Физические свойства пластической серы кратко

Обновлено: 02.07.2024

Сера (S) находится в 6 группе периодической таблицы Д.И. Менделеева.

Строение оболочки: 1s 2 2s 2 2p 6 3s 2 3p 4 . Сера – неметалл, в соединениях может выступать в качестве окислителя и в качестве восстановителя.

Физические свойства серы.

Сера S - твердое кристаллическое вещество желтого цвета, нерастворимое в воде. Температура кипения составляет 445°С.

Аллотропия серы.

Аллотропия – существование 2х и более простых форм одного и того же простого химического элемента, различных по строению и свойствам.

Сера, её физические и химические свойства. Биологическое значение серы, её применение (демер­куризация).

СЕРА S

Cера в природе

PbS - свинцовый блеск

Cu2S – медный блеск

ZnS – цинковая обманка

FeS2 – пирит, серный колчедан, кошачье золото

H2S – сероводород (в минеральных источниках и природном газе)

CaSO4 * 2H2O - гипс

MgSO4 * 7H2O – горькая соль (английская)

Na2SO4 *10H2O – глауберова соль (мирабилит)

Твердое кристаллическое вещество желтого цвета , нерастворима в воде, водой не смачивается (плавает на поверхности), t°кип = 445°С.

Одно из особенных физических свойств серы - флотация, способность мелкого порошка серы всплывать, тогда, как ее крупные кристаллы тонут в воде. Дело в том, что сера не смачивается водой, и ее частички держатся на поверхности воды за счет прилипших к ним мелких пузырьков воздуха. Это свойство используют при отделении самородной серы от примесей. Руду размалывают, заливают водой, а снизу продувают воздухом, сера всплывает, а примеси остаются на дне.

Для серы характерны несколько аллотропных модификаций, но наиболее известные видоизменения: ромбическая (кристаллическая), моноклинная (игольчатая) и пластическая.

Ромбическая (a - сера) - S8

пл. = 113°C; ρ = 2,07 г/см 3 . Наиболее устойчивая модификация.

Моноклинная (b - сера) - S8

темно-желтые иглы, t°пл. = 119°C; ρ = 1,96 г/см3. Устойчивая при температуре более 96°С; при обычных условиях превращается в ромбическую.

коричневая резиноподобная (аморфная) масса. Неустойчива, при затвердевании превращается в ромбическую.

Строение атома серы

Размещение электронов по уровням и подуровням

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 4

Размещение электронов по

орбиталям (последний слой)

В основном состоянии

Первое возбуждённое состояние

Второе возбуждённое состояние

Получение серы

1. Промышленный метод - выплавление из руды с помощью водяного пара.

2. Неполное окисление сероводорода (при недостатке кислорода).

3. Реакция Вакенродера

Химические свойства серы

Сера - окислитель S 0 + 2ē→ S -2

1. Взаимодействие серы со всеми щелочными и щелочноземельными металлами, медью, ртутью, серебром без нагревания:

Ртуть обладает высокой летучестью. Её пары ядовиты. Эта реакция лежит в основе удаления и обезвреживания ртути, например из разбитого медицинского термометра. Места, из которых нельзя извлечь капельки ртути, засыпают порошком серы. Сера и ртуть вступают в реакцию при соприкосновении. В результате образуется химически инертное и безвредное вещество.

Этот процесс называется демеркуризацией

2. Взаимодействие серы c остальными металлами (кроме Au,Pt) при повышенной t°:

3.Взаимодействие серы с некоторыми неметаллами с образованием бинарных соединений:

Сера - восстановитель: S - 4ē → S +4 ;

1. Взаимодействие серы c кислородом:

2. Взаимодействие серы c галогенами (кроме йода):

**Взаимодействие серы с кислотами - окислителями:

Вулканизация каучука, получение эбонита, производство спичек, пороха, в борьбе с вредителями сельского хозяйства, для медицинских целей (серные мази для лечения кожных заболеваний), для получения серной кислоты и т.д.

Домашнее задание параграф 21; упражнения 1, 3, 4 стр. 99-100.

Закончите уравнения реакций, расставьте коэффициенты методом электронного баланса, укажите окислитель, восстановитель.

№2. Осуществите превращения по схеме:

Содержание серы в организме человека массой 70 кг - 140 г.

В сутки человеку необходимо 1 г серы.

Серой богаты горох, фасоль, овсяные хлопья, пшеница, мясо, рыба, плоды и сок манго.

Сера входит в состав гормонов, витаминов, белков, она есть в хрящевой ткани, в волосах, ногтях. При недостатке серы в организме наблюдается хрупкость ногтей и костей, выпадение волос.

Следите за своим здоровьем!

Соединения серы могут служить лекарственными препаратами;

Сера – основа мази для лечения грибковых заболеваний кожи, для борьбы с чесоткой. Тиосульфат натрия Na2S2O3 используется для борьбы с нею.

Многие соли серной кислоты содержат кристаллизационную воду: ZnSO4×7H2O и CuSO4×5H2O. Их применяют как антисептические средства для опрыскивания растений и протравливания зерна в борьбе с вредителями сельского хозяйства.

Железный купорос FeSO4×7H2O используют при анемии.

BaSO4 применяют при рентгенографическом исследовании желудка и кишечника.

Алюмокалиевые квасцы KAI(SO4)2×12H2O - кровоостанавливающее средство при порезах.

Тысячелистник обладает повышенной способностью извлекать из почвы серу и стимулировать поглощение этого элемента с соседними растениями.

Чеснок выделяет вещество – альбуцид, едкое соединение серы. Это вещество предотвращает раковые заболевания, замедляет старение, предупреждает сердечные заболевания.

СЕРА, S (sulfur), неметаллический химический элемент, член семейства халькогенов (O, S, Se, Te и Po) – VI группы периодической системы элементов. Cера, как и многие ее применения, известны с далекой древности. А.Лавуазье утверждал, что сера – это элемент. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

Применение.

Около половины ежегодного потребления серы идет на производство таких промышленных химических продуктов, как серная кислота, диоксид серы и дисульфид углерода (сероуглерод). Кроме того, сера широко используется в производстве инсектицидов, спичек, удобрений, взрывчатых веществ, бумаги, полимеров, красок и красителей, при вулканизации каучука. Ведущее место в добыче серы занимают США, страны СНГ и Канада.

Распространенность в природе.

Сера встречается в свободном состоянии (самородная сера). Кроме того, имеются огромные запасы серы в виде сульфидных руд, прежде всего руд свинца (свинцовый блеск), цинка (цинковая обманка), меди (медный блеск) и железа (пирит). При извлечении металлов из этих руд освобождаются от серы обычно обжигом в присутствии кислорода, при этом образуется диоксид серы(IV), который часто выбрасывается в атмосферу без использования. Кроме сульфидных руд достаточно много серы встречается в виде сульфатов, например, сульфата кальция (гипс), сульфата бария (барит). В морской воде и многих минеральных водах присутствуют растворимые в воде сульфаты магния и натрия. В некоторых минеральных водах встречается сульфид водорода (сероводород). В промышленности серу можно получать как побочный продукт процессов в плавильных, коксовых печах, при нефтепереработке, из топочных или природных газов. Из природных подземных отложений серу добывают, расплавляя ее перегретой водой и доставляя на поверхность сжатым воздухом и насосами. Во фраш-процессе извлечения серы из сероносных отложений на установке в виде концентрических труб, запатентованной Г.Фрашем в 1891, сера получается чистотой до 99,5%.

Свойства.

Сера имеет вид желтого порошка или хрупкой кристаллической массы без запаха и вкуса и нерастворима в воде. Для серы характерны несколько аллотропных модификаций. Наиболее известны следующие: кристаллическая сера – ромбическая (самородная сера, a-S) и моноклинная (призматическая сера, b-S); аморфная – коллоидная (серное молоко) и пластическая; промежуточная аморфно-кристаллическая – сублимированная (серный цвет).

Таблица: СВОЙСТВА СЕРЫ
СВОЙСТВА СЕРЫ
Атомный номер 16
Атомная масса 32,066
Изотопы
стабильные 32, 33, 34, 36
нестабильные 31, 35, 37
Температура плавления, °С 112,8 (a, ромбич.), 119,0 (b, моноклин.)
Температура кипения, °С 444,6
Плотность, г/см 3 2,06 (ромбич.), 1,957 (моноклин.)
Твердость (по Моосу) 1,5–2,5
Содержание в земной коре, % (масс.) 0,052
Степени окисления –2, +2, +4, +6 (реже –1, 0, +1, +3, +5 )

Кристаллическая сера.

Некристаллическая сера.

Твердая сера существует также в двух некристаллических, аморфных, формах. Коллоидная сера получается при осаждении серы из раствора (например, при кипячении серы с известью) и фильтровании с последующим добавлением хлороводородной кислоты к прозрачному фильтрату. Осадок представляет собой мелкодисперсную белую и хорошо растворимую в CS2 серу. Коллоидную серу используют в медицине как антисептик, слабительное и противопаразитическое средство в виде порошков и мазей. Другая некристаллическая форма – пластическая сера – образуется при резком охлаждении расплава, например, холодной водой. Пластическая сера бывает темнокрасного или коричневого цвета, она каучукоподобна (плотность 2,046 г/см 3 ) и не растворяется в CS2; при хранении становится хрупкой, желтеет и по мере превращения в ромбическую все лучше растворяется в CS2.

В дополнение к этим кристаллическим и аморфным формам существует промежуточная форма, известная как серный цвет или сублимированная сера, которая получается конденсацией паров серы, минуя жидкую фазу. Она состоит из мельчайших зерен, имеющих центр кристаллизации и аморфную поверхность. Эта форма медленно и не полностью растворяется в CS2. После обработки аммиаком для очистки от таких примесей, как мышьяк, получается продукт, известный в медицине как промытая сера, которая используется аналогично коллоидной сере.

Жидкое состояние.

Молекулы серы состоят из замкнутой цепочки восьми атомов (S8). Жидкая сера обладает необычным свойством: с повышением температуры ее вязкость увеличивается. Ниже 160° С сера – типичная жидкость желтоватого цвета, ее состав соответствует формуле S8 и обозначается l-S. С повышением температуры кольцевые молекулы S8 начинают разрываться и соединяться друг с другом, образуя длинные цепи (m-S), цвет жидкой серы становится темнокрасным, вязкость возрастает, достигая максимума при 200–250° С. При дальнейшем повышении температуры жидкая сера светлеет, длинные цепи рвутся, образуя короткие, с меньшей способностью к переплетению, что приводит к меньшей вязкости.

Сера кипит при 444,6° C, образуя оранжево-желтые пары, состоящие преимущественно из молекул S8. С повышением температуры окраска паров переходит в темнокрасную, затем в палевую, а при 650° C в соломенно-желтую. При дальнейшем нагревании молекулы S8 диссоциируют, образуя равновесные формы S6, S4 и S2 при разных температурах. И, наконец, при >1000° С пары состоят практически из молекул S2, а при 2000° С – из одноатомных молекул.

Химические свойства.

Сера – типичный неметалл. На внешней электронной оболочке у нее шесть электронов, и она легче присоединяет электроны других элементов, чем отдает свои. Со многими металлами реагирует с выделением тепла (например, при соединении с медью, железом, цинком). Она соединяется и почти со всеми неметаллами, хотя не так энергично.

Соединения.

Диоксид серы

образуется при сжигании серы на воздухе, в частности, при обжиге сульфидных руд металлов. Диоксид серы – бесцветный газ с удушающим запахом. Это ангидрид сернистой кислоты, он легко растворяется в воде с образованием сернистой кислоты. Диоксид легко сжижается (т. кип. –10° C) и его хранят в стальных цилиндрах. Диоксид используют в производстве серной кислоты, в холодильных установках, для отбеливания текстиля, древесной массы, соломы, свекловичного сахара, для консервации фруктов и овощей, для дезинфекции, в пивоваренных и пищевых производствах.

Сернистая кислота

H2SO3 существует только в разбавленных растворах (менее 6%). Это слабая кислота, образующая средние и кислые соли (сульфиты и гидросульфиты). Сернистая кислота – хороший восстановитель, реагируя с кислородом образует серную кислоту. Сернистая кислота находит несколько областей применения, среди которых – обесцвечивание шелка, шерсти, бумаги, древесной массы и аналогичных веществ. Она используется как антисептик и консервант, особенно для предотвращения брожения вина в бочках, для предотвращения ферментации зерна при извлечении крахмала. Кислоту используют и для сохранения продуктов. Наибольшее значение из ее солей имеет гидросульфит кальция Ca(HSO3)2, используемый при переработке древесной щепы в целлюлозу.

Триоксид серы

SO3 (серный ангидрид), образующий с водой серную кислоту, представляет собой либо бесцветную жидкость, либо белое кристаллическое вещество (кристаллизуется при 16,8° С; т. кип. 44,7° С). Он образуется при окислении диоксида серы кислородом в присутствии соответствующего катализатора (платина, пентаоксид ванадия). Триоксид серы сильно дымит во влажном воздухе и растворяется в воде, образуя серную кислоту и выделяя много тепла. Его используют в производстве серной кислоты и получении синтетических органических веществ.

Серная кислота

H2SO4. Безводная H2SO4 – бесцветная маслянистая жидкость, растворяет SO3, образуя олеум. Смешивается с водой в любых отношениях. При растворении в воде образуются гидраты с выделением очень большого количества теплоты; поэтому во избежание разбрызгивания кислоты обычно при растворении осторожно, постепенно добавляют кислоту в воду, а не наоборот. Концентрированная кислота хорошо поглощает пары воды и поэтому применяется для осушения газов. По этой же причине она приводит к обугливанию органических веществ, особенно углеводов (крахмала, сахара и т.п.). При попадании на кожу вызывает сильные ожоги, пары разъедают слизистую дыхательных путей и глаз. Серная кислота – сильный окислитель. Конц. H2SO4 окисляет HI, HBr до I2 и Br2 соответственно, уголь – до CO2, серу – до SO2, металлы – до сульфатов. Разбавленная кислота тоже окисляет металлы, стоящие в ряду напряжений до водорода. H2SO4 – сильная двухосновная кислота, образующая средние и кислые соли – сульфаты и гидросульфаты; большинство ее солей растворимы в воде, за исключением сульфатов бария, стронция и свинца, малорастворим сульфат кальция.

Серная кислота – один из важнейших продуктов химической промышленности (производящей щелочи, кислоты, соли, минеральные удобрения, хлор). Ее получают главным образом контактным или башенным способом по принципиальной схеме:

Бóльшая часть получаемой кислоты идет на производство минеральных удобрений (суперфосфат, сульфат аммония). Серная кислота служит исходным сырьем для получения солей и других кислот, для синтеза органических веществ, искусственных волокон, для очистки керосина, нефтяных масел, бензола, толоуола, при изготовлении красок, травлении черных металлов, в гидрометаллургии урана и некоторых цветных металлов, для получения моющих и лекарственных средств, как электролит в свинцовых аккумуляторах и как осушитель.

Тиосерная кислота

H2S2O3 структурно аналогична серной кислоте за исключением замены одного кислорода на атом серы. Наиболее важным производным кислоты является тиосульфат натрия Na2S2O3 – бесцветные кристаллы, образующиеся при кипячении сульфита натрия Na2SO3 с серным цветом. Тиосульфат (или гипосульфит) натрия используется в фотографии как закрепитель (фиксаж).

Сульфонал

(CH3)2C(SO2C2H5)2 – белое кристаллическое вещество, без запаха, слабо растворимое в воде, является наркотиком и используется как седативное и снотворное средство.

Сульфид водорода

H2S (сероводород) – бесцветный газ с резким неприятным запахом тухлых яиц. Он несколько тяжелее воздуха (плотность 1,189 г/дм 3 ), легко сжижается в бесцветную жидкость и хорошо растворим в воде. Раствор в воде является слабой кислотой с рН ~ 4. Жидкий сероводород используют как растворитель. Раствор и газ широко применяют в качественном анализе для отделения и определения многих металлов. Вдыхание незначительного количества сероводорода вызывает головную боль и тошноту, большие количества или непрерывное вдыхание сероводорода вызывают паралич нервной системы, сердца и легких. Паралич наступает неожиданно, в результате нарушения жизненных функций организма.

Монохлорид серы

S2Cl2 – дымящая масляная жидкость янтарного цвета с едким запахом, слезоточивая и затрудняющая дыхание. Она дымит во влажном воздухе и разлагается водой, но растворима в сероуглероде. Монохлорид серы – хороший растворитель для серы, иода, галогенидов металлов и органических соединений. Монохлорид используется для вулканизации каучука, в производстве типографской краски и инсектицидов. При реакции с этиленом образуется летучая жидкость, известная как горчичный газ (ClC2H4)2S – токсичное соединение, используемое как боевое химическое отравляющее вещество раздражающего действия.

Дисульфид углерода

CS2 (сероуглерод) – бледножелтая жидкость, ядовитая и легко воспламеняющаяся. CS2 получают синтезом из элементов в электрической печи. Вещество нерастворимо в воде, имеет высокий коэффициент светопреломления, высокое давление паров, низкую температуру кипения (46° C). Сероуглерод – эффективный растворитель жиров, масел, каучука и резин – широко используют для экстракции масел, в производстве искусственного шелка, лаков, резиновых клеев и спичек, уничтожения амбарных долгоносиков и одежной моли, для дезинфекции почв.

Справочник сернокислотчика. М., 1971
Бусев А.И., Симонова Л.Н. Аналитическая химия серы. М., 1975


Средняя оценка: 4.6

Всего получено оценок: 741.

Средняя оценка: 4.6

Всего получено оценок: 741.

Типичный неметалл – сера – относится к группе халькогенов и находится в VI группе периодической таблицы Менделеева. Сера – один из жизненно важных элементов, входящих в состав живых организмов.

Строение

Сера – 16 элемент периодической таблицы, находящийся в VI группе, главной подгруппе и в третьем периоде. Формула серы – S. Относительная атомная масса – 32.

Ядро атома серы имеет положительный заряд +16. Вокруг ядра располагается 16 отрицательно заряженных электронов на трёх энергетических уровнях.

Электронное строение атома серы – 1s 2 2s 2 2p 6 3s 2 3p 4 . На внешнем энергетическом уровне находится шесть валентных электронов. До завершения р-орбитали не хватает двух электронов, поэтому степень окисления серы -2.

В соединениях проявляет себя как окислитель, отнимая электроны. Однако возможность переходить в возбуждённое состояние за счёт свободных d-орбиталей даёт элементу две дополнительные степени окисления – +4 и +6.


Рис. 1. Строение атома серы.

Известно четыре стабильных изотопа серы, находящиеся в природе. Это 32 S, 33 S, 34 S, 36 S. Кроме того, искусственно получено 20 радиоактивных изотопов серы.

Аллотропия

Сера – хрупкое кристаллическое вещество желтоватого цвета. При нагревании плавится, превращаясь в жидкость жёлтого цвета. При увеличении температуры до 200°С становится вязкой тёмно-коричневой массой, напоминающей смолу.

Основные физические свойства элемента:

  • отсутствие растворимости в воде, в том числе в составе сложных веществ;
  • плавучесть в воде (не смачивается);
  • плохая проводимость тепла и электричества;
  • хорошая растворимость в органических растворителях (феноле, бензоле, сероуглероде);
  • диссоциация на атомы происходит при температуре 1500°С;
  • температура кипения – 444,6°С.

Сера образует аллотропные модификации, которые отличаются физическими свойствами. Краткое описание модификаций приведено в таблице.

Читайте также: