше ее реологические свойства, тем сильнее мука.

Известное влияние на силу муки оказывают и содержащиеся в ней липиды – жиры, богатые ненасыщенными жирными кислотами, фосфатиды, липопротеиды и гликолипиды.

Липиды муки способны влиять на структуру и свойства белкового каркаса теста (клейковины) и самого теста. Помимо этого, ненасыщенные жирные кислоты жира муки под действием фермента липоксигеназы образуют пероксиды и гидропероксиды, в свою очередь упрочняющие структуру белка. Таким образом, липиды муки прямо или косвенно путем окислительного воздействия влияют на реологические свойства белка и теста, а следовательно, на силу муки.

Водорастворимые пентозаны (слизи), а также размеры и состояние зерен крахмала могут иметь самостоятельное влияние на реологические свойства теста, являясь конкурентами белка за воду, и тем самым влиять на силу муки.

Технологическое значение силы муки. Сила муки определяет количество воды, потребное для получения теста нормальной консистенции, а также изменение реологических свойств теста при брожении и в связи с этим – поведение теста в процессе его механической разделки и тестовых заготовок при окончательной расстойки.

Сила муки обусловливает газоудерживающую способность теста, т.е. способность полуфабрикатов удерживать диоксид углерода, образующийся при брожении. Поэтому газоудерживающая способность теста, наряду с газообразующей способностью муки, определяет объем хлеба, величину и структуру пористости его мякиша. При обычном режиме процесса приготовления теста из муки с достаточной сахаро- и газообразующей способностью объем хлеба возрастает по мере увеличения силы муки. Однако объем хлеба из очень сильной муки в этих условиях обычно меньше, чем из муки сильной и средней по силе. Обусловлено это резко повышенным сопротивлением теста растяжению и меньшей способностью такого теста растягиваться под давлением увеличивающихся в объеме пузырьков диоксида углерода. Это приводит к соответствующему снижению газоудерживающей способности теста и, следовательно, к уменьшению объема хлеба.

Для получения хлеба максимального объема из очень сильной пшеничной муки реологические свойства теста должны быть несколько ослаблены. Это может быть достигнуто изменением режима приготовления теста: усилением его механической обработки, некоторым повышением температуры, увеличением количества воды в тесте или добавлением препаратов, форсирующих протеолиз в тесте.

Кроме того, сила муки определяет формоудерживающую способность теста, т.е. способность тестовых заготовок удерживать диоксид углерода и сохранять форму в процессе расстойки и первого периода выпечки. В связи с этим сила муки обусловливает расплываемость подового хлеба.

Методы определения силы муки. Сила пшеничной муки может быть установлена либо путем определения содержания и качества клейковины, от которых в основном зависят реологические свойства теста, либо путем непосредственного определения реологических свойств теста из оцениваемой муки. Для этой цели могут быть использованы и иные пути (определение набухаемости муки в растворе органических кислот, пробные выпечки и др.). В России силу зерна пшеницы и пшеничной муки оценивают в производственных лабораториях в основном по количеству и качеству клейковины (ГОСТ 27839), по международным стандартам (ИСО 5531, ИСО 6645 и ИСО 5531-4) – по содержанию сырой и сухой клейковины и по определению реологических свойств теста с помощью альвеографа (ГОСТ 28795, ИСО 5530-4).

При спиртовом брожении, вызываемом в тесте дрожжами, сбраживаются содержащиеся в нем сахариды. При этом молекула простейшего сахара гексозы (глюкозы или фруктозы) зимазным комплексом ферментов дрожжевой клетки разлагается с образованием двух молекул этилового спирта и двух молекул СО2 — диоксида углерода. Таким образом, по количеству СО2, выделяющегося при брожении теста, можно судить об интенсивности спиртового брожения. Поэтому газообраэующая способность муки характеризуется количеством СО2, выделившегося за установленный период времени при брожении теста, замешенного из определенных количеств данной муки, воды и дрожжей

Факторы, обусловливающие газообразующую способность муки

Газообразующая способность муки обусловливается содержанием в ней собственных сахаров и ее сахарообразующей способностью. Сахарообразующая способность муки связана с действием содержащихся в ней амилолитических ферментов на крахмал, в результате гидролиза которого в тесте образуются сахара (мальтоза и др.). Сахарообразующая способность муки зависит поэтому от содержания в муке амилолитических ферментов и податливости крахмала их действию. Таким образом, газообразующая способность муки обусловливается в основном ее углеводно-амилазным комплексом.

Собственные сахара муки.

Установлено, что распределение сахаров в зерне неравномерно. Содержание сахаров в центральной части (эндосперме) зерна значительно ниже, чем в зародыше, оболочках

и алейроновом слое с прилегающими к нему внешними слоями эндосперма. В связи с этим чем меньше выход данного сорта муки, тем ниже в ней содержание частичек периферических слоев зерна, тем относительно ниже содержание в муке сахаров.

Проведенные исследования позволяют полагать, что содержание отдельных сахаров в нормальном зерне пшеницы и в муке из нее лежит в следующих пределах (в % на сухое вещество): глюкоза 0,01-0,05, фруктоза 0,015-0,05, мальтоза 0,005-0,05, сахароза 0,1-0,55.

Помимо этих сахаров в зерне пшеницы и пшеничной муке установлено содержание раффинозы, мелибиозы и глюкофруктозана (левозина). Общее содержание этих сахаридов колеблется примерно от 0,5 до 1,1% на сухое вещество.

В отношении мелибиозы некоторые исследователи, производившие проверку идентичности отдельных сахаров кристаллизацией, полагают, что то, что хроматографически выделяется как мелибиоза, является глюкофруктозаном.

Исследования содержания отдельных сахаров в зародыше и щитке зародыша зерна подтверждают высокое общее содержание в них сахаров (12-28%), а также то, что более половины из них падает на сахарозу и около 40% на раффинозу. Таким образом, общее содержание в пшеничной муке сбраживаемых дрожжами сахаров в зависимости от состава зерна и выхода муки может колебаться в пределах 0,7 —1,8% на сухое вещество.

Количество сахаров в зерне и муке, главным образом количество мальтозы, может существенно возрастать при прорастании зерна.

Сахарообразующая способность муки.

Под сахарообразующей способностью муки понимают способность приготовленной из нее водно-мучной смеси образовывать при установленной температуре и за определенный период времени то или иное количество мальтозы.

Сахарообразующая способность муки обусловливается действием амилолитических ферментов муки (в указанных выше условиях) на ее крахмал и зависит как от количества амилолитических ферментов (α- и β-амилазы), так и от размеров, характера и состояния частиц муки и крахмальных зерен в этих частицах.

Показателем сахарообразующей способности муки, определяемой по методу Рамзей-ВНИИЗ, считают количество миллиграммов мальтозы в водно-мучной суспензии из 10 г муки и 50 мл воды после одного часа ее настаивания при 27 °С. Естественно, что при этом определяются как мальтоза, образовавшаяся в процессе часового автолиза водно-мучной суспензии в результате действия амилолитических ферментов муки на ее крахмал, так и содержавшиеся в муке собственные непосредственно редуцирующие сахара (мальтоза, глюкоза и фруктоза).

Для точной характеристики истинной сахарообразующей способности муки следовало бы в отдельной навеске 10 г муки определить содержание собственных, непосредственно редуцирующих сахаров и их количество, выраженное в миллиграммах мальтозы, вычесть по указанному выше способу из определенной величины показателя сахарообразуюшей способности муки.

В нормальном непроросшем зерне пшеницы практически содержится только β-амилаза. В проросшем же зерне пшеницы наряду с β-амилазой содержится и активная α-амилаза. Общепризнано, что β-амилаза при действии на крахмал образует главным образом мальтозу и наряду с ней значительно меньшее количество высокомолекулярных декстринов, в то время как α-амилаза образует в качестве основного продукта гидролиза крахмала декстрины меньшей молекулярной массы и незначительное количество мальтозы.

Хроматографическое исследование сахаров, образующихся при амилолизе крахмала, несколько уточняет этот вопрос. Подтверждено, что β-амилаза действительно образует из сахаров только мальтозу. В то же время показано, что α-амилаза, помимо декстринов и мальтозы, образует известные количества глюкозы и некоторых других внзкомолекулярных сахаридов (амилотриозы, амилотетраозы и амилопентаозы).

В проросшем зерне и получаемом из него солоде одновременно присутствуют и β-, и α-амилазы. При совместном действии этих амилаз на крахмал в числе сахаров, получаемых в качестве продуктов амилолиза, наряду с мальтозой получаются небольшие количества глюкозы и амилотриозы (сахарида из трех остатков глюкозы, соединенных а-1,4-глюкозидными связями).

Следует отметить, что совместное действие обеих амилаз обеспечивает наибольшее осахаривание крахмала.

α- и β-амилазы различаются по своему отношению к температуре и реакции среды, α-амилаза по сравнению с β-амилазой имеет оптимум действия и инактивируется при более высокой температуре. В то же время β-амилаза более стойка к повышению кислотности среды. Реакция среды существенно влияет на термостойкость амилаз. Чем выше кислотность среды, тем ниже температура инактивации амилаз. При этом особенно резко снижается температура инактивации а-амилазы. Оптимальная для действия амилаз реакция среды в свою очередь неодинакова при различной температуре действия амилаз в данной среде.

Исследователями установлено, что температура оптимума действия и инактивации амилаз в объектах хлебопекарного производства зависит также от характера и концентрации субстрата, на который действуют амилазы. Чем выше влажность реакционной среды и чем ниже в этой среде концентрация субстрата, на который действуют амилазы, тем ниже температура оптимума действия и инактивация амилаз. На температуру инактивации амилаз влияют условия, скорость и

длительность прогрева продукта, в котором происходит амилолиз.

Из сказанного следует, что, приводя температуры оптимума действия и инактивации β- и α-амилаз, необходимо указывать, к какому объекту и к каким условиям относятся данные.

Установлено, что в тесте из пшеничной муки I сорта, приготовленном на прессованных дрожжах (pH 5,9), оптимальной температурой для действия р-амилазы является 62-64 “С, для α-амилазы 70-74 °С.

Полная инактивация β-амилазы при этом происходила при 82-84 °С. α-амилаза в этих условиях способна сохранять известную активность при температуре, достигающей 97-98 °С. Даже в хлебе, выпеченном из этого теста, α-амилаза в центре мякиша сохраняла известную активность.

Дополнительно установлено, что температура инактивации β-амилазы при выпечке пшеничного хлеба весьма существенно зависит от скорости длительности прогрева отдельных участков мякиша хлеба.

Было также показано, что в заварках из пшеничной муки температура оптимума действия и инактивации β-амилазы снижалась при увеличении количества воды в заварке.

Существенно влияние фактора кислотности среды на температуру инактивации β- и α-амилазы. β-Амилаза в процессе выпечки ржаного хлеба инактивировалась полностью: при кислотности теста 10-11,4 град (pH от 43 до 4,6) и температуре 60 °С, а при кислотности теста 4,6-6,3 град (pH от 4,7 до 4,9) — при температуре 73- 78 о С.

α-Амилаза была полностью инактивирована при кислотности теста 10,6-11,6 град (pH 4,3) и температуре 71 о С. Когда кислотность теста была равна 4,4 град (pH 4,9), α-амилаза в центре мякиша хлеба сохраняла активность до конца выпечки хлеба, т. е. до температуры, превышающей 96 о С.

Атакуемость крахмала муки зависит в основном от размеров частиц муки, размеров крахмальных зерен и степени их механического повреждения при размоле зерна, т. с. от удельной свободной поверхности зерен и частиц зерен крахмала, на которую может действовать β-амилаза. Чем мельче частицы муки и зерна крахмала, чем больше эти зерна разрушены или повреждены, тем больше атакуемость этого субстрата β-амилазой.

Еще в 1938 г. было установлено (Институт биохимии АН ССС Р, И. В. Глазунов и др.), что при действии β-амилазы в сравнимых условиях на разные крахмальные субстраты и различные по крупности частицы пшеничного крахмала образуется различное количество мальтозы. Результаты этих исследований показаны ниже.

Как видно из приведенных выше данных, (β-амилаза при действии на декстрин образует мальтозы в 335 раз больше, чем при действии на пшеничный крахмал. Еще больше мальтозы образуется при действии |β-амилазы на крахмальный клейстер. Значение крупности частиц крахмала и их дополнительного разрушения и измельчения хорошо видно из данных, приведенных в таблице справа.

Физико-химические свойства зерен крахмала пшеницы и пшеничной муки исследованы и по другим показателям их свойств. Установлено, что соотношение амилозы и амилопектина в пшеничном крахмале (25 и 75 %) колеблется в сравнительно узких пределах и практически не сказывается на хлебопекарных свойствах пшеничной муки. Степень механического повреждения зерен крахмала при помолах пшеницы может существенно различаться и влиять на хлебопекарные

свойства муки. С этой точки зрения оптимальна пшеничная мука с относительно невысокой степенью повреждения зерен крахмала. Высокая степень их повреждения уже отрицательно сказывается на технологических свойствах муки.

Размеры зерен крахмала в пшеничной муке различны. Доля мелких зерен крахмала (размером менее 7,5 мкм) по их числу равна 81,2%, а по массе — 4,1%; средних (размером 7,5-15 мкм) зерен крахмала по их числу — 6,0%, а по массе — 2,9%; крупных же (размером 15-30 мкм) зерен крахмала соответственно — 12,8 и 93%.

Мелкие зерна крахмала отличаются по ряду их свойств. У них заметно выше такие показатели, как кристалличность и плотность, температура начала и завершения процесса клейстеризации; водосвязывающая способность и атакуемость амилолитическими ферментами. Несколько выше в мелких зернах крахмала доля амилопектина.

В тоже время растворимость и набухаемость мелких крахмальных зерен ниже, чем крупных.

На рисунке 2 представлен график, иллюстрирующий эффект добавления α- и β-амилазы к пшеничной муке, сахарообразующая способность которой равна 245 мг мальтозы на 10 г муки.

Как видно из графика, добавление β-амилазы весьма незначительно увеличивает сахарообразующую способность муки, что свидетельствует об избыточном количестве ее в самой муке. Добавление α-амилазы в этих же количествах в несколько раз увеличивало сахарообразующую способность муки, возраставшую пропорционально количеству препарата фермента. Это объясняется тем, что а-амилаза разлагает крахмал в основном на низкомолекулярные декстрины, очень легко переводимые избыточным количеством β-амилазы муки в мальтозу. Именно поэтому мука из проросшего зерна характеризуется не только повышенным содержанием активной α-амилазы, но и резко повышенной сахарообразующей способностью.

Сахарообразующая способность муки косвенно зависит в известной мере и от белково-протеиназного комплекса муки.

Усиление протеолиза в тесте (добавлением протеиназ или их активаторов) вызывает и некоторое увеличение сахарообразования. Это может быть объяснено как бы высвобождением из белка (в результате протеолиза) части связанных им амилаз и крахмального субстрата, на который они действуют.

Суммируя изложенное, следует сказать, что сахарообразующая способность муки из нормального непроросшего зерна пшеницы ввиду избыточного содержания β-амилазы в основном обусловливается атакуемостью ее крахмала. Чем мельче частицы муки и зерна крахмала и чем в большей мере они повреждены при размоле зерна, тем выше сахарообразующая способность муки.

В муке же из проросшего зерна пшеницы дополнительное и почти решающее значение имеет содержание активной α-амилазы.

Собственные сахара и сахарообразующая способность муки как факторы, обусловливающие газообразование при брожении теста.

Многочисленными исследованиями показано, что в газообразовании, происходящем при брожении теста, участвуют как собственные сахара муки, так и сахара, образующиеся в тесте в результате амилолиза крахмала. Однако собственные сахара муки играют существенную роль только в самом начале брожения теста. Успех же технологического процесса приготовления хлеба обусловливается газообразованием в конце брожения теста, во время расстойки и в начальной фазе выпечки.

Таким образом, газообразующая способность муки, хотя и зависит в известной мере от содержания в ней собственных сахаров, в основном все же определяется сахарообразующей способностью муки

Определение газообразующей способности муки

Показателем газообразующей способности муки принято считать количество миллилитров СО2, выделившегося за 5 ч брожения теста из 100 г исследуемой муки, 60 мл воды и 10 г прессованных дрожжей. При таком избыточном количестве дрожжей устраняется влияние возможных колебаний в их бродильной активности. В результате этого газообразование в тесте из исследуемой муки практически зависит только от содержания в тесте сбраживаемых дрожжами сахаров. Целесообразно при проведении определения фиксировать и количество газа, выделившегося после каждого часа брожения, что дает возможность судить и о кинетике газообразования.

Следует иметь в виду, что для целей текущего производственного контроля, нет необходимости определять газообразование в тесте из 100 г муки. Целесообразно применение уменьшенной аппаратуры, рассчитанной па порцию теста из 10-25 г муки. Экономится не только мука, но и место, занимаемое в лаборатории аппаратурой. Однако в этом случае результаты определения необходимо пересчитывать в величины, которые получались бы при проведении определения газообразующей способности муки в тесте из 100 г муки.

В разных странах для определения газообразующей способности муки применяются различные приборы, которые могут быть отнесены к двум группам: приборы, измеряющие количество выделившегося углекислого газа (диоксида углерода) волюмометрически, по его объему, и приборы, в которых количество выделившегося газа определяется манометрически, по создаваемому газом давлению.

В практике лабораторий нашей хлебопекарной промышленности обычно применяют приборы, определяющие объем газа, выделяющегося при брожении. Эти приборы и методики определения газообразующей способности муки описаны в лабораторном практикуме и руководствах по технохимическому контролю хлебопекарного производства.

Технологическое значение газообразующей способности муки

Газообразующая способность муки имеет большое технологическое значение при выработке хлеба или хлебных изделий, рецептура которых не предусматривает внесения сахара в тесто.

Зная газообразующую способность перерабатываемой муки, можно предвидеть интенсивность брожения теста из этой муки на производстве, ход расстойки и с учетом количества и качества клейковины в муке — разрыхленность и объем хлеба.

Газообразующая способность муки влияет и на окраску корки пшеничного хлеба.

В тесте из муки с низкой газообразующей способностью сахара будут сброжены в первые часы его брожения. Недостаточная газообразующая способность муки не обеспечит в конце брожения теста такого содержания в нем сахаров, которое было бы достаточно для нормального брожения теста при расстойке и в первый период нахождения выпекаемой тестовой заготовки в печи. Хлеб из такого теста будет пониженного объема и плохо разрыхлен.

Цвет корки пшеничного хлеба также в значительной мере обусловлен количеством оставшихся в тесте несброженных сахаров. При прогреве поверхностного слоя выпекаемой тестовой заготовки, образующего корку, несброженные сахара вступают во взаимодействие с продуктами распада белка и образуют буроватоокрашенные вещества — меланоидины, которые придают корке хлеба специфическую золотисто-буроватую окраску, ценимую потребителем.

Производственным опытом и экспериментами было установлено, что для получения хлеба с нормально окрашенной коркой необходимо, чтобы количество остаточных, не сброженных к моменту выпечки сахаров в тесте было не менее 2-3% на сухое вещество. При более низком содержании остаточных сахаров в тесте хлеб из него получается с бледно- окрашенной коркой, даже в случае более длительной выпечки или выпечки при более высокой температуре.

Чем выше выход муки, тем выше в ней содержание собственных сахаров и ферментативная активность, а вследствие этого и средний уровень ее газообразующей способности. Резко повышенная как газообразующая, так и сахарообразующая способность муки может быть обусловлена пророслостью зерна, из которого смолота мука. Это должны учитывать производственные лаборатории, производящие анализ муки.

Под газообразующей способностью муки понимают ее способность обеспечивать определенную степень спиртового брожения в тесте.

За показатель газообразующей способности принято считать количество миллилитров диоксида углерода (углекислого газа), выделившегося за 5 ч. брожения теста, замешанного из 100 г муки, 10 г прессованных дрожжей и 60 мл воды при температуре 30 °С.

Газообразующая способность (ГОС) муки обусловлена состоянием её углеводно-амилазного комплекса. В понятие углеводно-амилазного комплекса входят:

В процессе приготовления теста дрожжи сбраживают собственные сахара муки и мальтозу, образующуюся в результате гидролиза крахмала амилазами. Содержание собственных сахаров в пшеничной муке обычно составляет не более 2% на сухое вещество. Собственные сахара муки усваиваются дрожжами в самом начале брожения теста. Газообразование в конце брожения теста и во время расстойки обеспечивается за счет сахаров, накапливающихся при амилолизе крахмала. Таким образом, газообразующую способность муки определяется в основном её сахарообразующей способностью (СОС).

Сахарообразующая способность муки обусловлена двумя факторами:

  • активностью амилаз;
  • способностью крахмала расщепляться под действием амилаз.

Амилазы гидролизуют крахмал с образованием декстринов различной молекулярной массы и мальтозы. При гидролизе крахмала альфа-амилазой образуются в основном низкомолекулярные декстрины и небольшое количество мальтозы. Низкомолекулярные декстрины придают тесту заминаемость, липкость. При гидролизе крахмала бета-амилазой основным продуктом является мальтоза и небольшое количество высокомолекулярных декстринов.

В нормальном непроросшем зерне пшеницы содержится только бета-амилаза. В проросшем зерне пшеницы и в муке, полученной из него, находятся в активном состоянии альфа-амилаза и бета-амилаза. Амилазы зерна отличаются термостабильностью и устойчивостью к изменению реакции среды: альфа-амилаза более термостабильна, чем бета-амилаза. В пшеничном тесте температурный оптимум для действия бета-амилазы составляет 62-64°С, для альфа-амилазы — 72-74 °С. Полная инактивация бета-амилазы происходит при температуре 82-84 °С, альфа-амилаза сохраняет активность и при 97-98°С. В тоже время бета-амилаза более устойчива к повышению кислотности среды.

Температура оптимума действия и инактивации амилаз зависит от влажности и кислотности полуфабрикатах хлебопекарного производства. Чем выше влажность среды (полуфабрикатов), тем ниже концентрация субстрата, на который действуют амилазы, тем ниже температура инактивации и оптимума действия амилаз. Повышение кислотности приводит к резкому снижению активности альфа-амилазы. При этом происходит и снижение температуры ее инактивации.

Атакуемость крахмала определяется:

  • размером частиц муки;
  • размером крахмальных зерен;
  • степенью повреждения крахмальных зерен;
  • степенью клейстеризации крахмала.

С уменьшением размеров частиц муки повышается их удельная поверхность и доступность крахмала действию амилаз. При уменьшении размера частиц муки и размера крахмальных зерен повышается атакуемость крахмала. При механическом повреждении крахмальных зерен нарушается их целостность, что многократно повышает атакуемость. Чем больше в муке поврежденных зерен крахмала, тем выше СОС. Самое существенное повышение атакуемости происходит при клейстеризации крахмала.

Если для производства хлеба была использована мука из проросшего зерна или ржаная мука, то в тесте будет действовать как альфа-амилаза, так и бета-амилаза. Низкомолекулярные декстрины, образующиеся при действии альфа-амилазы, будут расщепляться бета-амилазой до мальтозы. Однако во время выпечки наступает такой период, когда бета-амилаза уже инактивирована, но альфа-амилаза остается в активном состоянии. При этом происходит накопление низкомолекулярных декстринов, которые придают мякишу липкость, заминаемость. Для снижения температуры инактивации альфа-амилазы тесто готовят с повышенной кислотностью.

Газообразующая способность муки обусловливает интенсивность газообразования во время брожения теста и расстойки тестовых заготовок. Чем интенсивнее газообразование на стадии брожения, тем больше образуется веществ, придающих характерный вкус и аромат хлебу. Чем ниже газообразующая способность, тем меньше в тесте остается несброженных сахаров к моменту выпечки, тем бледнее корка хлеба. Чем интенсивнее газообразование на стадии расстойки, тем более развитая будет пористость мякиша, тем выше будет объем хлеба. Технологический процесс необходимо организовать так, чтобы максимум газообразования приходился на период расстойки.

ГОС влияет и на цвет корки готовых изделий. Цвет корки обусловлен меланоидинами — темноокрашенными соединениями, образующимися в результате взаимодействия аминокислот и редуцирующих сахаров на стадии выпечки. Чем ниже ГОС, тем меньше в тесте остается несброженных сахаров, тем бледнее корка хлеба.

Все от выпечки хлеба и кондитерских изделий до открытия мини пекарни – хлебопекарное оборудование, хлебопечка, сборник рецептов и рецептур, школа пекарей


Технология производства

Для того чтобы получить пышный пористый пшеничный хлеб необходимо обеспечить, по крайней мере, 2 условия: активное выделение углекислого газа при брожении теста и возможность надежного удерживания этого газа в порах теста. Под воздействием углекислого газа пшеничное тесто приобретает развитую пористую структуру, напоминающую пену. При выпечке хлеба белок, содержащийся в стенках пор, подвергается тепловой денатурации и переходит в достаточно устойчивое твердое состояние, благодаря чему губчатая структура теста закрепляется.

Газообразующая способность муки

Приготовленное из муки и воды тесто является средой обитания и источником питания дрожжей. В хорошей муке всегда содержится небольшое количество (примерно 0,7-1,8%) разнообразных сахаров, пригодных для питания дрожжей. Для нормального брожения теста этих сахаров крайне недостаточно. Основное питание дрожжей происходит за счет сахаров, выделяющихся при амилолитическом расщеплении полисахаридов (крахмал, декстрины и др.). Чем выше активность амилолитических ферментов, тем больше образуется сахаров, пригодных для питания дрожжей, и тем активнее протекает брожение, сопровождающееся выделением углекислого газа.

Ферменты и сахара распределяются в зерне неравномерно. Больше всего их содержится во внешних слоях зерна, поэтому сахарообразующая и газообразующая способность низкосортной муки выше, чем высокосортной.

Хлебопекарные дрожжи способны непосредственно поглощать и сбраживать глюкозу и фруктозу. Дисахариды сахароза и мальтоза, имеющие одинаковый химический состав, но разное строение (С12Н22О11) перед сбраживанием расщепляются ферментными системами дрожжей до моносахаридов. При гидролизе сахарозы образуется глюкоза и фруктоза, а при гидролизе мальтозы только глюкоза. При сбраживании глюкозы и фруктозы выделяется этиловый спирт и углекислый газ, хорошо разрыхляющий тесто.

С12Н22О11 + Н2О→ 2С6Н12О6

С6Н12О6 → 2С2Н5ОН + 2СО2↑

При сбраживании 100 г глюкозы выделяется около 25 л углекислого газа.

В условиях достаточного углеводного питания дрожжи выделяют много углекислого газа и тесто хорошо разрыхляется. Если сахаров в тесте образуется недостаточно, то процесс брожения замедляется, углекислого газа выделяется мало, тесто разрыхляется слабо.

Таким образом, газообразующая способность муки непосредственно связана с ее сахаробразующей способностью.

Хорошая газообразующая способность возможна только в условиях нормальной сахаробразующей способности муки. Сахара должны образовываться в тесте в достаточном количестве в течение всего времени его брожения, расстойки и даже выпечки.

Газообразующая способность муки определяется экспериментальным методом в лабораторных условиях.

Для выполнения эксперимента следует приготовить тесто из 100 г муки (расчетная влажность 14%), 10 г прессованных хлебопекарных дрожжей и 60 мл воды. Тесто помещают в термостатические условия (температура 30 о С) на 5 часов для брожения. Объем углекислого газа, выделившийся за 5 часов брожения, и будет соответствовать газообразующей способности муки.

Нормальная газообразующая способность пшеничной муки 1 сорта за 5 часов брожения составляет 1300-1600 мл углекислого газа.

Расчеты показывают, что для образования такого количества углекислого газа дрожжам необходимо сбродить не менее 6 г глюкозы. Примерно 1 г глюкозы дрожжи получат из собственных сахаров муки, а остальные 5 г образуются в результате амилолитического расщепления крахмала.

На газообразующую способность оказывает влияние не только активность амилолитических ферментов, но и состояние крахмала в муке. Поврежденные и мелкие крахмальные зерна атакуются ферментами легче, в результате сахаров образуется больше.

Если мука имеет пониженную газообразующую способность, то для ее улучшения можно использовать ферментные препараты, содержащие соответствующие амилолитические ферменты.

Газоудерживающая способность пшеничной муки

Если в газообразующей способности муки основная роль принадлежит амилазам и крахмалу, то в газоудерживающей способности главную роль играет пшеничная клейковина.

Клейковина является уникальным белковым комплексом, способным под влиянием выделяемого в процессе брожения углекислого газа образовывать весьма устойчивую высокоразвитую тонкостенную губчатую структуру. В порах этой структуры удерживается большое количество газа, хорошо разрыхляющего тесто.

Чем выше качество клейковины, тем больше углекислого газа может удерживаться в порах теста.

Клейковина высокого качества обладает хорошей, но не чрезмерной растяжимостью, достаточной эластичностью и прочностью, что позволяет ей растягиваться в виде тонких эластичных пленок, не разрываясь при этом.

Чем больше содержится в муке высококачественной клейковины, тем выше газоудерживающая способность этой муки.

Слишком растяжимая и малоэластичная (слабая) или, наоборот, малорастяжимая и высокоупругая (крепкая) клейковина не способна хорошо удерживать выделяемый дрожжами углекислый газ. Мука, содержащая такую клейковину, не обладает хорошими газоудерживающими свойствами. Хлеб, приготовленный из такой муки, будет иметь недостаточный объем и плохо развитую пористость.

На свойства клейковины большое влияние оказывают содержащиеся в муке протеолитические ферменты и активаторы процессов протеолиза. Активация протеаз происходит в присутствии воды, т.е. при замесе теста. Протеолитические ферменты вызывают дезагрегацию клейковины (нарушение сложной четвертичной и третичной структуры), что приводит к снижению упругости и ослаблению клейковины. Если изначально клейковина муки характеризовалась как слабая, то под действием протеаз клейковина становится еще слабее, и газоудерживающая способность муки уменьшается.

Если клейковина муки была излишне крепкой, то под воздействием протеаз ее растяжимость увеличивается, и газоудерживающая способность муки повышается.

К резкому ухудшению газоудерживающей способности муки приводит повреждение пшеничного зерна клопом-черепашкой. Этот вредитель вводит в зерно протеолитические ферменты, попадающие при размоле зерна в муку. При замешивании теста из такой муки протеазы переходят в активное состояние и резко ослабляют клейковину. Мука, выработанная из зерна, поврежденного клопом-черепашкой, может полностью утратить свои хлебопекарные свойства.

На свойства клейковины и газоудерживающую способность муки большое влияние оказывают различные вещества окислительного действия, в том числе кислород воздуха. Окислители способствуют укреплению клейковины, что существенно улучшает газоудерживающую способность муки, содержащей слабую чрезмерно растяжимую клейковину.

Вещества восстановительного действия, например глютатион, хорошим источником которого являются хлебопекарные дрожжи, способствуют ослаблению и повышению растяжимости клейковины. Газоудерживающие свойства муки с крепкой клейковиной при этом улучшаются, а со слабой клейковиной ухудшаются.

Клейковина является не единственным фактором, влияющим на газоудерживающие свойства муки. Все другие компоненты муки (неклейковинные белки, крахмал, жиры, фосфолипиды, клетчатка, слизи, минеральные вещества, разнообразные ферменты и т.д.) в той или иной степени оказывают влияние на ее газоудерживающие свойства. Например, в присутствии фосфолипидов, играющих роль эмульгаторов, газоудерживающая способность муки повышается.

Более точно выявить газоудерживающие свойства муки можно методом пробной выпечки. Если пробная выпечка выявила недостаточную газоудерживающую способность муки, необходимо при выработке хлеба использовать соответствующие корректирующие добавки (хлебопекарные улучшители). О том, как правильно подобрать улучшитель, мы поговорим в следующих разделах нашей программы.

Следует постоянно помнить, что различные добавки, включаемые в рецептуру теста, и технологические приемы тестоприготовления и тестоведения способствуют улучшению или ухудшению газоудерживающей способности приготовляемого теста, что непосредственно отражается на качестве хлебобулочных изделий. Только основательные знания и практический опыт помогают избежать ошибок и добиться стабильно высокого качества выпускаемой продукции.

Для предотвращения спама, комментарии публикуются после проверки модератором.

Читайте также: