Эмпирическая температурная шкала кратко

Обновлено: 05.07.2024

"Эмпирический" значит основанный не на теоретических (научных) п ринципах, а на собственных догадках и/или мироощущении. Соответственно эмпирическая температурная шкала будет :) примерно такая
Дубак полный - дубак - морозно - слегка морозит - слякоть - пригрело - тепло - .-жара - жарень - жарища - "сдохнуть можно, когда это кончится. "
Понятно, что такая шкала у каждого индивидуя своя, индивидуальная и, значит, эмпирическая.

Эмпирическая температурная шкала
Температурная шкала, установленная по изменениям определенного физического свойства того или иного термометрического вещества, в отличие от термодинамической температурной шкалы

Существуют абсолютная термодинамическая температурная шкала (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры. Построение шкалы Кельвина основано на втором начале термодинамики, началом ее отсчета является абсолютный нуль температуры, а единица температуры – кельвин (К) – определяется как 1/273 16 часть термодинамической температуры тройной точки воды. Эмпирические температурные шкалы различаются начальными точками отсчета и размером применяемой единицы температуры. В шкале Цельсия один градус (°C) равен 1/100 разности температур кипения воды и таяния льда при атмосферном давлении, точка таяния льда принята за 0 °C, кипения воды – за 100 °C.
[ссылка заблокирована по решению администрации проекта]

Эмпирические температурные шкалы строятся на трех допущениях: выбор размера градуса и положения нуля, а также допущение линейности изменения измеряемого свойства с температурой. Последнее допущение является необоснованным. [1]

Первоначально применявшиеся эмпирические температурные шкалы ( первая шкала предложена в 1714) реализуются с помощью зависящих от т-ры разл. Эти шкалы различаются начальными точками отсчета и размером используемой единицы т-ры: С ( шкала Цельсия), Р ( шкала Фаренгейта), К. [2]

Эмпирической температурной шкалой называется шкала, устанавливаемая с помощью термометра. [3]

Если найдена эмпирическая температурная шкала , которая в интересующей области давлений для ряда веществ дает строго прямолинейный ход кривых давления пара, то можно при номографическом способе изображения определить любую кривую давления пара по одной-единственной точке [397, 398]; таким образом, в одной диаграмме можно поместить очень большое число веществ. [4]

Для построения эмпирической температурной шкалы задаются реперными ( опорными) точками. [5]

Установленная описанным выше способом шкала температуры называется эмпирической температурной шкалой , а измеряемая температура - эмпирической температурой. [6]

Зависимость от выбранного температурного параметра является существенным недостатком эмпирических температурных шкал . Для устранения неоднозначности в измерении температуры можно один термометр принять за основной, а все остальные термометры градуировать по нему. В широком температурном интервале наиболее точным и чувствительным является газовый термометр с давлением газа в качестве температурного параметра. Построенная с его использованием шкала называется идеальногазовой температурной шкалой. На основе второго начала термодинамики может быть установлена температурная шкала, которая вообще не зависит от свойств термометрического тела. Она называется абсолютной термодинамической шкалой. [7]

Какие требования предъявляются к термометрическому телу, выбранному для эмпирической температурной шкалы . [8]

Заметим, что теперь у нас появляется возможность ввести понятие температуры, не зависящее ни от какого-либо эмпирического параметра, как это было при введении различных эмпирических температурных шкал , в частности, идеальногазовой температуры, ни от конкретной модели, как мы это делали в случае газокинетической температуры. [9]

Кроме того, используют большое количество вторичных реперных точек вплоть до температуры плавления вольфрама. Промежуточные значения температур определяют с помощью эмпирических температурных шкал со всеми неточностями, связанными с нелинейностью изменения использованных термометрических параметров. Погрешность определения промежуточных значений Т различна при разных температурах. В области 300 - 500 К она изменяется в пределах сотых долей К, но достигает десятка градусов при 3000 К. [10]

Принципиальная возможность такого построения абсолютной шкалы температур не означает действительную необходимость создания ряда взаимосвязанных машин Карно. Можно показать, что абсолютная шкала температур будет совпадать с эмпирической температурной шкалой , для построения которой используется термометр с идеальным газом в качестве рабочего вещества. [11]

При теплообмене энергия переходит от тела с большей температурой к телу с меньшей температурой. Любая температурная шкала должна удовлетворять этому свойству. Эмпирические температурные шкалы основаны на косвенных измерениях, т.е. на измерениях параметров, монотонно зависящих от температуры. Термодинамическая, или абсолютная шкала температур определяется на основе второго начала термодинамики. [12]

Ее определяют по численным значениям других физических параметров, зависящих от температуры, что и положено в основу построения эмпирических температурных шкал . Однако не всякую физическую величину, зависящую от температуры, удобно использовать в качестве термометрического параметра. Для этого выбранная функция должна быть непрерывной, воспроизводимой и удобной для измерения. В качестве реперных точек - эталонов постоянной температуры - используют температуры фазовых переходов. Для достаточно чистых веществ они хорошо воспроизводимы. [13]

Материал данной статьи дает представление о таком важном понятии как температура. Дадим определение, рассмотрим принцип изменения температуры и схему построения температурных шкал.

Что такое температура

Температура – это скалярная физическая величина, описывающая состояние термодинамического равновесия макроскопической системы тел.

Понятие температуры также применяют в качестве физической величины, определяющей степень нагретости тела, однако лишь такой трактовки для понимания смысла термина недостаточно. Все физические понятия находятся в связи с определенными фундаментальными законами и наделяются смыслом только в соответствии с этими законами. В данном случае термин температура связан с понятием теплового равновесия и с законом макроскопической необратимости.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

  1. t 1 > t 2 , когда происходит теплопередача от первого тела ко второму;
  2. t 1 ' = t 2 ' = t , t 1 > t > t 2 , при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур.

Температурная шкала – это способ деления на части интервала температуры.

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2 , указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1 ).

Изменение температуры

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные "термические тела" (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Температурные шкалы

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t 0 и кипения воды t k при нормальном атмосферном давлении ( П а ≈ 10 5 П а ) . Величины t 0 и t k имеют разные значения в различных видах шкал измерения температуры:

  • Согласно шкале Цельсия (стоградусная шкала): температура кипения воды t k = 100 ° C , температура плавления льда t 0 = 0 ° С . В шкале Цельсия температура тройной точки воды равна 0 , 01 ° С при давлении 0 , 06 а т м .

Тройная точка воды - такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

  • Согласно шкале Фаренгейта: температура кипения воды t k = 212 ° F ; температура плавления льда t 0 = 32 ° С .

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

t ° C 100 = t ° F - 32 180 или t ° F = 1 , 8 ° C + 32 .

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 1 : 1 : 1 .

  • Согласно шкале Кельвина: температура кипения воды t k = 373 К ; температура плавления льда t 0 = 273 К . Здесь температура отсчитывается от абсолютного нуля ( t = 273 , 15 ° С ) и ее называют термодинамической или абсолютной температурой. Т = 0 К – такому значению температуры соответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T ( K ) = t ° C + 273 , 15 ° C .

  • Согласно шкале Реомюра: температура кипения воды t k = 80 ° R ; температура плавления льда t 0 = 0 ° R . В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

  • Согласно шкале Ранкина: температура кипения воды t k = 671 , 67 ° R a ; температура плавления льда t 0 = 491 , 67 ° R a . Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180 .

Температуры по Кельвину и Ранкину связаны выражением:

° R a = ° F + 459 , 67 .

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

° R a = ° F + 459 , 67 .

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как ° C ).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры - градус Кельвина (до 1968 г.) или сейчас просто Кельвин ( К ) , являющийся одной из основных единиц в С И . Температура T = 0 К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна ( T = 0 , p = 0 ) . При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Принято, что комфортная для человека температура в помещении находится в интервале от + 18 ° С до + 22 ° С . Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T ( K ) = t ° C + 273 , 15 ° C .

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T = 18 + 273 ≈ 291 ( K ) ; T = 22 + 273 ≈ 295 ( K ) .

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К .

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Возьмем за основу соотношение t ° F = 1 , 8 t ° C + 32 .

По условию задачи температур равны, тогда возможно составить следующее выражение:

Определим из полученной записи переменную x :

x = - 32 0 , 8 = - 40 ° C .

Ответ: при температуре - 40 ° С (или - 40 ° F ) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Толковый словарь русского языка. Поиск по слову, типу, синониму, антониму и описанию. Словарь ударений.

Найдено определений: 2 температурные шкалы

Температу́рные шка́лы - системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры (тепловое расширение, изменение электрического сопротивления с температурой и др.). Эмпирические температурные шкалы различаются начальными точками отсчёта и размером применяемой единицы температуры: °C (шкала Цельсия), °R (шкала Реомюра), °F (шкала Фаренгейта). 1°R = 1,25°C, 1°F = 5 /9°C. Температурная шкала, практически воспроизводящая шкалу Кельвина (1К = 1°C), называется международной практической температурной шкалой.

ТЕМПЕРАТУРНЫЕ ШКАЛЫ - ТЕМПЕРАТУ́РНЫЕ ШКА́ЛЫ, системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры (тепловое расширение, изменение электрического сопротивления с температурой и др.). Эмпирические температурные шкалы различаются начальными точками отсчета и размером применяемой единицы температуры: °С (шкала Цельсия), °R (шкала Реомюра), °F (шкала Фаренгейта). 1 °R=1,25 °С, 1F= 5 /9 °С. Температурная шкала, практически воспроизводящая шкалу Кельвина (1 К=1 °С), называется международной практической температурной шкалой.

ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры (тепловое расширение, изменение электрического сопротивления с температурой и др.). Эмпирические температурные шкалы различаются начальными точками отсчета и размером применяемой единицы температуры: .С (шкала Цельсия), .R (шкала Реомюра), .F (шкала Фаренгейта). 1 .R=1,25 .С, 1F=5/9 .С. Температурная шкала, практически воспроизводящая шкалу Кельвина (1 К=1 .С), называется международной практической температурной шкалой.


где l2 и l1 - термометрические величины термометрического тела в точках кипения и замерзания воды, соответственно.

Эмпирические шкалы температур

Температурой термометрического тела называется число, которое определяется по формуле



Виды термометров Значение температуры для одной и той же шкалы температур зависит от термометрического тела. Поэтому, термометры, использующие различные термометрические тела, показывают различную температуру. Совпадение показаний термометров может быть только в реперных точках, если они одинаковы для данных термометров. Термометры бывают различными: газовыми, жидкостными, твердотельными. Во всех них используется то, что термометрическое тело (газ, жидкость, твердое тело) меняют свои физические характеристики (объем, длину, проводимость, и проч.) в зависимости от температуры.

Международная практическая шкала Международная практическая шкала температур образована таким образом, чтобы с ее помощью можно было просто калибровать научные и технические приборы и в то же время воспроизводить с технически максимально возможной точностью термодинамическую шкалу температур. Единицами температуры являются кельвин и градус Цельсия в зависимости от начала отсчета температур. Шкала температур постоянно уточняется в соответствии с результатами научных исследований и достижениями измерительной техники. Между реперными точками температурная шкала устанавливается с помощью интерполяционных формул, по которым температура вычисляется по показаниям термометров, принятых за стандартные. Международная практическая шкала температур чрезвычайно точно согласуется с термодинамической шкалой температур в реперных точках и достаточно точно во всех остальных точках.

Термодинамическая шкала

На основании 2-й теоремы Карно можно установить абсолютную термодинамическую шкалу температур, не зависящую от термометрического тела. Рассмотрим систему изотерм и адиабат. Фигуры 1, 2, 3, заключенные между двумя соседними изотермами и двумя адиабатами, являются циклами Карно.


Из выражения для КПД цикла Карно можно записать последовательность соотношений


Т.е. если задать какую-нибудь реперную точку (например, температуру тройной точки воды 273,16 К), то проведя последовательность прямых обратимых циклов Карно можно вычислить произвольную температуру (в произвольном процессе), если измерить соответствующее величины Q. Такое определение температуры не зависит от термометрического тела. Оно впервые было дано Кельвином. В честь которого была названа единица абсолютной термодинамической температуры.

Отрицательные абсолютные температурыПонятно, что отрицательная абсолютная термодинамическая температура не имеет физического смысла. Тем не менее, в квантовых системах понятие отрицательной абсолютной температуры имеет вполне определенный смысл: это мера способа заполнения квантовых уровней энергии частицами. Если частицы заполняют сначала нижние энергетические уровни, так, что на более высоком уровне частиц меньше, то температура положительна и совпадает по значению с термодинамической. Если же создается инверсность населенностей, т.е. на более низко расположенном уровне частиц меньше, чем на более высоком, то температуре приписываются отрицательные значения. Тем не менее, такие значения все же не имеют физического смысла.

Читайте также: