Физические свойства бензола и его гомологов кратко

Обновлено: 05.07.2024

Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

Формула – С6Н6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

Рис. 1. Структурные и пространственная формулы бензола.

Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C6H5 – — фенил (Ph-).

Химические свойства бензола

Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

— галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl3, FeCl3, AlBr3)

— нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

— алкилирование по Фридею-Крафтсу

Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

— гидрирование (реакция протекает при нагревании, катализатор – Pt)

— присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C6H6Cl6)

Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

Физические свойства бензола

Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1 " width="6" height="7" />
С, плавления – 5,5 " width="6" height="7" />
С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

Получение и применение бензола

Основные способы получения бензола:

— дегидроциклизация гексана (катализаторы – Pt, Cr3O2)

— дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

^<\circ></p>
<p>— тримеризация ацетилена (реакция протекает при нагревании до 600
С, катализатор – активированный уголь)

Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

Примеры решения задач

Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH4 → C2H2 → C6H6 → C6H5Cl.
Решение Для получения ацетилена из метана используют следующую реакцию:

2CH4 → C2H2 + 3Н2↑ (t " width="6" height="7" />
= 1400 " width="6" height="7" />
C).

Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t " width="6" height="7" />
= 600 " width="6" height="7" />
C) и в присутствии активированного угля:

Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C6H6): n(C6H5Br) : n(HBr) = 1:1:1, следовательно n(C6H6) = n(C6H5Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

Бензол является ароматическим углеводородным соединением, представляющим собой прозрачную жидкость, которая имеет слегка сладковатый запах. Структурная формула бензола - C6H6.

Это вещество является составной частью нефтепродуктов, применяется в промышленной и медицинской областях, входит в состав пластмассы, резины и различных красок.

Характеристики и физические свойства бензола

Некоторые углеводородные соединения сильно похожи на бензол. Однако они отличаются видом реакции, в которую вступают. Так, этилен, являющийся ненасыщенным углеводородом, вступает в реакцию присоединения, в то время как бензол вступает в реакцию замещения. Это происходит из-за того, что атомы бензола располагаются в одной плоскости.

Бензольное кольцо

Еще одним отличием является наличие в формуле бензола бензольного кольца. Таким образом, если в химической формуле вещества имеется бензольное кольцо — однозначно это бензол.

Строение этого углеводорода представлено в виде шестиугольника.

Бензол

Данный углеводород имеет следующие физические свойства:

вещество представляет собой жидкость, имеющую не совсем приятный запах;

температура плавления бензола составляет 5,5 0 C;

температура кипения — 80 0 C;

общая плотность вещества — 0,879 г/см 3 ;

молярная масса 78,1 г/моль;

без проблем реагирует с органическими растворителями;

при попадании воздуха образует взрывоопасное соединение;

в процессе горения на свету видны следы копчения;

растворим в воде, нагретой до 25 0 C.

Получение бензола

Российским ученым-химиком Зелинским Н. Д. было доказано, что бензол возможно получить не только в процессе коксования угля, при котором данное сырье нагревается, выделяя бензол и иные летучие вещества. Данное вещество может быть образовано из циклогексана, в случае взаимодействия его с платиной или палладием.

Получение бензола

Также, бензол можно получить путем нагревания гексана.

Зелинский также считал, что бензол возможно получить путем тримеризации ацетилена:

В настоящее время, большой популярностью пользуются такие способы получения бензола, как получение его из циклопарафинов и предельных углеводородов. Связано это прежде всего, с тем, что необходимость этого вещества сильно возросла.

Химические свойства бензола

Бензол активно вступает в реакции с кислотами, а также веществами из класса алкенов, галогенов, аренов и хлоралканов. В основном данный углеводород вступает в реакцию замещения. Высокая температура и сильное давление оказывают влияние на разрыв бензольного кольца.

Химические свойства бензола

Уравнения реакции бензола:

  • в случае наличия катализатора, бром вступает в реакцию с хлором, образуя при этом хлорбензол:
  • алкилирование бензола. Алкилбензол образуется в результате соединения бензола с алканами:
  • к гомологам бензола относятся алкилбензолы, которые вступают в реакцию окисления, образуя при этом бензойную кислоту:

Применение бензола

В настоящее время бензол применяется во многих областях нашей жизни.

Применение бензола

Наиболее часто данный углеводород применяется для синтезирования иных органических веществ. Используя реакцию нитрирования получают нитробензол; хлорирования — хлорбензол (растворитель), и другие вещества.

Хлорбензол часто используется в сфере сельского хозяйства, поскольку он является прекрасным средством для защиты растений. Данным веществом, при замене в его структуре молекул водорода молекулами хлора, протравливают семена растений, чтобы защитить их от грызунов и насекомых.

В области химической промышленности бензол играет немаловажную роль. Помимо его участия при создании других веществ, он также выступает в качестве растворителя. С помощью бензола возможно растворить любое органическое соединение.

Использование бензола

Сегодня этот углеводород чаще всего используется при синтезировании этилбензола и кумола. Однако он редко применяется в чистом виде. В основном используются его производные компоненты. Этилбензол успешно применяется в качестве одного из компонентов автомобильного топлива, а также для синтезирования ионообменной смолы.

Помимо сельскохозяйственной и химической промышленности, бензол успешно применяется в области медицины.

Впервые бензол начали применять для лечения такого заболевания, как белокровие. В начале 20 века медики всего земного шара использовали бензол для лечения лейкемии, однако вскоре выяснилось, что вылечить эту болезнь таким методом нельзя.

Сначала бензол принимали перорально, затем стали вводить в качестве инъекции. Такое его применение было связано с тем, что первоначальные исследования показали возможность данного вещества снижать уровень лейкоцитов в крови, но вскоре выяснилось, что его применение в этих целях очень опасно.


Арены - ароматические углеводороды, содержащие одно или несколько бензольных колец. Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда - бензол - C6H6. Общая формула их гомологического ряда - CnH2n-6.

Формула бензола

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с тремя двойными связями не могла объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям двойные связи в молекуле бензола постоянно перемещаются, поэтому более верно рисовать их в виде кольца.

За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp 2 гибридизации. Валентный угол - 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи - бензольному кольцу: бензол, метилбензол (толуол), этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей, то выбирают кратчайший путь между ними.

Номенклатура аренов

Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания ;)

Орто-, пара- и мета- положения в бензольном кольце

Получение аренов

    Реакция Зелинского (тримеризация ацетилена)

Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический углеводород - бензол.

Реакция Зелинского

В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге можно добиться образования 1,3,5-триметилбензола.

Тримеризация пропина

В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора - Cr2O3, линейная структура алкана замыкается в цикл, отщепляется водород.

Дегидроциклизация гексана

При дегидроциклизации гептана получается толуол.

Дегидроциклизация гептана

В результате дегидрирования уже "готовых" циклов - циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен, с теми же заместителями, которые были у циклоалкана.

Дегидрирование циклоалканов

Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

Синтез Дюма, получение аренов

Химические свойства аренов

Арены - ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и раствор перманганата калия.

При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце и превратить арен в циклоалкан.

Гидрирование бензола

Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор, то образуется хлорбензол.

Хлорирование бензола

Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

Хлорирование толуола

Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2, CH2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3, CHO, COOH, COOR.

Ориентанты I и II порядка

Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях. А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

Ориентанты I и II порядка

Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты, обладающей водоотнимающими свойствами.

Нитрование бензола, толуола и нитробензола

Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще всего выступает алкен или галогеналкан. В подобных реакциях используют катализатор AlCl3.

В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

Алкилирование аренов

Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

Окисление аренов

В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

Полимеризация стирола

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Первым представителем ряда простейших ароматических углеводородов – аренов – является бензол. Все ароматические соединения – как гомологи бензола, так и арены более сложного строения – представляют собой его производные. Отличительный признак аренов – наличие в структуре молекулы бензольного кольца.

Строение ароматической связи


Углеродный скелет бензольного кольца имеет форму шестиугольника, в плоскости которого лежат оси соединяющих атомы -связей. Все эти связи одинаковы, угол между ними равен 120°. Поэтому негибридные p-облака, ориентированные перпендикулярно плоскости цикла, также равнозначны.

Результатом их перекрывания становится обобществление всех p-электронов в единое -электронное облако с делокализованной плотностью. Сочетание прочных -связей и -облака – ароматическая связь – образует стабильную структуру, называемую бензольным ядром.


При записи ядро условно обозначается шестиугольным циклом либо с тремя чередующимися двойными связями, либо с вписанной делокализационной окружностью, которая подчеркивает особый характер ароматической связи.


Гомологический ряд бензола

Молекула бензола состоит только из ароматического ядра. Остальные представители гомологического ряда имеют в составе молекулы алкильные радикалы, присоединенные к ядру, и называются алкилбензолами.

Состав гомологов бензола определяется общей формулой . Гомологическая разность выражается через звено углеводородной цепочки радикала.

Ряд бензола включает только арены с насыщенными радикалами и одним бензольным ядром. К числу ароматических углеводородов относятся соединения с непредельными радикалами, а также с несколькими бензольными кольцами, например:


Эти углеводороды не являются гомологами бензола, они входят в состав других рядов класса аренов.

Строение углеводородов бензольного ряда представлено в таблице:



Арильные (содержащие бензольное ядро) радикалы носят следующие названия:


Каждый гомолог бензола может быть представлен как предельный углеводород с ароматическим радикалом:

Номенклатура и изомерия алкилбензолов


Всем соединениям гомологического ряда свойственна структурная изомерия, обусловленная наличием одной или нескольких боковых цепей. Не имеют изомеров только бензол и его ближайший гомолог – толуол, обладающий единственным простейшим метильным радикалом .

Строение углеродного скелета


В зависимости от количества, состава и строения алкильных заместителей для соединений состава характерно широкое разнообразие. Число изомерных форм быстро растет с увеличением n.






При наименовании алкилбензолов соблюдаются следующие правила:






Позиции одинаковых заместителей

В полизамещенных алкилбензолах с радикалами одного типа возникает изомерия, связанная с их взаимным положением. Для позиционных изомеров в ряду бензола существуют специальные обозначения:



Физические свойства некоторых алкилбензолов

Бензол и углеводороды его ряда – бесцветные жидкости со специфическим запахом, не смешивающиеся с водой и нерастворимые в ней. Высшие гомологи представляют собой твердые вещества. Термические характеристики соединений бензольного ряда зависят от изомерии и длины боковых алкильных цепей.

Основные физические свойства бензола и наиболее близких его гомологов приведены в таблице.

Химические свойства алкилбензолов

Несмотря на то, что по составу бензол и другие представители гомологического ряда являются ненасыщенными соединениями, они склонны к типичным для алканов реакциям замещения, а ароматическое ядро чрезвычайно устойчиво. Тем не менее, алкилбензолы способны и к процессам присоединения, хотя реакции данного типа значительно затруднены по сравнению с непредельными углеводородами.

Различные заместители оказывают влияние на стабильность и реакционную способность бензольного ядра; оно, в свою очередь, воздействует на свойства радикалов. Поэтому изомерия играет важную роль в химических взаимодействиях алкилбензолов.

Замещение

Поскольку ароматическая система насыщена электронной плотностью, бензол и гомологи охотно реагируют с электрофильными соединениями по донорно-акцепторному механизму. Для бензольного кольца типичны процессы ионного замещения.

В отсутствие катализатора алкилбензолы не взаимодействуют с галогенами и их растворами (хлорной или бромной водой). На никелевом, железном или алюминиевом катализаторе, способствующем активации галогена, замещение идет по преимуществу в бензольном ядре:


В молекулах гомологов галогены замещают водород главным образом в орто-и пара-позициях к углеводородному радикалу:


Замещение может происходить и в боковой цепи. Для этого требуется воздействие яркого света либо нагревание до 300°C:


При этом галоген атакует ближайший к кольцу углеродный атом.

Для реакции необходима нитрующая смесь концентрированных азотной и серной кислот:



Замещение водорода алкильными радикалами является одним из методов получения гомологов бензола. Оно проводится несколькими путями:


Если неразветвленный галогеналкан содержит более двух углеродных атомов, происходит изомеризация продукта алкилирования:




Водород может замещаться ацильным остатком галогенангидрида или ангидрида карбоновой кислоты:

Присоединение

В специальных условиях алкилбензолы способны к реакциям присоединения с разрушением ароматической связи.


Из всех соединений гомологического ряда хлор присоединяется только к бензолу:


При воздействии галогена на любой из гомологов бензола происходит не присоединение, а замещение в алкильном радикале.

Окисление

Бензол стоек к воздействию окислителей, таких как перманганат калия, даже в присутствии кислот и щелочей. Но его гомологи в жестких условиях подвергаются окислению.

При повышенной температуре в нейтральной среде алкилбензолы окисляются до калиевой соли бензойной кислоты:



В кислой среде происходит образование бензойной кислоты:


Гомологи с длинной боковой цепью образуют две кислоты, так как при отрыве цепи от углеродного атома, соединенного с бензольным циклом, образуется остаток, содержащий более одного атома:


Если в реакции участвует полизамещенный алкилбензол, продуктом его окисления становится многоосновная ароматическая кислота:


Углеводороды ряда бензола горят с интенсивным выделением теплоты. Продукты горения зависят от количества вступающего в реакцию кислорода:



Взаимодействие радикалов с бензольным ядром

Заместители в зависимости от своей электрической природы по-разному влияют на распределение электронной плотности в ароматической системе. Соответственно изменяется и реакционная активность бензольного ядра в процессах замещения.

Заключение

Особенности электронного строения алкилбензолов не только оказывают влияние на их структуру и обусловливают многообразие изомерных форм. Они также непосредственно воздействуют на реакционную активность, определяя направление химических процессов с участием бензола и его гомологов. Это свойство алкилбензолов делает их ценным химическим продуктом, благодаря чему они находят широкое применение в промышленности и науке.

Читайте также: