Физическая природа звука кратко

Обновлено: 25.06.2024

Звук является спутником человека в течение всей его жизни, но мало кто задумывается, что он собой представляет. С физической точки зрения звук можно определить как колебательные движения частиц в упругой среде, вызванные каким-либо источником, коротко — упругие волны. Скорость звука зависит от свойств среды, в которой он распространяется: в газах скорость звука растет с ростом температуры и давления, в жидкостях при росте температуры наоборот снижается (исключением является вода, в которой скорость звука достигает максимума при 74°С и начинает снижаться только при увеличении данной температуры). Для воздуха такая зависимость выглядит так:

где tc — температура окружающей среды, °С.

Таблица 1. Скорость звука в газах, при температуре 0 °С и давление 1 атм.

Азот 334 м/с
Кислород 316 м/с
Воздух 332 м/с
Гелий 965 м/с
Водород 1284 м/с
Метан 430 м/с
Аммиак 415 м/с

Таблица 2. Скорость звука в жидкостях при температуре 20 °С.

Вода 1490 м/с
Бензол 1324 м/с
Спирт этиловый 1180 м/с
Ртуть 1453 м/с
Глицерин 1923 м/с

В твердых телах скорость звука определяется модулем упругости вещества и его плотностью, при этом в продольном и поперечном направлении в неограниченных изотропных твердых телах она различается.

Таблица 3. Скорость звука в твердом теле.

Вид твердого тела Скорость продольной волны, м/с Скорость поперечной волны, м/с
Плавленый кварц 5970 3762
Бетон 4200–5300
Плексиглас 2675 1110
Стекло 3760–4800 2380–2560
Тефлон 1340
Полистирол 2350 1120
Сталь 5740 3092
Золото 3220 1200
Мрамор 3810
Алюминий 6400 3130
Полиэтилен 2000
Серебро 3650–3700 1600–1690
Дуб 4100
Сосна 3600

Из таблиц наглядно видно, что скорость звука в газах значительно ниже, чем в твердых телах, именно поэтому в приключенческих фильмах часто можно увидеть, как люди прикладывают ухо к земле, чтобы определить наличие погони за собой, также это явление заметно рядом с железной дорогой, когда звук приходящего поезда, слышится дважды — в первый раз он передается по рельсам, а второй — по воздуху.

Процесс колебательного движения звуковой волны в упругой среде, можно описать на примере колебания частицы воздуха:

— на частицу воздуха, вынужденную сдвинуться со своей начальной позиции, из-за воздействия источника звука, действуют упругие силы воздуха, которые пытаются вернуть ее на свое первоначальное место, но из-за действия сил инерции, возвращаясь, частица не останавливается, а начинает удаляться от начальной позиции в противоположную сторону, где в свою очередь на нее также действуют упругие силы и процесс повторяется.

Koleb.jpg


Рисунок 1. Процесс колебания частицы воздуха


На рисунке (рисунок №2) маленькими точками образно представлены молекулы воздуха (в кубометре воздуха их более миллиона). Давление в области компрессии несколько превышает атмосферное, а в области разрежения, наоборот, — ниже атмосферного. Направление малых стрелочек показывает, что, в среднем, молекулы движутся направо из области высокого давления и налево из области низкого. Любая из представленных молекул сначала проходит определенное расстояние в правую сторону, а затем такое же расстояние в левую, относительно своей первоначальной позиции, в то время как звуковая волна двигается равномерно в правую сторону.

Pereme.jpg


Рисунок 2. Перемещение звуковой волны


Логично задать вопрос — почему звуковая волна перемещается вправо? Ответ можно найти при внимательном рассмотрении стрелочек на предыдущем рисунке: в месте, где стрелочки сталкиваются с друг другом образуется новое скопление молекул, которое будет находится с правой стороны от первоначальной области компрессии, при удалении от места столкновения стрелочек плотность молекул снижается и образуется новая область разрежения, следовательно постепенное перемещение области высокого и низкого давления приводит к движению звуковой волны в правую сторону.

Pro pereme.jpg


Рисунок 3. Процесс перемещения звуковой волны


Волновое движение такого рода называется гармоническими или синусоидальными колебаниями, которое описывается следующим образом:


Простая гармоническая или синусоидальная волна изображена на рисунке (Рисунок №4):

Sin.jpg



Рисунок 4. Синусоидальная волна

Длина волны зависит от частоты и скорости звука:


Длина волны (м) = Скорость волны (м/с) / Частота (Гц)

Cоответственно частота определяется следующим образом:

Частота (Гц) = Скорость волны (м/с) / Длина волны (м)


Из этих уравнений видно, что с увеличением частоты — длина волны уменьшается.

Таблица 4. Длина волны в зависимости от частоты звука (при температуре воздуха 20 °С)

Частота, Гц 31,5 63 125 250 500 1000 2000 4000 8000 16000
Длина волны, м 10,9 5,44 2,74 1,37 0,69 0,34 0,17 0,084 0,043 0,021

Интенсивность звука снижается по мере увеличения расстояния от источника звука. Если звуковая волна на своем пути не встречает преград, то звук из источника распространяется во всех направлениях. На рисунке (рисунок №5) изображен характер изменения интенсивности звука — сила звука остается постоянной, но площадь воздействия увеличивается, именно поэтому в отдельно взятой точке интенсивность звука снижается.

Raspos.jpg


Рисунок 5. Процесс распространения звуковой волны

В зависимости от вида источника звука — существует несколько видов звуковых волн: плоские, сферические и цилиндрические.

Vid.jpg


Рисунок 6. Виды источников звука и схематическое изображение фронта волны
а — протяженная пластина; б — точечный источник; в — линейный источник.


Плоские волны при распространении не меняют форму и амплитуду, сферические не меняют форму (амплитуда уменьшается как 1/r), цилиндрические меняют и форму, и амплитуду (убывает как 1/№r).

284 дн. с момента
до конца учебного года

погода в Ярославле

Сайт имеет мобильную версию. Вы будете автоматически на нее перенаправлены, если зайдете на сайт с мобильного устройства

Источники звука. Звуковые колебания. Характеристики звука

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам удовольствие. Нам приятно слушать человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах , которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Причина звука – вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

КАМЕРТОН - это U-образная металлическая пластина, концы которой могут колебаться после удара по ней. Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии. Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усиления звука. Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора. Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда.

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения, как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой от 16 до 20000 раз в секунду. Такие волны называются звуковыми. Вибрирующее тело может быть твердым, например, струна или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах или жидким, например, волны на воде.

Колебания с частотой меньше 16 Гц называется инфразвуком. Колебания с частотой больше 20000 Гц называются ультразвуком.


Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений (например, в результате колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

Характеристики звука.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В отношении звуковых волн очень важно упомянуть такую характеристику, как скорость распространения.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде — 1500 м/с.

Скорость звука в металлах, в стали — 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Высота, тембр и громкость звука

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

70 дБ – шум пишущей машинки;

80 дБ – шум работающего двигателя грузового автомобиля;

120 дБ – шум работающего трактора на расстоянии 1 м

130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Частота зв уковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разны х источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наиболь шего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окрас ку, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретно го голоса.


Согласно легенде, Пифаго р все музыкальные звуки расположил в ряд, разбив этот ряд на части – октавы, – а

октаву – на 12 частей (7 основных то нов и 5 полутонов). Всего насчитывается 10 октав, обычно при исполнении музыкальных произведений используются 7–8 октав. Звуки частотой более 3000 Гц в качестве музыкальных тонов не используются, они слишком резки и пронзительны.


Ухо здорового человека еще в утробе матери начинает улавливать и воспринимать самые разные звуки: разговор, музыку, стук и т.п. Так как различный звуковой шум окружает людей всю сознательную жизнь, мы редко задумываемся о том, что это за явление. Тем не менее, современная физика может подробнейшим образом ответить на этот вопрос, описать характеристики и свойства звука.

Что такое звук — определение в физике

Звуком называют механические колебания, распространяющиеся в окружающей среде и воспринимаемые органом слуха человека.

Раздел физики, который занимается изучением звуковых колебаний, называется акустикой.

Основные понятия явления

Звуковая волна — это поперечная волна, представляющая собой ряд чередующихся между собой разряженной и сжатой среды, которые имеют различную частоту. Звуковые волны возникают за счет колебаний, вызываемых и производимых вибрацией от любых тел.

Звуки могут возникать и распространяться в следующих видах упругой среды:

  • газообразной;
  • жидкой;
  • твердой.

Возникая в одной из перечисленных сред, звуковые колебания влекут за собой изменения этой среды:

  • плотности воздуха;
  • давления воздуха;
  • перемещение частиц воздуха и т.п.

Скорость звука находится в зависимости от двух условий:

В атмосфере при температуре равной 0 градусов, скорость звука равняется 331 м/с, при повышении температуры на 1 градус, скорость увеличивается на 1,7 м/с.

Звукопоглощением называется процесс преобразования одного вида энергии (звуковой или колебательной) в другую (тепловую).

Теория звука и акустики понятным языком

Рассмотрим чуть подробнее физическую природу явления. Все звуки, которые распространяются в воздухе, являются вибрациями звуковой волны.

Эти вибрации возникают за счет колебания объекта и расходятся от источника по всем направлениям. Распространяясь в пространстве, звуковая волна отражается от всех объектов, которые встречаются ей на пути, и создает изменения в окружающей среде. Когда эти изменения достигают органов слуха, они воздействуют на барабанную перепонку, нервные окончания в ухе подают сигналы в мозг, и человек воспринимает колебания как звук.

Какими характеристиками обладают звуковые волны

Звуковые волны, как и любой другой вид волн, обладают рядом волновых свойств.

Описание волны и её свойства

Простейшая форма описания звуковых колебаний — это синусоида.

Несмотря на то, что такой вид волн редко встречается в природе, любые звуки могут быть представлены комбинацией синусоидных волн.

Синусоида позволяет продемонстрировать основные физические критерии звука, которые называются специальными терминами:

Частотой называется физическая величина, которая характеризует количество колебаний в единицу времени (секунду) и измеряется в герцах (Гц). Ухо человека способно воспринимать звуковые сигналы в диапазоне от 20 Гц до 20 КГц. Звуки, которые находятся выше указанного диапазона называется ультразвуком, ниже – инфразвуком, для человеческих органов слуха они неуловимы.

Амплитуда или интенсивность звуковой волны — это сила звука, которую органы слуха воспринимают как громкость звукового сигнала. Для измерения громкости звука используются фонометры, единицами ее измерения являются децибелы.

Характеристика волн

Значение длины волны соответствует одной из следующих формул:

где \( \lambda\) — длина волны, \(V \) — скорость распространения звуковой волны, \(T\) — период колебания, v — частота колебания.

Такая величина, как фаза, нужна для того, чтобы описать свойства 2-х звуковых волн. Если два звуковых сигнала обладают одинаковой амплитудой и частотностью, говорят о том, что они находятся в фазе. Диапазон измерения фазы лежит в пределах от 0 до 360, где 0 означает, что две волны синхронны, т.е находятся в фазе, а 180 означает, что волны находятся в противофазе.

Волны в фазе

Что такое децибел

Децибелы — это единицы измерения уровня электрического напряжения или звукового давления. Бел назван в честь ученого-американца — слишком большая единица для измерения звука, именно поэтому на практике стали использовать децибел, который составляет всего 1/10 от бела.

Громкость звука измеряется в децибелах. Этот показатель определяется амплитудой сигнала: чем выше амплитуда звуковой волны, тем громче сигнал. Громкость человеческого слуха измеряется в фонах и обозначается Фон.

Уровень шума

Не можете разобраться со сложной темой по физике? По другому предмету? Не отчаивайтесь и не переживайте! Обращайтесь за помощью к экспертам Феникс.Хелп.

теория звука и акустики понятным языком

Автозвук

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.


Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц — 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком, звук ниже слышимого диапазона называется инфразвуком. Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон. Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

В теории звука также присутствует такое понятие как ШУМ. Шум — это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие — интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц — 4000 Гц, который наиболее широко охватывает человеческую речь.

Волновая природа звука

Скорость звука

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Явление резонанса

Частотный спектр звука и АЧХ

Распространение звуковых волн, фаза и противофаза

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн.

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В следующей статье я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.

Читайте также: