Фазовые равновесия и превращения кратко

Обновлено: 06.07.2024

В термодинамике фазой называется совокупность однородных, одинаковых по своим свойствам частей системы. Поясним понятие фазы на следующих примерах. В закрытом сосуде находится вода и над ней смесь воздуха и паров воды. В этом случае мы имеем дело с системой, состоящей из двух фаз: одну фазу образует вода, вторую – смесь воздуха и паров воды. Если в воду добавить несколько кусочков льда, то все эти кусочки образуют третью фазу. Различные кристаллические модификации какого-либо вещества также представляют собой разные фазы. Так, например, алмаз и гранит является различными твердыми фазами углерода.

При определенных условиях разные фазы одного и того же вещества могут находиться в равновесии друг с другом, соприкасаясь между собой. Равновесие двух фаз может иметь место лишь в определенном интервале температур, причем каждому значению температуры Т соответствует вполне определенное давление Р, при котором возможно равновесие. Таким образом, состояние равновесия двух фаз изобразится на диаграмме (Р,Т) линией


Переход из одной фазы в другую обычно сопровождается поглощением или выделением некоторого количества теплоты, которое называется скрытой теплотой перехода, или просто теплотой перехода. Такие переходы называются фазовыми переходами первого рода. Существуют переходы из одной кристаллической модификации в другую, которые не связаны с поглощением или выделением теплоты. Такие переходы называются фазовыми переходами второго рода. Фазовые переходы второго рода не исчерпываются переходами между различными кристаллическими модификациями. К их числу принадлежит переход в сверхпроводящее состояние, совершаемый в отсутствие магнитного поля, а также переход между двумя жидкими фазами гелия, называемыми гелием I и гелием II. Мы ограничимся рассмотрением только переходов первого рода.

Классификацию фазовых переходов первого рода удобно провести с помощью следующей блок схемы:


Конденсация;


еплота фазового превращения Q пропорциональна изменению массы фазы m, т.е. - удельная теплота фазового превращения.

Фазовые превращения реального газа

Рассмотрим процесс сжатия вещества при постоянной температуре Т, которую выберем ниже критической Ткр. Первоначально вещество предполагают газообразным. Вначале по мере уменьшения объема давление газа будет расти (рис. 2).


П

о достижении объема Vг давление перестает быть однородным – часть газа конденсируется в жидкость. Происходит расслоение вещества на две фазы: жидкую и газообразную. По мере дальнейшего уменьшения объема все большая часть вещества переходит в жидкую фазу, причем переход осуществляется при постоянном давлении Рн.п. (давлении насыщенного пара). После того как процесс конденсации вещества заканчивается (это происходит при достижении объема Vж), дальнейшее уменьшение объема начинает сопровождаться быстрым ростом давления.

На рис. 2 штриховой линией изображена изотерма Ван-дер-Ваальса, соответствующие данной температуре. Если проведем линию через крайние точки горизонтальных участков экспериментальных изотерм, получается колоколообразная, кривая, ограничивающая область двухфазных состояний вещества. Нарисуем на диаграмме (P, V) также изотерму, соответствующую критической температуре Ткр. Тогда колоколообразная кривая и критическая изотерма делят диаграмму (P, V) на четыре области (рис. 3).


П

од колоколообразной кривой располагается область двухфазных состояний (жидкость + пар). Область, лежащая слева от колоколообразной кривой, представляет собой область однородных жидких состояний, и наконец, область, лежащая справа от колоколообразной кривой и верхней ветви критической изотермы, представляет собой область однородных газообразных состояний вещества. Здесь можно особо выделить часть лежащую под правой ветвью критической изотермы, назвав ее областью пара. Любое состояние в этой области отличается от остальных газообразных состояний в том отношении, что при изометрическом сжатии вещества, первоначально находившееся в таком состоянии, претерпевает процесс сжатия. Вещество, находящееся в одном из состояний при температуре выше критической, не может быть сжижено никаким сжатием. Подразделение газообразных состояний на газ и пар не является общепринятым, поэтому в дальнейшем мы оба этих состояний будем называть газом.

Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.

Тепловое равновесие означает, что все фазы вещества в системе имеют одинаковую температуру.

Механическое равновесие означает равенство давлений по разные стороны границы раздела соприкасающихся фаз. Строго говоря, в реальных системах эти давления равны лишь приближенно, разность давлений создается поверхностным натяжением.

Химическое равновесие выражается в равенстве химических потенциалов всех фаз вещества.

Рассмотрим химически однородную систему (состоящую из частиц одного типа). Пусть в этой системе имеется граница раздела между фазами 1 и 2. Как было указано выше, для равновесия фаз требуется равенство температур и давлений на границе раздела фаз. Известно (см. статью Термодинамические потенциалы), что состояние термодинамического равновесия в системе с постоянными температурой и давлением соответствует точке минимума потенциала Гиббса.

Потенциал Гиббса такой системы будет равен

где и — химические потенциалы, а и — числа частиц в первой и второй фазах соответственно.

При этом сумма (полное число частиц в системе) меняться не может, поэтому можно записать

Предположим, что , для определенности, . Тогда, очевидно, минимум потенциала Гиббса достигается при (все вещество перешло в первую фазу).

Таким образом, равновесие фаз возможно только в том случае, когда химические потенциалы этих фаз по разные стороны границы раздела равны:

Из условия равновесия фаз можно получить зависимость давления в равновесной системе от температуры. Если говорить о равновесии жидкость — пар, то под давлением понимают давление насыщенных паров, а зависимость называется кривой испарения.

Из условия равенства химических потенциалов следует условие равенства удельных термодинамических потенциалов:

где , — потенциал Гиббса i-й фазы, — её масса.

где и — удельные объем и энтропия фаз. Отсюда следует, что

где — удельная теплота фазового перехода (например, удельная теплота плавления или удельная теплота испарения).

Последнее уравнение называется уравнением Клапейрона — Клаузиуса.

Переходы вещества из одной фазы в другую при изменении состояния системы называют фазовыми превращениями. Фаза — совокупность телесных объектов, имеющих определенный химический состав и термодинамические свойства, отделенная от других фаз поверхностью раздела. Или иначе: фаза — это однородная часть неоднородной системы, которая может быть выделена из системы каким‑либо механическим способом. Существует, как правило, одна газовая фаза (за исключением редких случаев расслоения газовых смесей при очень высоких давлениях). Число жидких и особенно твердых фаз может быть достаточно велико. Основная характеристика фазовых превращений — температура, при которой фазы находятся в состоянии термодинамического равновесия, — точка фазового перехода.

Фазой назывется термодинамическое равновесие состояния вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества . если например в закрытом сосуде находится вода то эта система является двухфазной : жидкая фаза – вода , газообразная фаза- смесь воздуха с водняными парами. Часто понятие фаза употребляется в смысле агрегатного состояния , однако надо учитывать что оно шире чем понятие агрегатного состяния. Переход вещества из одной фазы в другую фазовый переход всегда связан с качественными изменениями свойства вещества. Примером фазового перехода могут служить изменения агрегатного состояния вещества или переходы связанные с изменениями в составе строения и свойства вещества.

Фаза – это равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний того же вещества.

Переход вещества из одной фазы в другую называется фазовым переходом.При таких переходах меняются механические, тепловые, электрические и магнитные свойства вещества.

Тройная точка.Кривые плавления и парообразования в пересекаются в точке A. Эту точку называют тройной точкой,т.к. если при давлении p тр. и температуре Tтр некоторые количества вещества в твердом, жидком и газообразном состояниях находятся в контакте, то без подведения или отвода тепла количество вещества, находящегося в каждом из 3х состояний, не изменяется

Из диаграммы состояний видно, что переход вещества при нагревании из твердого состояния в газообразное может совершиться, минуя жидкое состояние. Переход кристалл-жидкость-газ при нормальном атмосферном давлении происходит лишь у тех веществ, у которых давление в тройной точке ниже этого давления. Те же вещества, которых давление в тройной точке превышает атмосферное, в результате нагревания при атмосферном давлении не плавятся, а переходят в газообразное состояние.

Поскольку тройной точке соответствует вполне определенная температура, она может служить опорной точкой термодинамической шкалы.

Реальные газы.При движении молекулы вдали от стенок сосуда, в котором заключен газ, на нее действуют силы притяжения соседних молекул, но равнодействующая всех этих сил в среднем равна нулю, т.к. молекулу со всех сторон окружает в среднем одинаковое число соседей. При приближении некоторой молекулы к стенке сосуда все остальные молекулы газа оказываются по одну сторону от нее и равнодействующая всех сил притяжения оказывается направленной от стенки сосуда внутрь газа. Это приводит к тому, что уменьшается импульс, передаваемый молекулой стенке сосуда. В результате давление газа на стенки сосуда уменьшается по сравнению с тем, каким оно было бы в отсутствие сил притяжения между молекулами: p = p идеального + delta p. Вместо уравнения идеального газа получаем p + delta p = nkT ; delta p = a/V(ст.2);

Где a – постоянная, зависящая от вида газа. Для одного моля газа получаем p+a/V(ст.2) = R T / V ; Поправка: при любых давлениях, объем газа не может стать равным нулю. Уравнение Ван-дер-Ваальса:

(p + a / V (ст.2)) (V - b) = RT,где b – так называемый “запрещенный объем”

Критическая температура.Было установлено, что из газообразного состояния в жидкое можно перевести любое вещество. Однако каждое вещество может испытать такое превращение лишь при температурах ниже определенной, так называемой критической температуры Tк. При температуре выше критической вещество не превращается в жидкость или твердое тело ни при каких давлениях. При критической температуре средняя кинетическая энергия теплового движения молекул вещества примерно равна модулю потенциальной энергии их связи в жидкости или твердом теле. Т. к. силы притяжения, действующие между молекулами разных веществ, различны, неодинакова и потенциальная энергия их связи, отсюда различными оказываются критические температуры для различных веществ.

Диаграмма состояний вещества. Чем выше температура жидкости, тем больше плотность и давление ее пара. Геометрическим местом точек, отмечающих на диаграмме p, T равновесные состояния между жидким и газообразным состояниями вещества, является кривая AK (рисунок – график, правая часть параболы – CB выходит не из нуля, а чуть выше и правее; из точки A этой кривой, чуть дальше, выходит еще более широкая часть параболы – AK; все пространство делится на 3 части таким образом – твердое тело, жидкость и газ; оси – T и p).

Процесс испарения твердых тел называется сублимацией.

Основы термодинамики

Термодинамический процесс –это переход термодинамической системы из одного состояния в другое. Термодинамический процесс называется обратимым, если после него можно возвратить систему в исходное состояние, при этом в исходное состояние должны вернуться и все тела, взаимодействующие с системой. Процесс, который не удовлетворяет этим условиям называется необратимым. Необходимым условием обратимого процесса является его равновестность, однако не всякий равновестный процесс обратим.

Работа газа при изменении объема.dA = Fdl ; при этом сила постоянна ; dA = PS dl ; Sdl = dV ; dA = p dV ; A = (интеграл V1 – V2) P dV ;(рисунок – график, на нем правая часть гиперболы, оси – V, P ; dA – отрезок на этом графике). Графики зависимости термодинамических параметров друг от друга мы имеем право рисовать только для равновесного процесса, т.к. только для равновестного процесса значения этих параметров можно приписать всей термодинамической системе. Для неравновестного процесса, например P может быть разным для различных точек термодинамической системы. Чем медленнее протекает процесс, тем он ближе к равновестному.

Эквиваленты теплоты и работы.Обмен энергией между термодинамической системой и внешними телами может осуществляться 2мя качественно различными способами: путем совершения работы и путем теплообмена. В отсутствии внешних полей работа совершается при изменении объема или формы системы. Работа A’, совершаемая внешнми телами над системой численно равна и противоположна по знаку работе, совершаемой самой системой.

Первое начало термодинамики или первый закон термодинамики.

dQ = dU + dA ; Теплота, подводимая к термодинамической системе идет на изменение внутренней энергии и на совершение работы.

Внутренняя энергия U определяется только состоянием термодинамической системы, а Q и A являются характеристиками процесса при котором система переходит из одного состояния в другое. Переход системы из одного состояния в другое может осуществляться различными путями, поэтому Q и A зависят от способа перехода системы из одного состояния в другое, в то время, как внутренняя энергия U определяется только состоянием системы и не зависит от того, каким путем система перешла в это состояние.

Теплоемкость многоатомных газов.C = Q / m delta T ; C = dQ/ dTm ;

Cm = dQ / dT МЮ – молярная теплоемкость.В газе различают теплоемкости при постоянном давлении и теплоемкость при постоянном объеме.

1)V=const ; dV=0 ; dA=PdV=0 ; dQ=dU ; Ev = dQm / dT ; Eт = dUm / dT ;

Um = i k T Na/ 2 = i R T / 2 ; где i – число степеней свободы ;

dUm = i R dT / 2 ; Ev = i R / 2 – теплоемкость при постоянном V ;

2)P = const ; dAm = dm + dA ; dA= pdV ; PV=RT ; PdV= RdT ;

dQm = Cv dT + RdT = Cv + RdT ; Cp = dQm / dT= Cv +R ; Cp= Cv +R - уравнение Майера ;Cp = (iR / 2) + R = ((i +2)/ 2) R ; Cp = ((i+2) / 2) R ;

γ = Cp / Cv = (i+2) / i – коэффециент Пуассона

Из полученной формулы видно, что теплоемкость газа не зависит от температуры. Эксперементально было установленно, что этот закон соблюдается в достаточно широком интервале температур только для одноатомных газов. Уже для простых молекул – молекул H2 зависимость Cv от температуры имеет вид: Cv = i R / 2 (рисунок – график, ступеньки; оси T, Cv). Такая зависимость теплоемкости от температуры обусловлена тем, что в случае простейшей молекулы нарушается принцип равновестного распределения энергии по степеням свободы. Вращательное и колебательное движение молекул квантуются, т.е. энергия вращательных и колебательных движений не может принимать любые значения, а может иметь только вполне определенные дискретные значения. При низких температурах энергии не достаточно, чтобы возбудить вращательное и колебательное движения молекул, поэтому вращательные и колебательные степени свободы “выморожены” и не участвуют в создании теплоемкости, поэтому при низких температурах молекулы H2 имеют только 3 степени свободы (поступ.) и Cv= 3R / 2. При увеличении температуры возбуждается сначало вращательное движение (i = 5, Cv = 5 R / 2), а затем при достаточно высокой температуре и колебательном движении (i =7, Cv = 7R / 2), т.е. число степеней свободы зависит от температуры.

Применение 1-го начала термодинамики к изопроцессам и адиабатическому процессу.

1)V = const изохорный => dV=0 ; d = PdV=0 ; dQ=dU ;dU = МЮ dUмол = МЮ Cv dT ;

dQ= МЮ Cv dT ; Q = (интеграл T1 – T2) МЮ Cv dT = МЮ Cv (T2 – T1) – m Cv (T2 – T1)/ μ

2)T = const изотермический => dT= 0 ; dQ= МЮ Cv dT = 0 ; dQ = dA ;

dA = PdV ; PV = МЮ RT ; P= МЮ RT / V ; dA = МЮ RT dV / V ;

A = (интеграл V1 – V2) МЮ RTdV / V = МЮ RT (интеграл V1 – V2) dV/ V = МЮ RT ln (V2/ V1) = МЮ RT ln (P1/ P2) ; P1 V1 = P2 V2 ;

3)P = const изобарический => dQ = PdV ; A = (интеграл V1 – V2) PdV = P (V2 – V1) ; A = P (V2 – V1) ;dU = МЮ Cv dT ; PdV = МЮ RdT ; dQ = МЮ Cv dT + МЮ Rdt = МЮ (Cv + R) dT ; Q = МЮ Cp (T2 – T1) ;

4) Q = constАдиабатный dA = dU ; dA = МЮ Cv dT ; PdV = - МЮ Cv dT ; PV = МЮ RT – продифференцированное уравнение Менделеева-Клайперона ; PdV + VdP = МЮ R dT ; … ; lnP = - γ lnP + const ; γ – коэффициент Пуассона ; lnP + lnV (ст. γ) = const ; PV (ст. γ) = const ;(график такой же как и изотермический, только чуть выше вверх).

dA = - dU = - МЮ Cv dT ; A = - (интеграл T1 – T2) МЮ Cv dT = МЮ Cv (T1 – T2) ;

Энтропия.Помимо внутренней энергии, которая является только функциональной составляющей термодинамической системы, в термодинамике используется еще ряд других функций, описывающих состояние термодинамической системы. Особое место среди них занимает энтропия.Пусть Q – теплота, полученная термодинамической системой в изотермическом процессе, а T – температура, при которой произошла эта передача теплоты. Величина Q/ T называется приведенной теплотой.Приведенное количество теплоты, сообщаемое термодинамической системе на бесконечно малом участке процесса будет равно dQ / T. В термодинамике доказывается, что в любом обратимом процессе сумма приведенных количеств теплоты, передаваемая системе на бесконечно малых участках процесса равна нулю. Математически это означает, что dQ/T – есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от того, каким путем перешла система в такое состояние. Функция, полученный дифференциал которой равен dS= dQ/ T – называется энтропией.Энтропия определяется только состоянием термодинамической системы и не зависит от способа перехода системы в это состояние. S – энтропия. Для обратимых процессов delta S = 0. Для необратимых delta S > 0 – неравенство Клаудио.Неравенство Клаудио справедливо только для замкнутой системы. Только в замкнутой системе процессы идут так, что энтропия возрастает. Если система незамкнута и может обмениваться теплотой с окружающей средой, ее энтропия может вести себя любым образом ; dQ = T dS ; При равновестном переходе системы из одного состояния в другое dQ = dU + dA ; delta S = (интеграл 1 – 2) dQ / T = (интеграл) (dU + dA) / T. Физический смысл имеет не сама энтропия, а разность энтропий при переходе системы из одного состояния в другое.

Связь энтропии с вероятностью состояния системы.Более глубокий смысл энтропии скрывается в статической физике. Энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы. Иными словами W – это число микросостояний, которые реализовывают данные макросостояния.

Больцман методами статистической физики показал, что энтропия S системы и термодинамическая вероятность связаны соотношением: S= k ln (W) ;где k – постоянная Больцмана. Термодинамическая вероятность W не имеет с математической вероятностью ничего общего. Из этого соотношения видно, что энтропия может рассматриваться как мера вероятности состояния термодинамической системы, энтропия является мерой неупорядоченной системы. Чем больше число микросостояний, реализующих данное макросостояние, тем больше ее энтропия.

Второй закон термодинамики.Количество теплоты, полученное от нагревателя, не может быть целиком преобразовано в механическую работу циклически действующей тепловой машиной. Это и есть 2ой закон: в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от источника энергии – нагревателя.(by Кельвин Copyright 1851). Второй закон связан с необратимостью процессов в природе. Возможна другая формулировка: невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от холодного тела к горячему.Второй закон имеет вероятный характер. В отличие от закона сохранения энергии, второй закон применим лишь к системам, состоящим из очень большого числа частиц. Для таких систем необратимость процессов объясняется тем, что обратный переход должен был бы привести систему в состояние ничтожно малой вероятностью, практически не отличимой от невозможности.

Самопроизвольные процессы в изолированной системе всегда проходят в направлении перехода от маловероятного состояния в более вероятное.

Читайте также: