Элементы механики сплошных сред кратко

Обновлено: 08.07.2024

Механика сплошных сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвященный движению газообразных, жидких и твёрдых деформируемых тел, а также силовым взаимодействиям в таких телах.

В механике сплошных сред на основе методов, развитых в теоретической механике, рассматриваются движения таких материальных тел, которые заполняют пространство непрерывно, пренебрегая их молекулярным строением. Вместе с тем также считаются непрерывными характеристики тел, такие, как плотность, напряжения, скорости и т. д. Это оправдывается тем, что линейные размеры, с которыми мы имеем дело в механике сплошных сред, значительно больше соответствующих размеров молекул. Минимально возможный объем тела, который позволяет исследовать его некоторые заданные свойства называется представительным объёмом или физически малым объёмом. Данное упрощение даёт возможность применения в механике сплошных сред хорошо разработанного для непрерывных функций аппарата высшей математики. Помимо гипотезы непрерывности принимается гипотеза о пространстве и времени — все процессы рассматриваются в пространстве, в котором определены расстояния между точками, и развиваются во времени, причём в классической механике сплошных сред время течёт одинаково для всех наблюдателей, а в релятивистской — пространство и время связываются в единое пространство-время.

Механика сплошных сред является распространением ньютоновой механики материальной точки на случай непрерывной сплошной материальной среды, и системы уравнений, составляемые для решения различных задач МСС, включают в себя классические законы Ньютона, но в форме, специфической для этой отрасли механики. В частности, фундаментальные физические величины ньютоновой механики масса и сила в уравнениях механика сплошных сред выражаются в удельных формах, соответственно, плотности, и — для твёрдых сред — напряжения, а для газов и жидкостей — давления.

Помимо обычных материальных тел, подобных воде, воздуху или железу, в механике сплошных сред рассматриваются также особые среды — поля: электромагнитное поле, поле излучений, гравитационное поле и другие.

В механике сплошных сред разрабатываются методы сведения механических задач к математическим, то есть к задачам об отыскании некоторых чисел или числовых функций с помощью различных математических операций. Кроме того, важной целью механики сплошной среды является установление общих свойств и законов движения деформируемых тел, и силовых взаимодействий в этих телах.

Под влиянием механики сплошных сред получил большое развитие ряд разделов математики, например, некоторых разделов теории функции комплексного переменного, краевых задач для уравнений в частных производных, интегральных уравнений и другие.

Механика сплошных сред делится на механику твёрдого тела, гидродинамику, газодинамику. Каждая из этих дисциплин также делится на более узкие разделы. Так, механика твёрдого тела делится на теорию упругости, теорию пластичности, теорию трещин и так далее.

Содержание

Аксиоматика механики сплошной среды

  1. Евклидовость пространства. Пространство, в котором рассматривается движение тела — трехмерное точечное евклидово пространство .
  2. Абсолютность времени . Течение времени не зависит от выбора системы отсчёта.
  3. Гипотеза сплошности. Материальное тело — сплошная среда (континуум в пространстве ).
  4. Закон сохранения массы. Всякое материальное тело обладает скалярной неотрицательной характеристикой — массой , которая: а) не изменяется при любых движениях тела, если тело состоит из одних и тех же материальных точек, б) является аддитивной величиной: , где .
  5. Закон сохранения импульса (изменения количества движения).
  6. Закон сохранения момента импульса (изменения момента количества движения).
  7. Закон сохранения энергии (первый закон термодинамики).
  8. Существование абсолютной температуры (нулевое начало термодинамики).
  9. Закон баланса энтропии (второй закон термодинамики).

В неклассических моделях механики сплошных сред эти аксиомы могут заменяться другими. Например, вместо аксиом 1 и 2 может быть использована теория относительности [1] .

ЛЕКЦИЯ №5 Элементы механики сплошных сред
Физическая модель: сплошная среда – это модель вещества, в
рамках которой пренебрегают внутренним строением вещества,
полагая, что вещество непрерывно распределено
по всему
занимаемому им объёму и целиком заполняет этот объём.
Однородной называется среда, имеющая в каждой точке одинаковые
свойства.
Изотропной называется среда, свойства которой одинаковы по всем
направлениям.
Агрегатные состояния вещества
Твердое тело – состояние вещества, характеризующееся
фиксированным объемом и неизменностью формы.
Жидкость

состояние
вещества,
характеризующееся
фиксированным объемом, но не имеющее определенной формы.
Газ – состояние вещества, при котором вещество заполняет весь
предоставленный ему объем.

Механика деформируемого тела
Деформация – изменение формы и размеров тела.
Упругость - свойство тел сопротивляться изменению их объема и
формы под воздействием нагрузок.
Деформация называется упругой, если она исчезает после снятия
нагрузки и – пластической, если она после снятия нагрузки не
исчезает.
В теории упругости доказывается, что все виды деформаций
(растяжение - сжатие, сдвиг, изгиб, кручение) могут быть сведены к
одновременно происходящим деформациям растяжения - сжатия и
сдвига.

Деформация растяжения – сжатия
Растяжение - сжатие - увеличение (или
уменьшение) длины тела цилиндрической или
призматической формы, вызываемое силой,
направленной вдоль продольной его оси.
Абсолютная деформация – величина, равная
изменению
размеров тела, вызванному
внешним воздействием:
l l l0
,
(5.1)
где l0 и l - начальная и конечная длина тела.
Закон Гука (I) (Роберт Гук, 1660 г.): сила
упругости
пропорциональна
величине
абсолютной деформации и направлена в
сторону ее уменьшения:
F k l ,
где k - коэффициент упругости тела.
(5.2)

Относительная деформация:
l l0
.
(5.3)
Механическое напряжение – величина,
характеризующая состояние
деформированного тела [ ]=Па:
F S
,
(5.4)
где F - сила, вызывающая деформацию,
S - площадь сечения тела.
Закон Гука (II): Механическое напряжение,
возникающее в теле, пропорционально
величине его относительной деформации:
E
,
(5.5)
где E - модуль Юнга – величина,
характеризующая
упругие
свойства
материала, численно равная напряжению,
возникающему в теле при единичной
относительной деформации , [E]=Па.

Деформации твердых тел подчиняются закону Гука до
известного предела. Связь между деформацией и напряжением
представляется в виде диаграммы напряжений, качественный ход
которой рассмотрен для металлического бруска.

Энергия упругой деформации
При растяжении – сжатии энергия упругой деформации
l
k l 2 1 2
(5.8)
kxdx
E V ,
2
2
0
где V – объем деформируемого тела .
Объемная плотность
растяжении – сжатии
w
энергии
1 2
E
V 2
Объемная плотность
деформации сдвига
упругой
.
энергии
1
w G 2
2
при
(5.9)
упругой
.
деформации
деформации
(5.10)
при

Элементы механики жидкостей и газов
(гидро- и аэромеханика)
Находясь в твердом агрегатном состоянии, тело одновременно
обладает как упругостью формы, так и упругостью объема (или, что
то же самое, при деформациях в твердом теле возникают как
нормальные, так и тангенциальные механические напряжения).
Жидкости
и газы обладают лишь упругостью объема, но не
обладают упругостью формы (они принимают форму сосуда, в
котором
жидкостей
находятся).
и
газов
Следствием
является
этой
общей
одинаковость
в
особенности
качественном
отношении большинства механических свойств жидкостей и газов, а
их отличием являются
лишь
количественные характеристики
(например, как правило, плотность жидкости больше плотности
газа). Поэтому в рамках механики сплошных сред используется
единый подход к изучению жидкостей и газов.

Исходные характеристики
Плотность вещества скалярная физическая величина,
характеризующая распределение массы по объему вещества и
определяемая отношением массы вещества, заключённой в
некотором объёме, к величине этого объёма [ ]=м/кг3.
В случае однородной среды плотность вещества рассчитывается по
формуле
m V .
(5.11)
В общем случае неоднородной среды масса и плотность вещества
связаны соотношением
V
(5.12)
m dV .
0
Давление
– скалярная величина, характеризующая состояние
жидкости или газа и равная силе, которая действует на единичную
поверхность в направлении нормали к ней [p]=Па :
p Fn S
.
(5.13)

Элементы гидростатики
Особенности сил, действующих внутри покоящейся жидкости
(газа)
1) Если внутри покоящейся жидкости выделить небольшой объем, то
жидкость на этот объем оказывает одинаковое давление во всех
направлениях.
2) Покоящаяся жидкость действует на соприкасающуюся с ней
поверхность твердого тела с силой, направленной по нормали к этой
поверхности.

Уравнение неразрывности
Трубка тока - часть жидкости, ограниченная линиями тока.
Стационарным (или установившимся) называется такое течение
жидкости, при котором форма и расположение линий тока, а также
значения скоростей в каждой точке движущейся жидкости со
временем не изменяются.
Массовый расход жидкости – масса жидкости, проходящая через
поперечное сечение трубки тока в единицу времени [Qm]=кг/с:
Qm m t Sv ,
(5.15)
где и v – плотность и скорость течения жидкости в сечении S.

Уравнение
неразрывности

математическое
соотношение,
в
соответствии с которым при стационарном течении жидкости ее
массовый расход в каждом сечении трубки тока один и тот же:
1S1v 1 2S2v 2 или Sv const
,
(5.16)

Несжимаемой называется жидкость, плотность которой не зависит от
температуры и давления.
Объемный расход жидкости – объем жидкости, проходящий через
поперечное сечение трубки тока в единицу времени [QV]=м3/с:
QV V t Sv ,
(5.17)
Уравнение неразрывности несжимаемой однородной жидкости –
математическое соотношение, в соответствии с которым при
стационарном течении несжимаемой однородной жидкости ее
объемный расход в каждом сечении трубки тока один и тот же:
S1v 1 S2v 2 или Sv const
,
(5.18)

Вязкость – свойство газов и жидкостей оказывать сопротивление
перемещению одной их части относительно другой.
Физическая модель: идеальная жидкость – воображаемая
несжимаемая жидкость, в которой отсутствуют вязкость и
теплопроводность.
Уравнение Бернулли (Даниил Бернулли 1738 г.) - уравнение,
являющееся
следствием
закона
сохранения
механической
энергии для стационарного потока идеальной несжимаемой жидкости
и записанное для произвольного сечения трубки тока, находящейся в
поле сил тяжести:
v 12
v 22
v 2
gh1 p1
gh2 p2 или
gh p const . (5.19)
2
2
2

В уравнении Бернулли (5.19):
p - статическое давление (давление жидкости на поверхность
обтекаемого ею тела;
v 2
- динамическое давление;
2
gh - гидростатическое давление.

Внутреннее трение (вязкость). Закон Ньютона
Закон Ньютона (Исаак Ньютон, 1686 г.): сила внутреннего трения,
приходящаяся на единицу площади движущихся слоев жидкости или
газа, прямо пропорциональна градиенту скорости движения слоев:
F
S
dv
dy
,
(5.20)
где - коэффициент внутреннего трения (динамическая вязкость),
[ ]= м2 /с.

Виды течения вязкой жидкости
Ламинарное течение - форма течение, при которой жидкость или
газ перемещается слоями без перемешивания и пульсаций (то есть
беспорядочных быстрых изменений скорости и давления).
Турбулентное течение - форма течения жидкости или газа, при
которой
их
элементы
совершают
неупорядоченные,
неустановившиеся движения по сложным траекториям, что приводит к
интенсивному перемешиванию между слоями движущихся жидкости
или газа.

Число Рейнольдса
Критерий перехода ламинарного режима течения жидкости в
турбулентный режим основан на использовании числа Рейнольдса
(О́сборн Рéйнольдс, 1876-1883 гг.).
В случае движения жидкости по трубе число Рейнольдса
определяется как
v d
Re
,
(5.21)
где v – средняя по сечению трубы скорость жидкости; d – диаметр
трубы; и - плотность и коэффициент внутреннего трения
жидкости.
При значениях Re 4000 – турбулентный режим. При
значениях 2000 h2>h3). Это
указывает на наличие градиента давления вдоль оси трубки –
статическое давление в жидкости уменьшается по потоку.

Ламинарное течение вязкой жидкости в горизонтальной трубе
При равномерном прямолинейном течении жидкости силы давления
уравновешиваются силами вязкости.

Распределение
сечении
потока
скоростей
вязкой
в
поперечном
жидкости
можно
наблюдать при ее вытекании из вертикальной
трубки через узкое отверстие (см. рисунок).
Если, например, при закрытом кране К налить
вначале
неподкрашенный глицерин, а затем
сверху осторожно добавить подкрашенный, то в
состоянии равновесия граница раздела Г будет
горизонтальной.
Если кран К открыть, то граница примет
форму, похожую на параболоид вращения. Это
указывает
на
существование
распределения
скоростей в сечении трубки при вязком течении
глицерина.

Формула Пуазейля
Распределение скоростей в сечении горизонтальной трубы при
ламинарном течении вязкой жидкости определяется формулой
p 2 2
v r
R r
4 l
,
(5.23)
где R и l радиус и длина трубы, соответственно, p – разность
давлений на концах трубы, r – расстояние от оси трубы.
Объемный расход жидкости определяется формулой Пуазейля
(Жан Пуазейль, 1840 г.):
R 4 p
.
(5.24)
Qv
8 l

Движение тел в вязкой среде
При движении тел в жидкости или газе на тело
действует сила внутреннего трения, зависящая от
скорости движения тела. При малых скоростях
наблюдается
ламинарное
обтекание
тела
жидкостью или газа и сила внутреннего трения
оказывается
пропорциональной
скорости
движения тела и определяется формулой Стокса
(Джордж Стокс, 1851 г.):
F b l v
,
(5.25)
где b – постоянная, зависящая от формы тела и
его ориентации относительно потока, l –
характерный размер тела.
Для шара (b=6 , l=R) сила внутреннего трения:
F 6 Rv
где R – радиус шара.
,
(5.26)

Раздел механики, который занимается анализом кинематики и механического поведения материалов, моделируемых как непрерывная масса, а не как дискретные частицы.

Механика сплошной среды это филиал механика который имеет дело с механическим поведением материалов, моделируемых как непрерывная масса, а не как дискретные частицы. Французский математик Огюстен-Луи Коши был первым, кто сформулировал такие модели в XIX веке.

Содержание

Объяснение

Моделирование объекта как континуума предполагает, что вещество объекта полностью заполняет пространство, которое он занимает. Такое моделирование объектов игнорирует тот факт, что материя состоит из атомы, и поэтому не является непрерывным; однако на шкалы длины намного больше, чем межатомные расстояния, такие модели обладают высокой точностью. Основные физические законы, такие как сохранение массы, то сохранение импульса, а сохранение энергии могут применяться к таким моделям для получения дифференциальные уравнения описывающих поведение таких объектов, а некоторая информация об исследуемом материале добавляется через учредительные отношения.

Механика сплошной среды имеет дело с физическими свойствами твердых тел и жидкостей, которые не зависят от каких-либо конкретных условий. система координат в которых они наблюдаются. Эти физические свойства затем представлены тензоры, которые являются математическими объектами, обладающими обязательным свойством независимости от системы координат. Эти тензоры могут быть выражены в системах координат для удобства вычислений.

Понятие континуума

Материалы, такие как твердые тела, жидкости и газы, состоят из молекулы разделенные пробелом. В микроскопическом масштабе материалы имеют трещины и неоднородности. Однако некоторые физические явления можно смоделировать, предполагая, что материалы существуют в виде континуум, то есть материя в теле непрерывно распределена и заполняет всю область пространства, которое она занимает.. Континуум - это тело, которое можно непрерывно подразделить на бесконечно малый элементы, свойства которых соответствуют свойствам сыпучего материала.

Справедливость предположения о континууме может быть подтверждена теоретическим анализом, в котором выявляется некая четкая периодичность или статистическая однородность и эргодичность из микроструктура существуют. В частности, гипотеза / предположение континуума опирается на концепции репрезентативный элементарный объем и разделение шкал на основе Условие Хилла – Манделя. Это условие обеспечивает связь между точкой зрения экспериментатора и теоретика на определяющие уравнения (линейные и нелинейные упругие / неупругие или связанные поля), а также способ пространственного и статистического усреднения микроструктуры. [1] [ страница нужна ]

Когда разделение шкал не соблюдается, или когда кто-то хочет установить континуум с более высоким разрешением, чем у размера репрезентативного элемента объема (RVE), он использует элемент статистического объема (SVE), что, в свою очередь, приводит к случайным континуальным полям. Последние затем обеспечивают основу микромеханики для стохастических конечных элементов (SFE). Уровни SVE и RVE связывают механику сплошной среды с статистическая механика. RVE может быть оценен только ограниченным способом посредством экспериментального тестирования: когда конститутивный ответ становится пространственно однородным.

Специально для жидкости, то Число Кнудсена используется для оценки того, в какой степени можно сделать приближение непрерывности.

Автомобильный трафик как вводный пример

Рассмотрим автомобильное движение на шоссе с одной полосой для простоты. Несколько удивительно, но в знак уважения к ее эффективности, механика континуума эффективно моделирует движение автомобилей с помощью уравнение в частных производных (PDE) для плотности автомобилей. Знакомство с этой ситуацией позволяет нам немного понять дихотомию континуум-дискретность, лежащую в основе моделирования континуума в целом.

Сохранение выводит PDE (Уравнение в частных производных)

для всех позиций на трассе.

Этот PDE по сохранению применяется не только к автомобильному движению, но и к жидкостям, твердым веществам, толпам, животным, растениям, лесным пожарам, финансовым торговцам и так далее.

Наблюдение закрывает проблему

Предыдущее уравнение в частных производных представляет собой одно уравнение с двумя неизвестными, поэтому для формирования уравнения необходимо другое уравнение. хорошо поставленная проблема. Такое дополнительное уравнение обычно необходимо в механике сплошных сред и обычно возникает в результате экспериментов. Что касается автомобильного движения, хорошо известно, что автомобили обычно движутся со скоростью в зависимости от плотности движения. ты = V ( ρ ) для некоторой экспериментально определенной функции V это убывающая функция плотности. Например, эксперименты в Линкольн туннель обнаружил, что хорошее прилегание (за исключением низкой плотности) достигается за счет ты = V ( ρ ) = 27.5 пер ⁡ ( 142 / ρ ) (км / час для плотности в машинах / км). [2] [ страница нужна ]

Таким образом, основной континуальной моделью автомобильного движения является PDE.

для плотности автомобиля ρ ( Икс , т ) на шоссе.

Основные направления

Механика сплошной среды
Изучение физики сплошных материалов
Механика твердого тела
Изучение физики сплошных материалов с заданной формой покоя.
Эластичность
Описывает материалы, которые после нанесения возвращаются в исходную форму. подчеркивает удалены.
Пластичность
Описывает материалы, которые необратимо деформируются после значительного приложенного напряжения.
Реология
Изучение материалов как с твердыми, так и с жидкостными характеристиками.
Гидравлическая механика
Изучение физики сплошных материалов, которые деформируются под действием силы.
Неньютоновские жидкости не претерпевают деформаций, пропорциональных приложенному напряжению сдвига.
Ньютоновские жидкости претерпевают деформации, пропорциональные приложенному напряжению сдвига.

Дополнительная область механики сплошных сред включает эластомерные пены, которые демонстрируют любопытную гиперболическую зависимость напряжения от деформации. Эластомер представляет собой настоящий континуум, но однородное распределение пустот придает ему необычные свойства. [3]

Построение моделей

Конкретная частица внутри тела в определенной конфигурации характеризуется вектором положения

Эта функция должна иметь различные свойства, чтобы модель имела физический смысл. κ т ( ⋅ ) (cdot)> должно быть:

    со временем, чтобы тело изменилось реалистично,
  • глобально обратимый все время, чтобы тело не могло пересекаться, , поскольку преобразования, приводящие к зеркальным отражениям, в природе невозможны.

Для математической формулировки модели: κ т ( ⋅ ) (cdot)> также предполагается дважды непрерывно дифференцируемый, так что можно сформулировать дифференциальные уравнения, описывающие движение.

Силы в континууме

Механика сплошной среды имеет дело с деформируемыми телами, в отличие от твердые тела. Твердое тело - это деформируемое тело, обладающее прочностью на сдвиг, sc. твердое тело может выдерживать поперечные силы (силы, параллельные поверхности материала, на которую они действуют). С другой стороны, жидкости не выдерживают поперечных сил. При изучении механического поведения твердых тел и жидкостей предполагается, что они представляют собой сплошные тела, что означает, что материя заполняет всю область пространства, которое она занимает, несмотря на то, что материя состоит из атомов, имеет пустоты и дискретна. Следовательно, когда механика сплошной среды относится к точке или частице в непрерывном теле, она не описывает точку в межатомном пространстве или атомную частицу, а скорее идеализированную часть тела, занимающую эту точку.

Следуя классической динамике Ньютон и Эйлер, движение материального тела вызывается действием приложенных извне сил, которые, как предполагается, бывают двух видов: поверхностные силы F C _ > и телесные силы F B _ > . [4] [ требуется полная цитата ] Таким образом, общая сила F >> нанесенный на тело или часть тела может быть выражен как:

Поверхностные силы

Поверхностные силы или же контактные силы, выраженная как сила на единицу площади, может действовать либо на ограничивающую поверхность тела в результате механического контакта с другими телами, либо на воображаемые внутренние поверхности, ограничивающие части тела, в результате механического взаимодействия между части тела по обе стороны от поверхности (Принцип напряжений Эйлера-Коши). Когда на тело действуют внешние контактные силы, тогда внутренние контактные силы передаются от точки к точке внутри тела, чтобы сбалансировать их действие, согласно Третий закон движения Ньютона сохранения линейный импульс и угловой момент (для сплошных тел эти законы называются Уравнения движения Эйлера). Внутренние контактные силы связаны с деформация через основные уравнения. Внутренние контактные силы можно математически описать тем, как они связаны с движением тела, независимо от материального состава тела. [5] [ требуется полная цитата ]

Суммарное контактное усилие на конкретной внутренней поверхности S тогда выражается как сумма (поверхностный интеграл) контактных сил на всех дифференциальных поверхностях d S :

В механике сплошной среды тело считается свободным от напряжений, если единственные присутствующие силы - это межатомные силы (ионный, металлический, и силы Ван дер Ваальса) требуется, чтобы удерживать тело вместе и сохранять форму при отсутствии всех внешних воздействий, включая гравитационное притяжение. [11] [ требуется полная цитата ] [12] [ требуется полная цитата ] Напряжения, возникающие при изготовлении кузова определенной конфигурации, также исключаются при рассмотрении напряжений в теле. Следовательно, в механике сплошной среды рассматриваются только напряжения, возникающие в результате деформации тела, sc. Учитываются только относительные изменения напряжения, а не абсолютные значения напряжения.

Силы тела

Силы тела силы, возникающие из источников вне тела [13] [ требуется полная цитата ] которые действуют на объем (или массу) тела. Утверждение, что телесные силы возникают из-за внешних источников, означает, что взаимодействие между различными частями тела (внутренние силы) проявляются только через контактные силы. [8] [ требуется полная цитата ] Эти силы возникают из-за присутствия тела в силовых полях, например гравитационное поле (гравитационные силы) или электромагнитное поле (электромагнитные силы) или из инерционные силы когда тела находятся в движении. Поскольку предполагается, что масса сплошного тела непрерывно распределена, любая сила, исходящая от массы, также непрерывно распределена. Таким образом, объемные силы задаются векторными полями, которые считаются непрерывными по всему объему тела, [14] [ требуется полная цитата ] т.е. действуя по каждому пункту в нем. Силы тела представлены плотностью сил тела б ( Икс , т ) (mathbf , t)> (на единицу массы), которое представляет собой безразличное к кадру векторное поле.

В случае гравитационных сил интенсивность силы зависит от плотности массы или пропорциональна ей. ρ ( Икс , т ) (mathbf , t) ,!> материала, и указывается в единицах силы на единицу массы ( б я ,!> ) или на единицу объема ( п я ,!> ). Эти две характеристики связаны через плотность материала уравнением ρ б я = п я = p_ ,!> . Точно так же интенсивность электромагнитных сил зависит от силы (электрический заряд) электромагнитного поля.

Полная сила тела, приложенная к сплошному телу, выражается как

Телесные силы и контактные силы, действующие на тело, приводят к соответствующим моментам силы (крутящие моменты) относительно заданной точки. Таким образом, общий приложенный крутящий момент M >> о происхождении дается

В определенных ситуациях, которые обычно не рассматриваются при анализе механического поведения материалов, возникает необходимость включить два других типа сил: пара стрессов [примечание 1] [заметка 2] (поверхностные пары, [13] [ требуется полная цитата ] моменты контакта) [14] [ требуется полная цитата ] и моменты тела. Парные напряжения - это моменты на единицу площади, приложенные к поверхности. Моменты тела или пары тел - это моменты на единицу объема или на единицу массы, приложенные к объему тела. Оба важны при анализе напряжения поляризованного диэлектрического твердого тела под действием электрического поля, материалов, в которых принимается во внимание молекулярная структура (например кости), твердые тела под действием внешнего магнитного поля и дислокационная теория металлов. [9] [ требуется полная цитата ] [10] [ страница нужна ] [13] [ требуется полная цитата ]

Материалы, которые демонстрируют пары тел и парные напряжения в дополнение к моментам, создаваемым исключительно силами, называются полярные материалы. [10] [ страница нужна ] [14] [ требуется полная цитата ] Неполярные материалы это те материалы, в которых есть только моменты силы. В классических разделах механики сплошных сред развитие теории напряжений основано на неполярных материалах.

Таким образом, сумма всех приложенных сил и моментов (относительно начала системы координат) в теле может быть задана как

Механика сплошных сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвященный движению газообразных, жидких и твёрдых деформируемых тел, а также силовым взаимодействиям в таких телах.

В механике сплошных сред на основе методов, развитых в теоретической механике, рассматриваются движения таких материальных тел, которые заполняют пространство непрерывно, пренебрегая их молекулярным строением. Вместе с тем также считаются непрерывными характеристики тел, такие, как плотность, напряжения, скорости и т. д. Это оправдывается тем, что линейные размеры, с которыми мы имеем дело в механике сплошных сред, значительно больше соответствующих размеров молекул. Минимально возможный объем тела, который позволяет исследовать его некоторые заданные свойства называется представительным объёмом или физически малым объёмом. Данное упрощение даёт возможность применения в механике сплошных сред хорошо разработанного для непрерывных функций аппарата высшей математики. Помимо гипотезы непрерывности принимается гипотеза о пространстве и времени — все процессы рассматриваются в пространстве, в котором определены расстояния между точками, и развиваются во времени, причём в классической механике сплошных сред время течёт одинаково для всех наблюдателей, а в релятивистской — пространство и время связываются в единое пространство-время.

Механика сплошных сред является распространением ньютоновой механики материальной точки на случай непрерывной сплошной материальной среды, и системы уравнений, составляемые для решения различных задач МСС, включают в себя классические законы Ньютона, но в форме, специфической для этой отрасли механики. В частности, фундаментальные физические величины ньютоновой механики масса и сила в уравнениях механика сплошных сред выражаются в удельных формах, соответственно, плотности, и — для твёрдых сред — напряжения, а для газов и жидкостей — давления.

Помимо обычных материальных тел, подобных воде, воздуху или железу, в механике сплошных сред рассматриваются также особые среды — поля: электромагнитное поле, поле излучений, гравитационное поле и другие.

В механике сплошных сред разрабатываются методы сведения механических задач к математическим, то есть к задачам об отыскании некоторых чисел или числовых функций с помощью различных математических операций. Кроме того, важной целью механики сплошной среды является установление общих свойств и законов движения деформируемых тел, и силовых взаимодействий в этих телах.

Под влиянием механики сплошных сред получил большое развитие ряд разделов математики, например, некоторых разделов теории функции комплексного переменного, краевых задач для уравнений в частных производных, интегральных уравнений и другие.

Механика сплошных сред делится на механику твёрдого тела, гидродинамику, газодинамику. Каждая из этих дисциплин также делится на более узкие разделы. Так, механика твёрдого тела делится на теорию упругости, теорию пластичности, теорию трещин и так далее.

Содержание

Аксиоматика механики сплошной среды

  1. Евклидовость пространства. Пространство, в котором рассматривается движение тела — трехмерное точечное евклидово пространство .
  2. Абсолютность времени . Течение времени не зависит от выбора системы отсчёта.
  3. Гипотеза сплошности. Материальное тело — сплошная среда (континуум в пространстве ).
  4. Закон сохранения массы. Всякое материальное тело обладает скалярной неотрицательной характеристикой — массой , которая: а) не изменяется при любых движениях тела, если тело состоит из одних и тех же материальных точек, б) является аддитивной величиной: , где .
  5. Закон сохранения импульса (изменения количества движения).
  6. Закон сохранения момента импульса (изменения момента количества движения).
  7. Закон сохранения энергии (первый закон термодинамики).
  8. Существование абсолютной температуры (нулевое начало термодинамики).
  9. Закон баланса энтропии (второй закон термодинамики).

В неклассических моделях механики сплошных сред эти аксиомы могут заменяться другими. Например, вместо аксиом 1 и 2 может быть использована теория относительности [1] .

Читайте также: