Физиология растений дыхание кратко

Обновлено: 28.06.2024

Для растений, как и для любого живого существа, характерны все признаки живого: дыхание, питание, рост, размножение.

Фотосинтез как способ питания характерен только для растительных клеток, в которых есть хлоропласты.

Наука, которая изучает процессы жизнедеятельности в растениях, называется физиология.

Физиология растений- наука, которая изучает закономерности жизненных процессов (фотосинтез, дыхание, минеральное и водное питание, рост и развитие и др.), их сущность и взаимосвязь с окружающими условиями.

Процессы, происходящие в растительных клетках

В живой клетке цитоплазма по большей части состоит из воды.

При потере воды объем цитоплазмы уменьшается, а при поступлении воды увеличивается до первоначального объёма.

Плазмолиз- отставание цитоплазмы от оболочки клетки в гипертоническом растворе вследствие выхода воды из клетки.

Гипертонический раствор- раствор, имеющий более большую концентрацию вещества по отношению к внутриклеточному раствору.

Деплазмолиз- исчезновение плазмолиза.

Эти процессы способны происходить только в живых клетках, так как только живые клетки обладают свойством полунепроницаемости мембран и цитоплазмы.

Длительный плазмолиз приводит клетку к гибели.

Осмотическое давление

Движение воды в клетке зависит от количества соли в межклеточном пространстве и самой клетке.

Движение воды через полунепроницаемую мембрану из области с низкой концентрацией соли в область с высокой концентрацией соли называется осмос.

Если раствор в клетке перенасыщен солями, то вода, которая находится снаружи клетки, стремится его разбавить.

Когда, наоборот, межклеточная жидкость более "соленая", то вода вытекает из клетки в направлении более высокой концентрации ионов.

Давление, которое оказывает раствор на мембрану, называется осмотическим давлением.

Осмотическое давление обусловлено наличием полунепроницаемой перегородки, разделяющей растворы в клетке и вне клетки.

У растворов, не разделенных полунепроницаемой перегородкой, такого явления не наблюдается.

Осмотическое давление связано с такими процессами, как функция поглощения воды, сохранение формы органов, рост и движение растения.

Тургор- напряженное состояние клеточной оболочки. Он зависит от количества воды в клетке.

Тургорное давление- внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.

Тургор обуславливает упругость клеток и тканей, а также открывание и закрывание устьиц листа.

Если тургорное давление в замыкающих клетках большое, то устьичная щель открывается, а если воды становится меньше и тургор уменьшается, то устьичная щель закрывается.

Если кратко, то осмос- это диффузия воды через клеточную мембрану, а тургор- упругость клеток, тканей органов в следствии давления содержимого клеток на их эластичные стенки.

Сосущая сила клетки- сила, с которой вода поступает в клетку.

Она определяется разницей между осмотическим и тургорным давлением.

От этой силы зависит поступление воды в растение и передвижение ее из клетки в клетку

Пройти тест и получить оценку можно после входа или регистрации

Движение воды у растений

В листовой пластинке растений происходит фотосинтез и испарение воды (транспирация).

В листе развиты следующие ткани, которые так или иначе контролируют водный режим листа и всего растения:

  • покровные ткани защищают лист от высыхания благодаря восковому налету, контролируют испарение воды и газообмен благодаря устьицам
  • ассимиляционная ткань (хлорофиллоносная паренхима, мезофилл) осуществляет фотосинтез
  • проводящая ткань отвечает за проведение веществ
  • механическая ткань придает листу прочность

Транспирация (движение воды и ее испарение через наружные органы) может осуществляться не только через устьица, но и через клетки кожицы верхней поверхности листа, покрытые кутикулой.

Такое испарение воды называется кутикулярная транспирация.

Но испарение воды с верхней поверхности листа незначительное, т.к. лист покрыт восковым налетом и устьица практически там отсутствуют.

Поэтому устьичная транспирация идет намного интенсивнее, чем кутикулярная.

Испарение воды растением способствует передвижению воды и минеральных веществ от корней по стеблю к листьям.

Лист называют верхним двигателем водного тока.

Посмотрите на опыт, демонстрирующий транспирацию растения:

Поставьте в баночку с водой срезанные веточки какого-нибудь растения.

Чтобы исключить прямое испарение воды из банки, налейте на ее поверхность чуть-чуть растительного масла: оно полностью закроет поверхность воды и будет препятствовать ее испарению.

Отметьте на банке уровень воды, и скоро вы заметите, как опускается уровень воды в пробирке.

Это будет происходить благодаря устьичной и кутикулярной транспирации.

Важно отметить, что транспирация у хвойных растений идет медленнее и количество испаряемой воды небольшое за счет ограниченного числа устьиц и плотной кожице хвоинок.

Транспирация способствует защите растения от перегревания, току воды и минеральных веществ по сосудам растения и способствует увеличению нагнетающей работы в корне.

Корневое давление

Корень всасывает из почвы воду и растворенные в ней минеральные вещества.

Условием поступления воды в корень является превышение сосущей силы клеток корня над сосущей силой почвенного раствора.

Сосущая сила в клетках корня возникает вследствие испарения воды листьями (транспирации).

Корень может поглощать воду и перемещать ее в стебель растения и без участия листьев и процесса транспирации.

Этот процесс осуществим благодаря корневому давлению.

Корневое давление- сила, с которой корень нагнетает воду в стебель.

Корневое давление возникает за счёт разницы осмотического давления в клетках корня и почвенного раствора.

Корень считают нижним концевым двигателем водного тока.

Корневое давление играет большое значение весной, ведь листьев еще нет и транспирация не осуществляется, поэтому только за счет корневого давления осуществляется ток воды по растению весной.

Это можно проверить опытом, показывающим силу корневого давления:

Берем растение бальзамина и срезаем его побег, оставив только небольшой пенек и корень в почве, на пенек надеваем стеклянную трубку, через некоторое время вода будет подниматься по трубке и вытекать наружу.

Делаем вывод: корень всасывает воду из почвы и по сосудам корня вода под давлением попадает в стебель растения.

Также силу корневого давления мы можем увидеть в опыте с березой.

Весной, надломив ветку березы, мы увидим, как из ветки маленькими каплями вытекает жидкость, собрав которую мы получим березовый сок, но как исследователи убедимся, что движение воды в растении происходит и одна из причин- это корневое давление.

Вода, на самом деле, способна двигаться против силы тяжести.

Правда, только в очень тонких сосудах- капиллярах.

В этом ей помогают силы поверхностного натяжения.

Пока воздействие этих сил больше, чем давление столба воздуха, жидкость будет стремиться по капилляру вверх.

Можно провести опыт, доказывающий движение воды и минеральных веществ по сосудам растения

Возьмем лист бальзамина или цветок подснежника, опустим в воду с окрашенной водой (чернила для окрашивания, как бы дает замену минеральным веществам) и увидим, что по жилкам (сосудам) поднимается окрашенная вода.

Гуттация

Гуттация- процесс выведения воды в виде капель жидкости на поверхности растения.

Гуттация происходит если количество нагнетаемой корнями воды превышает количество воды, нагнетаемой листьями.

Если в почве достаточно много влаги и в воздухе повышенная влажность, то растение выделяет капельки жидкости на поверхность листьев.

Гуттация также свидетельствует о наличии корневого давления.

Гуттация на листьях клубники:

Пройти тест и получить оценку можно после входа или регистрации

Питание растений. Дыхание растений. Листопад

Для растений также, как и для любых живых существ, характерно питание.

Без питательных веществ растение может погибнуть.

Выделяют воздушное и почвенное (корневое) питание растений.

Воздушное питание растений.

Животные являются гетеротрофами, то есть питаются готовыми органическими веществами, а растения являются автотрофами, то есть они сами для себя создают органические вещества.

Фотосинтез- это процесс образования органического вещества (крахмала, глюкозы) из углекислого газа и воды с использованием солнечной энергии.

Опыт, доказывающий образование органического вещества, крахмала, в листьях растений:

Растение на несколько дней ставят в темную комнату, чтобы крахмал в листьях был израсходован растением и не образовывался вновь.

На одном листе этого растения закрепим полоску плотной бумаги с двух сторон.

Выставим растение на солнечный свет на час, потом срежем лист, на котором была закреплена полоска бумаги.

Далее опустим его на 1 минуту в кипяток, затем- в горячий спирт.

Промоем лист в воде, а затем в стеклянной чашечке зальём его слабым раствором йода.

Часть листа, на который попадал свет, окрасится в синий цвет.

Участок листа, на который не попадал свет, только слегка пожелтеет от йода.

Вывод: образование крахмала происходит в листьях только на свету.

Отличие дыхания от фотосинтеза:

Дыхание

Фотосинтез

свойственно всем клеткам

характерно только для растений

углекислый газ выделяется

углекислый газ поглощается

образуются сложные химические вещества

Опыт доказывающий выделение кислорода при фотосинтезе:

Почвенное питание растений осуществляется корнями, которые всасывают минеральные вещества в виде водного раствора их солей.

Вода является необходимым условием жизни растений, ведь она растворяет минеральные вещества и способствует транспортировке минеральных веществ по растению.

Минеральные вещества необходимые для растений:

  • азот необходим для синтеза белков в клетках, значит для роста растений, формирования новых побегов
  • фосфор обеспечивает обмен веществ в клетках растений
  • из-за недостатка кислорода в переувлажненной почве замедляется поступление в корни фосфора, в результа­те снижается содержание общего, органического и нуклеинового фосфора, нарушаются процессы фосфорилирования, энергетические процессы в корнях и белковый обмен
  • магний способствует образованию хлорофилла в листьях
  • при недостатке калия процессы деления клеток замедляются, отмирают кончики корней.
  • кислород растениям нужен для окисления глюкозы и получения АТФ в процессе энер­гетического обмена

Почвенное и воздушное питание растений- два звена одного физиологического процесса.

Только при достаточном минеральном питании фотосинтез протекает интенсивно, и растения хорошо растут и развиваются, а без процесса фотосинтеза клетки не дополучают органические вещества и происходит нарушение жизнедеятельности всего растения.

Растения являются продуцентами, то есть создают сами органические вещества в процессе фотосинтеза, а значит являются начальным звеном пищевой цепи.

Способность растений с помощью хлорофилла и хлоропластов поглощать энергию солнечного света и использовать ее на образование органических веществ из неорганических определяет их космическую роль в природе.

Дыхание растений

Рыхление почвы обеспечивает доступ кислорода воздуха к корням растений.

Листопад

Листопад- это естественный процесс отделения листа от стебля.

Он является приспособлением растения к перенесению неблагоприятных условий.

Осенью в основании листа многих растений начинает разрастаться отделительный слой, под основанием черешка.

Отделительный слой прекращает поступление соков в лист.

Под ним размножаются пробковые клетки.

Пробковые клетки закрывают место, где был лист, от попадания бактерий, пересыхания и других негативных воздействий.

На схеме видны процессы, которые происходят в растениях во время листопада:

У тропических растений листопад может начинаться перед засухой или в холода.

Таким образом листопад способствует сохранению воды в растении, а в период неблагоприятных условий избавляет от ненужных (вредных) веществ, которые накопились в растении.

Пройти тест и получить оценку можно после входа или регистрации

Движение и рост растений

Тропизмы- движения, вызванные односторонним воздействием какого-либо фактора внешней среды (света, силы земного притяжения и др.).

Настии- движения, вызванные рассеянным влиянием какого-либо фактора (света, температуры и др.)

Например, если растение изгибается к источнику раздражения, то в этом случае мы говорим о положительных тропизмах и настии.

При отрицательные тропизмах и настии изгибание происходит от источника раздражения.

Фототропизм- ростовая реакция растения на действие света, имеет большое значение, так способствует выносу листьев и стебля к свету, необходимого для жизни зеленного растения.

Геотропизм- ростовая реакция растения на действие силы притяжения.

В большинстве случаев корень обладает положительным геотропизмом (рост по направлению к центру Земли), а стебель отрицательным.

При любом положении проростка в пространстве главный корень всегда изгибается вниз, а стебель вверх.

Хемотропизм- движение растений под влиянием химических веществ.

Фотонастии- движения, вызванные сменой света и темноты.

Цветки одних растений (соцветия одуванчика) закрываются при наступлении темноты и открываются на свету.

Цветки других растений (табака) открываются с наступлением темноты.

Термонастии- движения, вызванные сменой температуры.

Ряд растений (тюльпаны, крокусы) открывают и закрывают цветки в зависимости от температуры.

Рост растений

Рост корня в длину осуществляется за счет деления клеток кончика корня, которые являются верхушечной образовательной тканью- меристемой.

Рост стебля в длину также осуществляется за счет работы верхушечной образовательной ткани.

Корень и стебель растут своими верхушками.

У злаковых растений, обладающих полым стеблем (соломиной), рост происходит не только в верхушке, но и в каждом междоузлии.

Стебель у злаковых состоит из нескольких узлов и междоузлий, и в каждом основании узла идет рост за счёт нахождения там образовательной ткани, этим объясняется быстрый рост стебля злаковых.

Такой рост злаковых растений называется вставочным.

На рост растений, прорастание семян также оказывает влияние температура, количество света и влаги.

При пониженной температуре (+5 ○ С) рост идет очень медленно.

Если температуру повышать до +15 ○ С, то интенсивность роста увеличивается в разы, особенно благоприятна температура +25 ○ С.

Чтобы доказать, что семенам для прорастания необходимо тепло, следует провести следующий опыт: один стакан с влажными семенами поставить в теплое место, а другой - в холодное. Через некоторое время мы заметим, что семена, которые были в теплом месте начинают прорастать, а те семена, которые находились в холодном месте, не прорастают.

Что касается света, то здесь двоякий ответ.

Без солнечного света в растении не идет фотосинтез, то есть жить без солнечных лучей растение не может, однако свет притормаживает рост растений в длину.

В темноте растение активнее растет в длину при наличии органических веществ, которые образовались при фотосинтезе.

Но если длительно держать растение в темноте оно становится хилым, сильно вытягивается, теряет свою окраску, становится бледно-желтого цвета, механические ткани плохо развиты и часто стебель и лист не могут держать свою форму.

Каждое растение нуждается в воде.

Для каждого растения свои нормы влажности почвы.

При недостатке воды растение вянет. Так нарушается тургор клетки, растение испытывает недостаток минеральных солей, падает активность фотосинтеза, снижается концентрация гормонов, влияющих на рост - в конечном итоге всё это может привести к гибели растения.

Вред от избытка воды в почве заключается в том, что доступ воздуха к корням растений затрудняется или совсем прекращается, клетки корня погибают и постепенно гибнет все растение.

Для прорастания семян необходима влага, оптимальная температура, кислород для дыхания.

Но важно учитывать, что хранение влажных семян в зернохранилищах недопустимо.

Ведь именно вода запускает в семенах обменные процессы, при которых усиливается дыхание и активно образуется энергия в семенах, что может вызвать их сильное нагревание.

Если теплота семян не успевает отводиться, то происходит сначала самонагревание, а затем самовозгорание - всё это называется экзотермическая реакция.

Во-вторых, семена поглощая влагу, набухают, а некоторые из них начинают прорастать.

Затем от недостатка влаги проростки погибают.

В-третьих, на влажных семенах может развивается плесень, которая приводит к их порче.

Дыхание занимает исключительное положение среди других физиологических процессов. Окислительное дыхание свойственно всем многоклеточным живым организмам, как растительным, так и животным. Основные этапы дыхания являются одинаковыми для всех живых организмов, получающих энергию с помощью этого способа.

Дыхание является ключевым процессом метаболизма любого организма по двум причинам: при дыхании происходит освобождение химической энергии органических веществ, используемых в качестве дыхательного материала. Экзотермические реакции дыхательного процесса непосредственно связаны с эндотермическими процессами клеточного обмена и служат для них источником энергии. Таким образом, дыхание обеспечивает возможность течения эндотермических реакций обмена, процессов образования структур и осуществления движений, что требует затрат энергии, при дыхании протекают такие химические превращения, в результате которых образуются высокоактивные соединения, обладающие большой реактивной способностью и играющие исключительную роль в обмене веществ в организме.

Дыхание обеспечивает организм энергией, необходимой для поддержания процессов, протекающих с ее затратой и высокоактивными веществами, принимающими участие в клеточном обмене.

Остановка или значительное замедление дыхания вызывает остановку или глубокие изменения в ходе всех жизненных процессов организма.Дыхание состоит из трех основных этапов:гликолиза (разложения субстрата (углеводов, жиров, аминокислот) до пировиноградной кислоты),цикла Кребса (разложения пировиноградной кислоты до СО2 и Н + ),цепи дыхательных ферментов (по ним переносятся ионы Н + на акцептор О2 и образуется Н2О).При этом гликолиз и цикл Кребса являются стадиями анаэробными, а кислород включается в процесс уже на последнем этапе процесса. Гликолиз происходит в цитоплазме, а цикл Кребса и перенос по цепи дыхательных ферментов осуществляются в митохондрии.

Изоферменты.

Изоферменты, или изоэнзимы — это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах.Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности и/или подобны по пространственной конфигурации. Особенно консервативны в сохранении строения активные центры молекул изоферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам.

Дыхание занимает исключительное положение среди других физиологических процессов. Окислительное дыхание свойственно всем многоклеточным живым организмам, как растительным, так и животным. Основные этапы дыхания являются одинаковыми для всех живых организмов, получающих энергию с помощью этого способа.

Дыхание является ключевым процессом метаболизма любого организма по двум причинам: при дыхании происходит освобождение химической энергии органических веществ, используемых в качестве дыхательного материала. Экзотермические реакции дыхательного процесса непосредственно связаны с эндотермическими процессами клеточного обмена и служат для них источником энергии. Таким образом, дыхание обеспечивает возможность течения эндотермических реакций обмена, процессов образования структур и осуществления движений, что требует затрат энергии, при дыхании протекают такие химические превращения, в результате которых образуются высокоактивные соединения, обладающие большой реактивной способностью и играющие исключительную роль в обмене веществ в организме.

Дыхание обеспечивает организм энергией, необходимой для поддержания процессов, протекающих с ее затратой и высокоактивными веществами, принимающими участие в клеточном обмене.

Остановка или значительное замедление дыхания вызывает остановку или глубокие изменения в ходе всех жизненных процессов организма.Дыхание состоит из трех основных этапов:гликолиза (разложения субстрата (углеводов, жиров, аминокислот) до пировиноградной кислоты),цикла Кребса (разложения пировиноградной кислоты до СО2 и Н + ),цепи дыхательных ферментов (по ним переносятся ионы Н + на акцептор О2 и образуется Н2О).При этом гликолиз и цикл Кребса являются стадиями анаэробными, а кислород включается в процесс уже на последнем этапе процесса. Гликолиз происходит в цитоплазме, а цикл Кребса и перенос по цепи дыхательных ферментов осуществляются в митохондрии.




Изоферменты.

Изоферменты, или изоэнзимы — это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах.Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности и/или подобны по пространственной конфигурации. Особенно консервативны в сохранении строения активные центры молекул изоферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам.

dyhanie rastenij

Растения, как все живые организмы, в процессе дыхания поглощают кислород и выделяют углекислый газ. Газообмен у них происходит через устьица на листьях, а также через чечевички на стеблях и трещины в коре. Внутри тканей кислород следует по межклетникам, потом проникает в клетки. Доступ кислорода ко всем органам растения — одно из основных условий жизни.

При плохой обработке почвы или на переувлажненных почвах корням растений не хватает воздуха и, следовательно, кислорода. Поэтому при застое воды на отдельных участках поля большинство растений погибает. Ведь растения, так же как люди или животные, умирают без кислорода. Но у них потребность в кислороде меньше, чем у животных, и у них нет таких сложных органов дыхания.

Дыхание

Дыхание — это поступление в организм кислорода и удаление углекислого газа, а также использование кислорода для окисления органических веществ с освобождением энергии (Рис.1).

дыхание и фотосинтез

Рис.1 Сравнение дыхания и фотосинтеза растений

Дыхание Признак Фотосинтез
Кислород 1.Поглощаемый газ Углекислый газ
Углекислый газ 2.Выделяемый газ Кислород
Чечевички, устьица, кожица семян и т.д. 3.Пути газообмена Только через устьица
Во всех живых клетках 4.В каких клетках происходит Только в зеленых клетках, содержащих хлорофилл
Получение и использование энергии из питательных веществ на рост и развитие 5.Роль в жизни растений Запасание энергии света в виде питательных веществ


Во время дыхания часть органических веществ расходуется. Например, прорастающее зерно теряет 3-10% сухого вещества. Чем более неблагоприятна oкружающая среда для прорастания, тем больше требуется питательных веществ и тем интенсивнее дыхание проростка. Энергия, выделяемая во время дыхания, затрачивается на рост и развитие органов растений. Подтвердим опытным путем поглощение прорастающим семенем кислорода и выделение им углекислого газа (Рис.2).

влажные-и-сухие семена

Рис.2 Поглощение кислорода и выделение углекислого газа прорастающими семенами (1-влажные семена, 2-сухие семена)

Возьмем 2 широкогорлые стеклянные банки и в одну из них положим проросшие семена гороха (20-30 шт.). В другую — столько же сухих, непроросших семян гороха. Банки плотно закрываем крышками и ставим в теплое место. Через неделю в банку с сухими семенами опустим горящую свечу. Свеча не потухнет, будет продолжать гореть. Поскольку дыхание сухих семян замедленное, за неделю они не успели поглотить весь кислород из воздуха в банке.

В банке с проросшими семенами свеча сразу же погаснет. Почему? Проросшие семена дышат интенсивно, поэтому они поглотили весь кислород в банке и насытили воздух углекислым газом. Во время набухания и прорастания семян и дальнейшего развития растений дыхание в тканях усиливается. Межклеточные воздушные пространства в тканях растений облегчают движение газов.

Влияние различных условий на дыхание растений

Интенсивность дыхания у разных частей растения неодинакова. Наиболее высока она у молодых быстро растущих органов и тканей. С окончанием периода активного роста растений дыхание их тканей ослабевает. Активнее дышат высокогорные и светолюбивые растения (по сравнению с теневыносливыми). Дыхание растений усиливается с повышением температуры, когда речь идет о потеплении. Но в зной оно ослабевает, а при 45-50°С почти прекращается. Таким образом, на дыхание растений влияют различные факторы.

1. Влияние воды.

Сухие семена (10-12% влаги) дышат очень слабо. Если содержание влаги в семенах достигает 33%, то дыхание усиливается, расход питательных веществ увеличивается, и семена начинают прорастать. Поэтому при хранении в зернохранилищах влажность зерна не должна превышать 12-14%. Только в таких условиях семена могут долго храниться.

2. Влияние температуры.

Чем выше температура окружающей среды, тем интенсивнее дышат семена. Даже зимой при температуре -20-25°С дыхание растений не прекращается, оно лишь замедляется. Дыхание семян прекращается при температуре +50°С. Зимой в клубнях картофеля, хранящегося при низкой температуре, дыхание замедляется.

3.Влияние света.

При наличии достаточной освещенности дыхание растений ускоряется. Теневыносливые растения дышат слабее светолюбивых. Если поместить молодые проростки в темное место, их дыхание немного замедлится.

4.Влияние воздуха.

Всему живому на Земле, кроме некоторых бактерий, необходим кислород. Мы дышим воздухом, в котором кислород находится в определенном соотношении с другими газами (азот, инертные газы, углекислый газ).


Когда в воздух попадают отходы промышленного производства, это соотношение изменяется, что может оказаться губительным для растений, животных и человека.
В последнее время можно часто слышать выражения озоновые дыры, и парниковый эффект. Эти явления связаны с состоянием воздушной оболочки Земли. Накопление вредных веществ в атмосфере оказывает отрицательное воздействие на все живое, и на растения в том числе. Их дыхание замедляется.

Какие же вещества загрязняют воздух?

Вот главные из них:

1.Углекислый газ, выделяемый всеми живыми организмами, обитающими на Земле.
2.Отходы производства и газы, выделяемые заводами и фабриками, прежде всего угарный газ, зола, сажа, пыль, копоть, дым.
3.Выхлопные газы автомобилей.
4.Ядовитые газы, выделяемые синтетическими веществами, созданными химическим путем.
5.Пылевые частицы ядохимикатов, используемых в сельском хозяйстве.

Рост и развитие растений в условиях загрязненной атмосферы замедляются.
Они быстро подвергаются различным вредным воздействиям. Таким образом, воздух необходим не только для надземных органов растений, но и для корней, находящихся в почве. Если не будет обеспечен достаточный приток воздуха к корням, их дыхание замедлится, и они погибнут. Если корни постоянно покрыты водой, они загниют. Корни обеспечивают всю надземную часть растения питательными веществами и водой. Без них само растение неминуемо погибнет.

Роль зеленых растений:

1.Создание органических веществ.
2.Поступление кислорода в атмосферу
3.Поддержание постоянного содержания углекислого газа.
4.Участие в создании почв.

Зеленые растения запасают энергию космического светила — Солнца в виде органических веществ, используемых живыми существами нашей планеты.

Дыхание — это процесс, происходящий во всех живых организмах: поглощение кислорода и выделение углекислого газа. Кислород используется для окисления органических веществ, чтобы извлечь из них энергию. Растения запасают энергию солнечного света в виде органических веществ в ходе фотосинтеза и используют эту энергию, окисляя вещества в ходе дыхания, В целом, растения интенсивнее фотосинтезируют, чем дышат.

Читайте также: