Элементы оборудования входящего в комплект буровой установки кратко

Обновлено: 04.07.2024

Буровая установка –один из видов нефтегазового оборудования.

Буровые установки для разработки и разведки нефтяных и газовых месторождений в общем виде включают в себя:

  • Спускоподъемное оборудование (кронблок, лебедка, крюкоблок);
  • Циркуляционное оборудование (буровые насосы, вертлюги, емкости, манифольды);
  • Буровые сооружения (буровые вышки, мостики, основания вышки, стеллажи);
  • Противовыбросное оборудование;
  • Оборудование для приготовления буровых растворов (шламовые насосы, гидроворонки, гидромешалки);
  • Силовое оборудования для привода лебедки, буровых насосов, ротора (дизельные двигатели, электрические двигатели).

Все буровые установки комплектуются приводом главных механизмов (дизельный с механической трансмиссией или электрический с цифровой системой плавного регулирования)

В некоторых случаях возможна комплектация независимым приводом ротора

Кинетическая основа буровой установки - подъемный механизм
Подъемный механизм запускается при возникновении динамической нагрузки.
Динамические нагрузки возникают при спускоподъемных операциях вследствие действия ускорения или замедления, а также упругих колебаний, создаваемых во время переходных процессов.


В качестве источников динамических нагрузок выступают толчки и удары, возникающие при подхвате колонны труб и переходах талевого каната на последующий слой навивки.

Динамической нагрузке также могут способствовать зазоры и монтажные смещения в сочленениях узлов и деталей подъемного механизма и его привода.

Применение буровых установок

Буровые установки применяются:

  1. Для бурения неглубоких скважин (до 25м) и скважин небольшого диаметра(76-219 мм) при сейсморазведке.
  2. Для бурения скважин средней глубины (до 600м) - структурных и поисковых скважин на твердые полезные ископаемые
  3. Для бурения глубоких скважин (до 6000м). Добыча нефти и газа, а так же для разведки новых нефтяных и газовых месторождений.
  4. Сверхглубокое бурение скважин (до 15000м) для добычи нефти и газа и разработки новых месторождений.
  5. Бурение скважин на воду.
  6. Капитальный ремонт нефтегазовых скважин.
  7. Испытания скважин на нефть и газ.

По функциональному назначению буровые установки делятся на:

  1. установки для инженерно-геологических изысканий
  2. установки для добычи воды, работ по водопонижению и геотермальному теплоснабжению, для различных гидрогеологических работ
  3. установки для строительных работ (бурение под свайные и микросвайные основания, для установки анкеров)
  4. установки для геологоразведочных работ
  5. установки для сейсморазведочных работ
  6. установки для сооружения опор ЛЭП

Конструкция буровых установок

Исполнительные органы (главные) - лебедка, ротор, вышка, талевая система, вертлюг, буровой насос, циркуляционная система.

Энергетические органы - дизельные двигатели, электродвигатели, приводы, силовая гидросистема, пневмо-гидросистема

Вспомогательные органы -механизмы передвижения, вспомогательная лебедка, металлоконструкции, системы освещения, системы водоснабжения, системы отопления, системы вентиляции и др.

Органы информации - контроль параметров бурения

Органы управления

Буровая вышка

Буровая вышка - это ключевой узел в оборудовании буровых установок. Выполняет следующие функции:

  1. Поддержание бурильной колонны на талевой системе при бурении с разгрузкой.
  2. Спуско-подъемные опреации с обсадными и бурильными трубами

3. Размещение талевой системы и средств механизации спускоподъёмных операций, в частности механизмов АСП, КМСП или платформы верхового рабочего, устройства экстренной эвакуации верхового рабочего, системы верхнего привода и вспомогательного оборудования.

Классификация буровых вышек

По назначению - для капитального ремонта скважин и соответствующих агрегатов, для морских буровых установок, для передвижных буровых установок, для стационарных буровых установок.

По конструкции - мачтовые, башенные.

Буровые лафеты

Буровые лафеты - навесное буровое оборудование. Составляющая буровых установок. Лафеты устанавливают на экскаваторы и гидравлические экскаваторы. Общая масса - от 10 тонн. Буровой лафет обычно состоит из ходового механизма с гусеничным двигателем встроенного гидравлического механизма для тяги (подачи вперед) и бурового функционирования.

Навесные буровые лафеты применяют при работах по частичному упрочнению грунтов, бурении пневмоударником, или при отборе керна, а так же для бурения скважин под сваи, для сооружения скважин на воду и для анкерного бурения.

Роторы

Роторы предназначены для вращения бурильного инструмента и поддержания колонны бурильных труб при бурении скважин.

Лебедки - основной механизм спускоподъемного комплекса буровой установки. Предназначены для выполнения следующих операций:

Оборудование для бурения нефтяных и газовых скважин – это целый комплекс технологических устройств, инструментов и приспособлений, обеспечивающий сам процесс бурения и промывку скважины с извлечением из неё остатков разбуренных пород. Центральное звено любого бурового комплекса – это буровая установка (буровая вышка).

  • Буровая вышка
  • Технологический инструмент, применяемый при бурении скважин
  • Лопастные виды долот
  • Долота с шарошками
  • Алмазные бурильные долота
  • Виды забойных двигателей

Буровая вышка

Буровая установка для бурения нефтяных скважин представляет собой комплекс буровых механизмов, машин и оборудования, который монтируется непосредственно на точке бурения и обеспечивает весь процесс обустройства скважин.

Буровая установка для бурения нефтяных скважин

Основными элементами современной буровой установки являются:

  • вышечный блок;
  • блок насосного оборудования;
  • силовые приводы;
  • блок для приготовления бурового раствора;
  • блок очистки бурового раствора (часто совмещен с предыдущим блоком);
  • оборудование для бурения:
  1. ротор;
  2. вертлюг;
  3. талевый механизм;
  4. буровая лебедка;
  5. насосы;
  6. силовой привод и так далее.
  • буровые сооружения:
  1. буровая вышка;
  2. комплект оснований;
  3. укрытия сборно-разборного или каркасно-панельного типа;
  4. комплект стеллажей;
  5. приемные мостки.
  1. устройство для регулировки подачи долота;
  2. механизмы, позволяющие автоматизировать спусковые и подъемные операции;
  3. клиновой пневматический захват для труб;
  4. буровой автоматический ключ;
  5. вспомогательная лебедка;
  6. пневматический раскрепитель;
  7. краны для проведения ремонта;
  8. пульт для контроля за процессами бурения;
  9. управляющие посты.
  • оборудование, обеспечивающее приготовление, регенерацию и очистку буровых растворов:
  1. устройство для приготовления раствора;
  2. комплект вибросит;
  3. отделители ила и песка;
  4. подпорные насосы;
  5. комплект емкостей для буровых растворов, воды и химреагентов.
  • манифольд:
  1. блочная нагнетательная линия;
  2. запорные устройства дроссельного типа;
  3. буровой рукав.
  • оборудования, обеспечивающее обогрев элементов буровой установки:
  1. теплогенераторы;
  2. радиаторы отопления;
  3. коммуникации, обеспечивающие циркуляцию теплоносителя.

Основное назначение вышечного блока:

  • подвешивание талевой системы и крепящихся к ней бурильных труб;
  • размещение оборудования, обеспечивающего спуск и подъем насосно-компрессорных, обсадных и бурильных элементов трубных колонн;
  • размещение устройств, обеспечивающих подачу и вращение бурового инструмента.

В блоке силового привода размещаются дизельные или электрические силовые установки, компрессоры, редуктора и коробки передач.

В насосном блоке расположены насосные установки вместе со своими силовыми агрегатами.

В состав блока для приготовления и последующей регенерации буровых растворов входят:

  • емкости для приема и хранения бурового раствора, как для находящегося в процессе рабочей циркуляции, так и для создания необходимого запаса этой жидкости;
  • устройства, обеспечивающие приготовление раствора:
  • глиномесительное оборудование;
  • БПР (блок приготовления раствора) и так далее.
  • очистительное оборудования для регенерации бурового раствора:
  • комплект вибросит;
  • отделители ила и песка;
  • дегазационные устройства;
  • отстойники.

Комплекс, обеспечивающий спуск и подъем оборудования на скважине, является механизмом полиспастного типа, и включает в себя следующие основные элементы:

  • кронблок;
  • подвижный талевый блок;
  • буровая лебедка;
  • механизм крепления конца каната (неподвижного);
  • сам стальной канат, который обеспечивает гибкую связь между двумя предыдущими устройствами.

Кронблок монтируется в верхней части буровой вышки. Подвижный конец каната закрепляется на барабане буровой лебедки, а его неподвижный конец посредством механизма крепления закрепляется у основания вышки. На талевый блок вешается крюк, за который при помощи строп подвешивают или вертлюг, или элеватор для спуска/подъема трубных колонн. На современных спуско-подъемных комплексах крюк и талевый блок, как правило, объединяют в единый механизм, называемый крюкоблоком.

Вакуумное оборудование: бустерные насосы

Читать также: Вакуумное оборудование: бустерные насосы

Конструкция нефтяных буровых установок

Технологический инструмент, применяемый при бурении скважин

  • технологический;
  • специальный;
  • аварийный;
  • вспомогательный.

Конструктивные особенности и номенклатура бурового инструмента меняются в зависимости от:

  • области применения (какие скважины бурят – геологоразведочные, взрывные, эксплуатационные, нагнетательные и так далее);
  • способа бурения;
  • диаметра скважины;
  • характеристик разбуриваемых пород.

При помощи технологического инструмента непосредственно осуществляется бурение, которое заключается в разрушении горных пород и транспортировке на поверхность их разрушенных остатков. Такой инструмент еще называют породоразрушающим или забойным.

В его состав входят:

  • долота и коронки;
  • кернорватели;
  • различные виды труб (колонковые, шламовые, бурильные трубы (обычные и утяжеленные);
  • комплект переходников;
  • набор сальников и так далее.

Строение углеводородных месторождений нефти и газа представлено в основном горными породами осадочного вида.

Основные физико-механические свойства таких пород, которые непосредственно влияют на буровой процесс:

  • упругость;
  • пластичность;
  • твердость;
  • сплошность;
  • абразивность.

Основным породоразрушающим инструментом, обеспечивающим бурение скважин, является долото.

Буровая установка для бурения нефтяных скважин

По принципу действия, с помощью которого происходит разрушение породы, долота подразделяются на следующие виды:

  • режуще-скалывающие – разрушение породы происходит при помощи лопастей, наклоненных в сторону вращения инструмента (используются при бурении мягких горных пород);
  • дробяще-скалывающие – порода разрушается либо зубьями, либо штырями, размещенными на шарошках; шарошки вращаются вокруг как вокруг оси долота, так и вокруг собственной оси; в процессе вращения долота, помимо дробящего воздействия штырей или зубьев, в процессе их проскальзывания по забою порода также скалывается (срезается) породу, что значительно повышает эффективность бурового процесса;
  • истирающе-режущие – разрушение породы производится при помощи алмазных зерен или твердосплавных штырей, которые расположены на торцах долота или на лопастных кромках этого инструмента; такие долота применяют при бурении среднетвердых пород неабразивного типа и твердых горных пород; лопастные долота, армированные штырями из твердых сплавов или алмазными зернами, используются для разбуривания пород, которые перемежаются по твердости и абразивности.

Лопастные виды долот

В зависимости от типа своей конструкции, а также от оснащенности твердосплавными элементами, долота лопастного типа используют при бурении:

  • мягких пород;
  • пород средней твердости;
  • мягких пород, в которых есть малоабразивные средние пропластки;
  • при необходимости разбурить цементные пробки или металлические детали нижней части обсадных трубных колонн;
  • при необходимости расширения скважинного ствола.

В настоящее время на практике применяются следующие виды лопастных долот:

  • двухлопастные с проточной промывкой (диаметр варьируется от 76-ти до 165,1 миллиметра);
  • трехлопастные с проточным или гидромониторным видом промывки (диаметры – от 120,6 до 469,9 миллиметров);
  • трехлопастные долот с истирающе-режущим принципом действия с проточной промывкой или промывкой с помощью гидромонитора (диаметр – от 190,5 до 269,9 миллиметров);
  • шестилопастные истирающе-режущие долота с двумя типами промывки (диаметр – от 76-ти до 269,9 миллиметров);
  • пикообразные с проточной промывкой (диаметр – от 98,4 до 444,5 миллиметров).

В настоящее время промышленность производит такие типы долот лопастного вида (к пикообразным – не относится):

  • долота для бурения мягких пород (литера М);
  • для мягких пород со среднетвердыми пропластками (МС);
  • для абразивных мягких абразивных пород со среднетвердыми пропластками (МСЗ);
  • для среднетвердых пород (С);

Пикообразные лопастные долота бывают двух видов:

  • применяемые для расширения скважинного ствола (литера Р);
  • для разбуривания металлических элементов и цементных пробок в нижней части обсадной колонны (Ц).

Что представляют собой буровые растворы для бурения нефтяных и газовых скважин?

Читать также: Что представляют собой буровые растворы для бурения нефтяных и газовых скважин?

Долота с шарошками

Как в нашей стране, так и во многих зарубежных нефтегазодобывающих странах бурение газовых и нефтяных, как правило, производится при помощи шарошечных долот с шарошками конической формы. Долота шарошечного типа используются для производства сплошного бурения скважин самого разного назначения (добывающих, разведочных, нагнетательных и так далее). Очистка забоя при использовании таких долот производится либо при помощи сжатого воздуха, либо промывочными растворами.

Буровая установка для бурения нефтяных скважин

Долото шарошечное буровое d=76-490 мм

Если сравнивать такой инструмент с описанным выше лопастным, то он имеет ряд несомненных преимуществ, а именно:

  • площадь непосредственного контакта с забоем у долот с шарошками гораздо меньше, чем у долот лопастного типа, однако общая длина их рабочих кромок гораздо больше, что дает возможность существенно повысить эффективность бурового процесса;
  • шарошки по забою перекатываются, а лопасти – скользят, поэтому износостойкость шарошечных долот гораздо выше, чем лопастного инструмента;
  • из-за того, что шарошки по забою перекатываются, потребляемый инструментом крутящий момент относительно мал, что сводит к минимуму возможность заклинивания шарошечных долот.

Изготовление долот шарошечного типа регламентировано ГОСТ-ом номер 20692-75.

Согласно этому нормативному документы, такой инструмент выпускают в трех исполнениях – одно-, двух- и трехшарошечные долота. Самыми распространенными являются трехшарошечные инструменты.

По критерию конструкции и расположения на инструменте продувных и промывочных каналов, такие долота делятся на:

  • долота с центральной промывкой (литера Ц)
  • с центральной продувкой (П);
  • с боковой промывкой гидромонитором (Г);
  • с боковой продувкой (ПГ).

Алмазные бурильные долота

Алмазный буровой инструмент представляет собой твердосплавную алмазонесущую рабочую матрицу в стальном корпусе, который оборудован внутренней присоединительной замковой резьбой конусного вида.

Такой буровой инструмент различается по форме рабочей матрицы, по качественным характеристикам используемых алмазов, а также по применяемых промывочным системам.

Твердосплавную алмазонесущую матрицу алмазного долота изготавливают методами порошковой металлургии из металлических порошков.

Такие металлосодержащие порошки хорошо удерживают алмазы и дают возможность изготавливать рабочие матрицы с разной твердостью и износостойкостью. Наилучшими показателями по таким качественным характеристикам, как прочность, износостойкость и теплопроводность, обладают алмазные матрицы на основе вольфрама.

При изготовлении бурильных головок алмазного бурового инструмента применяются так называемые технические алмазы массой от 0,05 до 0,34 карата. При производстве такого долота, к примеру, диаметром 188 миллиметров, расходуется от 400 до 650 карат (от двух до двух с половиной тысяч алмазных зёрен).

Бурильные головки алмазных долот изготавливаются в двух модификациях:

  • однослойные (типы КР. КТ, ДР, ДТ т ДК), на которых алмазные зерна размещены в поверхностном слое рабочих кромок металлических матриц по определённым схемам;
  • импрегнированные (тип ДИ)Ю на которых мелкие алмазные зерна распределены равномерно по всей матрице.

Буровая установка для бурения нефтяных скважин

Алмазный буровой инструмент

Алмазные долота бывают следующих типов:

  • с поверхностным расположением алмазов;
  • импрегированные (алмазы размещены на поверхности до 8 миллиметров);
  • инструменты особых конструкций;
  • с радиальным расположением каналов и с наружной поверхностью биконического вида (ДР);
  • с напорным каналом и с тораидальными выступами (ДК);
  • с синтетическим типом размещения алмазных зерен (С);
  • с импрегированными алмазными зернами (И);
  • лопастные (ДЛ);
  • с внутренним конусом (ДВ);
  • импрегированные с заостренными торцами лопастей (ДИ);
  • универсальные (ДУ).

Такой породоразрушающий инструмент применяется при бурении глубоких (более трех километров) скважин. Стойкость алмазного инструмента по сравнению с шарошечным выше в 20- 30 раз.

Как выбирают обсадные трубы для нефтяных скважин?

Читать также: Как выбирают обсадные трубы для нефтяных скважин?

Виды забойных двигателей

В качестве таких силовых установок в процессе бурения используются турбобуры, электробуры и винтовые двигатели, которые ставятся сразу над долотом.

Турбобур представляет собой многоступенчатую турбину с количеством ступеней до 350. В состав каждой ступени входит жестко соединенный с корпусом статор и закрепленный на валу устройства ротор. Стекая по лопаткам статора, поток жидкости воздействует на роторные лопатки, тратя часть энергии на получение вращательного момента.

Затем этот поток вновь натекает на статорные лопатки, и процесс повторяется. Несмотря на то, что каждая отдельная ступень турбобура способна развивать небольшой крутящий момент, из-за их большого количества суммарной мощности, подаваемой на вал устройства, вполне достаточно для бурения горных пород с высокой твердостью.

При таком способе бурения рабочей жидкостью выступают промывочные растворы, поступающие с поверхности к турбобуру через бурильную колонну. Долото жестко прикреплено к валу турбобура и вращается независимо от колонны буровых труб.

Бурение с использованием электробура подразумевает подачу электрической энергии на электродвигатель посредством укрепленного внутри буровой колонны кабеля. При таком методе производства работ вращается только вал двигателя с закрепленным на нем долотом, а корпус устройства и бурильная колонна – неподвижны.

Основные элементы конструкции двигателя винтового типа – это ротор и статор.

Внутренняя поверхность стального корпуса статора покрыта слоем специальной резины и имеет форму винтовой многозаходной поверхности. Ротор, изготовленный также из стали, в свою очередь, имеет форму многозаходного винта, количество винтовых линий которого меньше на одну, чем у поверхности статора.

Буровая установка для бурения нефтяных скважин

Ротор размещается в статоре с эксцентриком. Эксцентрик, а также разница количества статорных и роторных винтовых линий позволяют контактирующим поверхностям образовывать ряд шлюзов (замкнутых полостей) – шлюзов между камерами высокого давления у верхнего конца, с пониженным значением давления у нижнего шлюза. Этими шлюзами перекрывается свободное движение через двигатель подаваемой жидкости, что позволяет создавать в шлюзах с помощью жидкостного давления передаваемый долоту вращательный момент.

YouTube responded with an error: The request cannot be completed because you have exceeded your quota.


Нефтяная буровая установка представляет собой комплекс специализированного оборудования для бурения нефтегазовых скважин. Устанавливается непосредственно на месте бурения, с помощью нее операции выполняются самостоятельно, поскольку все механизмы автоматизированы. Буровое оборудование позволяет добывать нефть при любых погодных условиях.

Характеристики буровых установок

  • Назначение буровой установки
  • Грузоподъёмность/глубина бурения
  • Тип привода
  • Способ бурения
  • Тип шасси (для самоходных установок)
  • Крутящий момент (кНм)

БУРОВЫЕ НАСОСЫ

Основной элемент бурового насоса представляет собой пор­шень, совершающий возвратно-поступательные перемещения в цилиндре и создающий давление для движения объема жид­кости. Буровые насосы обычно используют для обеспечения циркуляции большого количества бурового раствора (19— 44 л/с) по бурильным трубам через насадки на долоте и об­ратно на поверхность. Следовательно, насос должен создавать давление, достаточное для преодоления значительных сил со­противления, и перемещать буровой раствор.

Применяют насосы двух типов:

двухцилиндровые насосы (дуплекс-насосы), включающие в себя два поршня двойного действия (в этом типе насоса пор­шень создает давление одновременно при поступательном и об­ратном ходе);

трехцилиндровые насосы, в состав которых входят поршни одинарного действия (в этом типе насоса поршень создает дав­ление только при поступательном ходе).

Регулировать объем и давление можно, изменяя внутренний диаметр цилиндра (путем использования цилиндровых втулок разных диаметров) или размеры поршня.

Применение буровых установок

  • Бурение неглубоких (до 25 метров) скважин небольшого диаметра (76—219 мм) при сейсморазведке и инженерных изысканиях.
  • Бурение скважин средней глубины (до 600 м) — структурных и поисковых скважин на твёрдые полезные ископаемые.
  • Бурение глубоких (до 6000 м) разведочных и эксплуатационных скважин на нефть и газ.
  • Капитальный ремонт и испытания скважин на нефть и газ.
  • Бурение скважин на воду.
  • Бурение неглубоких (до 32 м) скважин большого диаметра (до 1,5 м) для строительства буронабивных свай (свайные фундаменты).
  • Бурение взрывных скважин на открытых горных выработках и в шахтах.
  • Сверхглубокое бурение (до 15 000 м) разведочных и эксплуатационных скважин на нефть и газ. (В России первая сверхглубокая скважина была пробурена глубиной 12 262 метров на Кольском полуострове).

Конструкция типовой А-образной буровой установки для бурения скважин на нефть и газ

Для того, чтобы перемещать вычешно-лебедочный блок со всем оборудованием и бурильными трубами в пределах куста, все установки кустового бурения оборудуются специальным механизмом, который двигает всю эту махину по рельсам. Тот же механизм отвечает за горизонтальное выравнивание собственно в процессе самого бурения.

Что касается выбора класса буровой установки, при разработке газового или нефтяного месторождения, то тут основными показателями являются сама конструкция скважины и глубина бурения по проекту.


Буровые вышки делятся на два типа: башенные и А-образные. Для прямого, визуального контроля за процессом бурения в середине любой вышки устанавливается специальный балкон. В нем дежурит один из помощников бурильщика. Кронблок монтируется на верхней площадке вышки, соединяясь талевым канатом с талевым блоком.

Современные А-образные вышки оснащаются АСП механизмом (Автомат Спуска Подъема труб). А основания вышки могут быть разными, но к ним предъявляются несколько важных требований: прочность/устойчивость, надежность при многократных транспортировках, монтажепригодность.

Основным механизмом любой буровой установки для бурения скважин на нефть и газ является буровая лебедка. Она занимается подъемом и спуском бурильных и обсадных труб и передачей вращения ротору. Место монтажа самого ротора это центр буровой площадки. Ротор передает вращение бурильной колонне при роторном типе бурения. Так же ротор удерживает на весу всю колонну бурильных и обсадных труб. А с помощью карданной передачи или с какого либо другого индивидуального привода уже ротор приводится в движение через ту самую буровую лебедку.

Буровой раствор, под большим давлением, подается в бурильную колонну с помощью вертлюга. Его подвешивают на прочный крюк и соединяют с гибким буровым рукавом, который в свою очередь подсоединен к стояку. Вообще вертлюг можно назвать промежуточным звеном между этим самым буровым рукавом, талевым блоком и буровой колонной.

Виды и классификация нефтяных буровых установок

Различают несколько типов классификаций нефтяных комплексов, в основе которых определен важный критерий установки.

Конструкция

По конструкционным особенностям машины различаются между собой. Это объясняется тем, что определенный тип машины применяется только для узкого вида работ. По конструкции оборудование бывает:

  • Мачтовые (механическая часть располагается на двух опорах).
  • Башенные (имеет 4 механизма опоры, нагрузка на каждый из них распределяется равномерно).

Башенный тип сооружения нефтепромышленности

Как правило, башенные агрегаты отличаются большими размерами, а также высокой производительностью работ.

Способ перемещения

Буровое оборудование имеет различия и по способу перемещения. Эти особенности очень важны для работ на разных типах местности. Буровые агрегаты по критерию перемещения делят:


Мобильная Буровая Установка ZJ-30

Передвижные нефтяные буровые установки незаменимы при разведывательных мероприятиях, а также изучения состава местности. С помощью них специалисты берут пробы на проведение различных исследований. Стационарные же модели необходимы для добычи материала.

Место размещения

Добыча полезных ископаемых может проводиться на любой местности, независимо от того, твердая это поверхность или водоем. Основываясь на данные критерии, буровые установки разделяют на:

  • наземные;
  • морские (фиксация осуществляется на дно).

Нефтяные месторождения могут располагаться в любом месте, к тому же ее количество не зависит от того, находится она на твердой поверхности или в воде. Поэтому машины могут выкачивать нефть при любых условиях.


Морские нефтяные буровые установки

Способ бурения

Чтобы пробурить скважины, используют различные типы бурения. В зависимости от этого нефтяные установки разделяются:


Схема процесса бурения скважины на нефть

  • Вращательное бурение (работы осуществляются за счет вращательного движения специального конструктивного элемента машины).
  • Вращательно-ударное бурение (для получения скважины используется определенная сила удара, после чего элемент установки начинает вращательное движение).
  • Ударное (бурение проводится за счет удара элемента о поверхность местности).
  • Бурение вибрацией.
  • Огнеструйное бурение.

В последнее время разработан новый вид бурового оборудования, с помощью которого образование скважины происходит за счет разрядно-импульсного бурения.

К тому же нефтяные вышки могут работать от электрического, электрогидравлического или дизельного привода.

Использование нефтяных систем

Устанавливают системы для получения нефти блоками или агрегатами. В качестве монтажной основы применяются облегченные опоры. Эксплуатация осуществляется в несколько этапов:

  1. Подготовка участка, где будет находиться данная система, проверка всего оборудования на исправность и целостность.
  2. На местности проводят разметку, а также убирают все устройства, которые характеризуются высокой степенью пожароопасности.
  3. В первую очередь собирается опорная часть, состоящая из лебедки и ротора, к ним уже при помощи специальных болтов прикрепляют хозяйственную и вспомогательную установку.
  4. После этого осуществляется сборка осей, стола ротора и будущего центра скважины.


Термические методы извлечения нефти

Заключительным этапом проводится сборка вышки и дополнительного к ней оборудования. Все работы ведутся с помощью машинного крана.

Доставка машины для бурения считается довольно сложным процессом, который включает в себя:

  • Расчет, согласно ему решается вопрос о методе транспортировки.
  • Определение маршрута, в этом случае учитываются все уклоны местности, а также качество дороги.
  • Проверка и подготовка оборудования, с помощью которого будет крепиться агрегат к транспортировочному оборудованию.
  • Погрузка.

Доставка буровой установки может осуществляться полуприцепным механизмом, если позволяют размеры агрегата.

Кол-во блоков: 21 | Общее кол-во символов: 9323
Количество использованных доноров: 5
Информация по каждому донору:

· Спуско-подъемный комплекс буровой установки включает в себя буровую лебедку и талевую систему.


Рис. 26.3. Упрощенная схема размещения спуско-подъемного оборудования на буровой установке:

1 – крюк; 2 – талевый блок; 3 – талевый канат; 4 – кронблок; 5 – буровая вышка; 6

– лебедка; 7 – механизм крепления неподвижной ветви. А – ходовой конец каната; – неподвижный конец каната

Оборудование подъемного комплекса работает в режиме повторно-кратковременных меняющихся по величине нагрузок. Процесс подъема из скважины колонны, скомпонованной из свечей, состоит из циклов, содержащих повторяющиеся в строго определенной последовательности операции:

- захват колонны элеватором;

- подъем всей колонны на длину одной свечи при нагрузке на крюк, равной весу поднимаемой колонны в растворе и силам сопротивления при ее движении в скважине;

- установку колонны на стол ротора;

- освобождение от растягивающей нагрузки поднятой на поверхность свечи;

- раскрепление ключами, отвинчивание от колонны поднятой свечи и установки ее внутри буровой в специальном магазине или укладку на мостки около буровой;

спуск ненагруженного крюка и элеватора для захвата колонны, подвешенной на роторе;

- захват и подъем колонны на длину следующей свечи и т.д.

При спуске колонны эти операции выполняют в обратной последовательности, но с другой продолжительностью и нагрузками.

Буровые лебедки

Буровая лебедка является основным механизмом спуско-подъемного комплекса. С помощью буровой лебедки и талевого механизма поднимают, удерживают на весу бурильную колонну, обсадные трубы и другой инструмент при бурении и креплении скважин. При подъеме вращательное движение, сообщаемое лебедке от привода, с помощью талевого каната, преобразуется в поступательное движение талевого блока. При спуске тормозные устройства буровой лебедки ограничивают скорость спуска талевого блока, опускающегося под действием собственного веса и веса подвешенного к нему инструмента. Буровые лебедки используются также для передачи вращения ротору, свинчивания-развинчивания бурильных и обсадных труб, для подъема и подтаскивания различных грузов при бурении скважины, монтаже и ремонте установки.

По назначению лебедки бывают основные и вспомогательные.

Основные лебедки выполняют главную функцию – выполнение спуско-подъемных операций с бурильными и обсадными трубами. Вспомогательные лебедки могут выполнять также функции подтаскивания грузов, проведения монтажных работ и т.п.

Классифицируются лебедки по следующим параметрам:

¾ расчетная мощность на входном валу;

¾ грузоподъемность (при указанной оснастке талевой системы);

¾ число скоростей вращения подъемного вала;

¾ размеры подъемного вала.


Рис. 8.6. Лебедка ЛБУ37-1100-Д-1


Регулятор подачи долота (РПД) помимо функции подачи долота на забой в процессе бурения, может обеспечить подъем инструмента с забоя скважины в случае выхода из строя главного привода, а также подъем и опускание буровой вышки при монтаже-демонтаже буровой установки. При включенном РПД кинематика лебедки позволяет осуществить одновременную передачу на вращение ротора от главного привода. Кинематическая схема лебедки изображена ниже (рис. 8.5).

Рис. 8.5 Кинематическая схема лебедки ЛБУ37-1100Д-1:

1 – подъемный вал (барабан); 2 – шинно-пневматическая муфта МШ1070х200; 3 – привод командоаппарата и датчика подачи ; 4 – тормоз электромагнитный ТЭИ800-60; 5 – цепная трансмиссия быстрой скорости ; 6 – цепная трансмиссия тихой скорости; 7 – регулятор подачи долота ( РПДЭ); 8 – коробка передач; 9 – редуктор (Ц2Н-450-50-32-У2); 10 – тормоз колодочный ТКГ400У2, 11 – электродвигатель 4ПФ-2Б250

Краткие характеристики буровых лебедок представлены в таблице 8.2.

Условное обозначение лебедок: ЛБУ37-1100Д-1, где ЛБУ – лебедка буровая Уралмашзавода; 37 – максимальное натяжение каната на барабане, тс; 1100 – расчетная мощность, развиваемая приводом, кВт; Д – дизельный привод; 1 – модификация лебедки.

Технические характеристики лебедок

Максимальная грузоподъемность, тс

Двухленточный тормоз с уравновешивающим балансиром

*высота без бака гидродинамического тормоза;

** привод дополнительный предназначен для подъема и опускания вышки, подъема бурильных труб и аварийных работ;

*** функция РПД, кроме указанных в дополнительном приводе регулирование подачи долота на забой.

Талевый механизм

Талевый механизм или талевая система – грузонесущая часть буровой установки – представляет собой полиспаст, состоящий из кронблока и талевого блока, огибаемых стальным канатом. Талевый блок снабжен крюком или автоматическим элеватором для подвешивания бурильной колонны и обсадных труб. Нагрузка подвешенного груза распределяется между рабочими струнами каната, число которых определяется числом шкивов талевого блока и кронблока. Талевая система позволяет уменьшить усилие в канате от веса поднимаемого груза. За счет этого пропорционально увеличивается длина каната, наматываемого на барабан при подъеме груза на заданную высоту.

Оснастка талевой системы буровых установок (рис. 8.6) характеризуется тем, что оба конца талевого каната сбегают с кронблока, один из которых крепится к барабану буровой лебедки и называется ходовым или тяговым, а второй (неподвижный) – к специальному устройству на металлическом основании вышечного блока. При наматывании каната на барабан талевый блок с крюкам, подтягивается к неподвижному кронблоку. При спуске талевого блока канат разматывается с барабана, вращающегося в обратном направлении под действием веса талевого блока, крюка и подвешенной колонны труб. Неподвижная струна талевого каната используется для установки специальных датчиков, измеряющих нагрузку на крюке.

Рабочие струны талевого каната располагаются между шкивами кронблока и талевого блока, и в отличие от ходовой и неподвижной, изменяют свою длину при подъеме и спуске крюка. Отношение числа рабочих струн каната к числу ходовых струн, идущих на лебедку, называют кратностью оснастки. Буровые лебедки связаны с талевым блоком и кронблоком одной ходовой струной, и поэтому кратность оснастки талевой системы буровых установок равна числу рабочих струн каната. Так как второй конец талевого каната неподвижный и поэтому нерабочий, кратность оснастки талевой системы буровых установок независимо от числа шкивов талевого блока и кронблока является четным числом, равным удвоенному числу шкивов талевого блока.

В двухбарабанных лебедках, используемых для неглубокого разведочного бурения, оба конца каната являются ходовыми. В этом случае, соответственно числу ходовых струн, кратность оснастки в 2 раза меньше числа рабочих струн.


Рис. 8.6. Кинематическая схема подъемного комплекса 1 – двигатель; 2 – трансмиссия с коробкой передач; 3 – лебедка; 4 – кронблок; 5 – талевый блок; 6 – крюк

Талевые механизмы монтируются на вышке буровых установок и имеют следующие характерные особенности:

¾ талевый блок с крюком располагаются над устьем скважины в свободно подвешенном состоянии и перемещаются в вертикальном направлении строго по оси скважины;

¾ высота подъема крюка ограничивается высотой вышки и безопасностью спуско-подъемных операций;

¾ диаметры шкивов и габариты других грузонесущих органов выбирают с учетом поперечных размеров буровой вышки;

¾ в целях контроля действующих нагрузок и поддержания в процессе бурения заданной осевой нагрузки на долото талевые механизмы оборудуются датчиками

¾ действующие нагрузки и скорости спуско-подъемных операций изменяются в широком диапазоне в зависимости от глубины скважины и длины колонны труб.

Технические характеристики оборудования талевых систем различных производителей представлены в таблицах 8.3, 8.6.

Буровые установки с ручной расстановкой свечей

Кронблоки имеют следующие условные обозначения: УКБ 6-325,где У – обозначение завода-изготовителя, Уралмашзавод; КБ – кронблок; 325 – допускаемая нагрузка на кронблок в тс

Технические характеристики кронблоков для установок ВЗБТ

*схемы размещения шкивов


Талевые канаты

В соответствии ГОСТ 16853-88, талевые канаты для эксплуатационного и глубокого разведочного бурения изготовляются в трех исполнениях, различающихся по типу используемых сердечников (рис. 8.71) – с металлическим сердечником (м. с); с органическим трехпрядным сердечником (о. с); с пластмассовым стержневым сердечником (и. с).

Талевые канаты изготавливаются диаметрами 25, 28, 32, 35, 38 мм в соответствии с ГОСТ 16853-88.


Рис. 8.7. Талевые канаты типа ЛК-РО с сердечниками:

а – металлическим; б – органическим трехпрядным; в – пластмассовым

Величина разрывного усилия каната находится в прямой зависимости от величины поднимаемого груза, принятой оснастки и от установленного органами технического надзора требуемого запаса прочности на талевый канат. Для определения разрывного усилия талевого каната следует руководствоваться паспортными данными буровой установки, в которых указывается номинальное натяжение талевого каната на барабане лебедки.

Так как выбор талевых канатов для действующих буровых установок в значительной мере предопределяется диаметрами механизмов навивки буровой установки, то для получения необходимого разрывного усилия талевого каната необходимо выбрать такую его конструкцию, которая обеспечивала бы полное использование поперечного сечения каната, а также максимальное временное сопротивление разрыву проволок талевого каната.

По допускаемому разбегу предела прочности и пластических свойств (числу перегибов и скручивании до разрушения) проволоки талевых канатов делятся на две марки – высшую В и первую I. Допускаемый разбег предела прочности проволок, взятых из каната, не должен превышать величин, указанных ниже.

Маркировочная группа каната по пределу прочности, МПА 1600 1700 1800
Допускаемый разбег предела прочности, МПа, каната, марки: В 26 27 29
1 32 34 37

Для максимального использования технического ресурса талевых канатов желательно их выбирать с пятикратным запасом прочности от суммарного разрывного усилия проволок.

Долговечность стальных канатов существенно зависит от материала и конструкции их сердечника, препятствующего смещению прядей и смятию каната под действием осевых и радиальных нагрузок. Канаты с органическим сердечником из растительных волокон (пенька, сизаль, манила) наиболее гибкие. Канаты с пластмассовыми и металлическими сердечниками обладают большей сопротивляемостью поперечному сжатию, благодаря чему лучше сохраняют свою форму при огибании шкивов и намотке на барабан. Лабораторные и промысловые испытания на буровых показали, что наработка талевых канатов с пластмассовым сердечником на 20 – 30 % превышает наработку однотипных канатов с пеньковым сердечником.

Для защиты от износа и атмосферной коррозии канат покрывают при свивке специальными смазками (технический вазелин, битум в сочетании с гудроном, полиамидные смазки и др.). Смазки для талевых канатов наряду с антикоррозионными и антифрикционными свойствами должны обладать достаточной прилипаемостью (адгезией) и температурной стойкостью.

Повышенные требования к адгезионным свойствам смазок обусловлены действием значительных центробежных сил, отбрасывающих смазку с поверхности каната при огибании шкивов и барабана. Физико-механические свойства смазки должны сохраняться при температурах от – 50 до + 50°С, характерных для северных и южных районов бурения. Смазку наносят тонким слоем внутрь прядей и на поверхность канатов в процессе их изготовления. Органические сердечники каната пропитываются противогнилостными и антикоррозионными составами.

Талевые канаты изготовляют путем двойной свивки проволок в круглые пряди, а последних – в однослойные шестипрядные канаты (тросы). Шестипрядная конструкция обладает рациональным соотношением диаметров прядей и сердечника, при котором обеспечивается выгодное сочетание прочности и гибкости каната.

По способу свивки канаты тросовой конструкции подразделяются на обыкновенные и нераскручивающиеся. В обыкновенных канатах проволоки сохраняют напряжения, порождаемые их упругой деформацией в процессе свивки прядей и каната. Нераскручивающиеся канаты свиваются из предварительно деформированных проволок и прядей. В результате предварительной деформации проволоки и пряди приобретают геометрические формы, соответствующие их положению в готовом канате. Вследствие этого уменьшаются свивочные напряжения, что способствует снижению момента упругой отдачи каната и повышению его гибкости и выносливости.


Рис. 8.8. Канат двойной крестовой (а, б) и односторонней (в, г) свивки: и в – правой; б и г – левой

В результате сравнительных натурных испытаний установлено, что выносливость нераскручивающихся канатов на 25 – 30 % больше, чем канатов с обыкновенной свивкой, поэтому талевые канаты изготовляют нераскручивающимися. Способ свивки определяется по поведению проволок и

прядей в готовом канате. В обыкновенном канате при освобождении его концов от перевязок пряди самопроизвольно расплетаются и требуются значительные усилия для их обратной укладки. Пряди нераскручивающихся канатов не расплетаются и легко укладываются в свое первоначальное положение.

В зависимости от взаиморасположения проволок в прядях различают канаты с точечным (ТК) и линейным (ЛК) касанием (контактом) проволок. Канаты с линейным касанием проволок более долговечны. Испытания показывают, что их наработка в 1,5 – 2 раза превышает наработку канатов с точечным касанием. Талевые канаты относятся к типу ЛК-РО, отличающемуся тем, что в отдельных слоях пряди используются проволоки разного (Р) и одинакового (О) диаметров. Благодаря принятой конструкции прядей обеспечиваются достаточная гибкость и износостойкость талевого каната, необходимые для его эффективной работы.

По роду свивки различаются канаты крестовой и односторонней свивки (рис. 8.8). В канатах крестовой свивки проволоки в пряди свиты в одну сторону, а пряди в канат – в противоположную. В канатах односторонней (параллельной) свивки проволоки и пряди свиты в одну сторону. При крестовой свивке наружные проволоки располагаются параллельно (рис. 8.8, а и б), а при односторонней – под углом к оси каната (рис. 8.8, б и г). Канаты односторонней свивки вследствие гибкости и плотности расположения проволок по сечению обладают повышенной выносливостью и износостойкостью. Однако они непригодны для буровых установок, так как вызывают закручивание свободно подвешенного талевого блока из-за чрезмерных свивочных напряжений в проволоках каната. В канатах крестовой свивки проволоки деформируются в разных направлениях при свивке прядей и каната, поэтому свивочные напряжения оказываются незначительными.

Канаты имеют правое и левое направление свивки. При правом направлении (рис. 8.8, а и б) свивки пряди располагаются слева вверх направо, а при левом – справа вверх налево (рис. 8.8, б и г). Направление свивки выбирается в зависимости от положения каната относительно барабана и направления укладки его витков на барабане. Наматывание на барабан лебедки сопровождается подкручиванием каната в результате его смещения относительно ранее навитого на барабан витка. Поэтому направление свивки следует выбирать так, чтобы при намотке на барабан канат подкручивался в направлении своей свивки. В этом случае дополнительная подкрутка способствует упорядоченной и плотной укладке каната на барабан. При многослойной намотке направление свивки выбирается из условия упорядоченной и плотной укладки первого слоя, способствующего нормальной намотке последующих слоев. С учетом свободной подвески талевого блока и принятой схемы навивки каната на барабан лебедки талевые канаты изготовляются правой крестовой свивки.

Условное обозначение канатов. Для отдельных конструкций талевых канатов действующими сортаментными ГОСТами приняты следующие обозначения.

Примеры условного обозначения талевого каната: канат исполнения 1 диаметром 32 мм из проволоки с пределом прочности 3600 МПа правой крестовой свивки марки В: канат 1-32-1600-В—ГОСТ 16853—88.

То же, левой крестовой свивки: канат 1-32-1600-Л-В—ГОСТ 16853-88.

Читайте также: