Элементы геометрической и электронной оптики кратко

Обновлено: 02.07.2024

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены.

Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол отражения равен углу i’ падения.

Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред:


О тносительный показатель преломления двух сред равен отношению их абсолютных показателей преломления.

Абсолютным показателем преломления среды называется величина n, равная отношению скорости с электромагнитных волн в вакууме к их фазовой скорости v в среде:

При углах падения i1 > iпp (предельн) весь падающий свет полностью отражается.

Линзы представляют собой прозрачные тела, ограниченные двумя поверхностями, преломляющими световые лучи, способные формировать оптические изоб­ражения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмас­сы и т. п. По внешней форме линзы делятся на: двояковыпуклые; плосковыпуклые; двояковогнутые; плосковогнутые; выпукло-вогнутые; вогнуто-выпуклые.

Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью. Фокусное расстояние линзы определяется по формуле:

называется оптической силой линзы (дптр). Линзы с положительной оптической силой являются собирающими, с отрицательной — рассеивающими. В отличие от собирающей рассеивающая линза имеет мнимые фокусы.

В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающую линзу параллельно главной оптической оси.

Формулу линзы можно записать в виде

Построение изображения предмета в линзах осуществляется с помощью следующих лучей:

луча, проходящего через оптический центр линзы в не изменяющего своего направления;

луча, идущего параллельно главной оптической оси; после преломления в линзе луч (или его продолжение) проходит через второй фокус линзы;

луча (или его продолжения), проходящего через первый фокус линзы; после преломления в ней он выходит из линзы параллельно се главной оптической оси.

2. Основные фотометрические величины и их единицы

Фотометрия — раздал оптики, занимающийся вопросами измерения интенсивности света и сто источников. В фотометрии используются следующие величины:

1) энергетические — характеризуют энергетические параметры оптического излуче­ния безотносительно к его действию на приемники излучения;

Поток излучения Фе, — величина, равная отношению энергии W излучения ко времени t, за которое излучение произошло (Вт). Энергетическая светимость (излучательность) Rе — величина, равная отношению потока излучения Фе, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит (Вт/м2).

Энергетическая сила света (сила излучения) I — величина, равная отношению потока излучения Ф источника к телесному углу , в пределах которого это излучение распространяется (Вт/ср). Энергетическая яркость (лучистость) Ве — величина, равная отношению энергетической силы света Ie элемента излучающей поверхности к площади S проекции этого элемента на плоскость, перпендикулярную направлению наблюдения (Вт/(ср*м 2 )). Энергетическая освещенность (облученность) Ее, характеризует величину потока излучения, падающего на единицу освещаемой поверхности. Единица энергетической освещенности совпадает с единицей энергетической светимости (Вт/м2).


2 ) световые — характеризуют физиологические действия света и оцениваются по воздействию на глаз (всходят из так называемой средней чувствительности глаза) или другие приемники излучения.

Световой поток Ф определяется как мощность оптического излучения по вызываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувствительностью) люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равномерности поля излучения внутри телесного угла) (1 лм=1 кд*ср).

Светимость R определяется соотношением R=Ф/S (лм/м 2 ).

Яркость Вф, светящейся поверхности в некотором направлении  есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:

Освещенность Е — величина, равная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности — люкс (лк): 1 лк — освещенность поверхности, на 1 м которой падает световой поток в 1 лм (1 лк= 1 лм/м 2 ).

Электронно-оптический преобразователь — это устройство, предназначенное для усиления яркости светового изображения и преобразования невидимого глазом изображения объекта (например, в инфракрасных или ультрафиолетовых лучах) в видимое.

Электромагнитные волны (и, в частности, световые волны, или просто свет) – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Световые волны, как и любые другие электромагнитные волны, распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

Формула Скорость электромагнитной волны в некоторой среде

где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10 –12 Ф/м, μ0 = 1,25664·10 –6 Гн/м. Скорость света в вакууме (где ε = μ = 1) постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Формула Скорость электромагнитной волны в вакууме

Скорость света в вакууме является одной из фундаментальных физических постоянных. Если свет распространяется в какой-либо среде, то скорость его распространения также выражается следующим соотношением:

Формула Связь скорости света в вакууме и веществе

где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

Формула Показатель преломления

  • Свет переносит энергию. При распространении световых волн возникает поток электромагнитной энергии.
  • Световые волны испускаются в виде отдельных квантов электромагнитного излучения (фотонов) атомами или молекулами.

Кроме света существуют и другие виды электромагнитных волн. Далее они перечислены по уменьшению длины волны (и соответственно, по возрастанию частоты):

  • Радиоволны;
  • Инфракрасное излучение;
  • Видимый свет;
  • Ультрафиолетовое излучение;
  • Рентгеновское излучение;
  • Гамма-излучение.

Интерференция

Интерференция – одно из ярких проявлений волновой природы света. Оно связано с перераспределением световой энергии в пространстве при наложении так называемых когерентных волн, то есть волн, имеющих одинаковые частоты и постоянную разность фаз. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

Для расчета интерференции используется понятие оптической длины пути. Пусть свет прошел расстояние L в среде с показанием преломления n. Тогда его оптическая длина пути рассчитывается по формуле:

Формула Оптическая длина пути

Для интерференции необходимо наложение хотя бы двух лучей. Для них вычисляется оптическая разность хода (разность оптических длин) по следующей формуле:

Формула Оптическая разность хода двух лучей

Именно эта величина и определяет, что получится при интерференции: минимум или максимум. Запомните следующее: интерференционный максимум (светлая полоса) наблюдается в тех точках пространства, в которых выполняется следующее условие:

Формула Условие интерференционного максимума

Разность фаз колебаний при этом составляет:

Формула Условие интерференционного максимума

При m = 0 наблюдается максимум нулевого порядка, при m = ±1 максимум первого порядка и так далее. Интерференционный минимум (темная полоса) наблюдается при выполнении следующего условия:

Формула Условие интерференционного минимума

Разность фаз колебаний при этом составляет:

Формула Условие интерференционного минимума

При первом нечетном числе (единица) будет минимум первого порядка, при втором (тройка) минимум второго порядка и т.д. Минимума нулевого порядка не бывает.

Дифракция. Дифракционная решетка

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий, размеры которых сопоставимы с длиной волны света (огибание светом препятствий). Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени (то есть быть там, где его быть не должно). Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает 10–15 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50–100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки.

При нормальном падении света на дифракционную решетку в некоторых направлениях (помимо того, в котором изначально падал свет) наблюдаются максимумы. Для того, чтобы наблюдался интерференционный максимум, должно выполняться следующее условие:

Формула дифракционной решетки

где: d – период (или постоянная) решетки (расстояние между соседними штрихами), m – целое число, которое называется порядком дифракционного максимума. В тех точках экрана, для которых это условие выполнено, располагаются так называемые главные максимумы дифракционной картины.

Законы геометрической оптики

Геометрическая оптика – это раздел физики, в котором не учитываются волновые свойства света. Основные законы геометрической оптики были известны задолго до установления физической природы света.

Оптически однородная среда - это среда, во всем объеме которой показатель преломления остаётся неизменным.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Этот закон приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны (в этом случае наблюдается дифракция).

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а частично пройти через границу и распространяться во второй среде.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α. Заметьте, что все углы в оптике измеряются от перпендикуляра к границе раздела двух сред.

Закон преломления света (закон Снеллиуса): падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред, и определяется выражением:

Формула Закон преломления света на границе двух прозрачных сред

Закон преломления был экспериментально установлен голландским ученым В.Снеллиусом в 1621 году. Постоянную величину n21 называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.


Разработка большинства модификаций оптического оборудования основана на законах распространения света. В некоторых закономерностях учитывается двойственная природа света, а в других – нет. Геометрическая оптика – это наука, в которой рассматриваются особенности распространения света, не имеющие общих связей с его природой. Данная дисциплина представляет собой наиболее древнюю часть оптики, как области научных знаний.

Физика

Геометрическая оптика — что изучает предмет

Разработка большинства модификаций оптического оборудования основана на законах распространения света. В некоторых закономерностях учитывается двойственная природа света, а в других – нет. Геометрическая оптика – это наука, в которой рассматриваются особенности распространения света, не имеющие общих связей с его природой. Данная дисциплина представляет собой наиболее древнюю часть оптики, как области научных знаний.

Геометрическая оптика является разделом оптики, в котором изучают распространение света в условиях разнообразных оптических систем, включая линзы и призмы, не принимая во внимание вопрос о природе света.

Одним из ключевых терминов в оптике, включая направление геометрической оптики, является понятие луча.

Световой луч является линией, вдоль которой происходит распространение световой энергии.

Световой луч представляет собой пучок света с толщиной, которая намного меньше, чем расстояние его распространения. Подобное определение можно сравнить с объяснением материальной точки, характерным для кинематики.

Важные закономерности геометрической оптики известны с давних времен. В 430 г. до н.э. Платон вывел закон прямого распространения света. Трактаты Евклида содержат формулировку закона прямолинейного распространения света, а также закон равенства углов падения и отражения. Аристотель и Птолемей проводили исследования в области преломления света. Однако перечисленные научные труды не содержали точные формулировки законов геометрической оптики.

Геометрическая оптика представляет собой предельный случай волновой оптики, в котором длина световой волны приближается к нулевым значениям. Наиболее простые оптические явления такие, как тень и формирование изображений в оптических приборах, рассматривают в рамках геометрической оптики. Основой формального построения научны знаний являются четыре закона, справедливость которых была обоснована опытным путем:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения;
  • закон преломления света.

Анализ этих закономерностей выполнен Х. Гюйгенсом с помощью простого и наглядного метода, который в дальнейшем получил название принцип Гюйгенса.

Свет

Принцип Гюйгенса: любая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Гюйгенс Христиан (1629-1695), нидерландский ученый, который в период с 1665 по 1681 гг. работал в Париже. В 1657 году Гюйгенс изобрел маятниковые часы, дополненные спусковым механизмом, сформулировал закономерности колебаний физического маятника. В 1690 году ученый опубликовал волновую теорию света и представил объяснение двойного лучепреломления. Благодаря его научным исследованиям, был усовершенствован телескоп, сконструирован окуляр. Также Гюйгенс совершил открытие кольца у Сатурна и его спутника Титана. Ученый являлся автором одного из первых учений по теории вероятностей, отмеченного 1657 г.

Основные законы геометрической оптики

Исходя из собственных исследований, Гюйгенс представил объяснение прямолинейности распространения света. Ученый сформулировал закономерности для отражения и преломления света.

Закон прямолинейного распространения света

Данное утверждение является первым законом геометрической оптики. Закон о прямолинейном распространении света гласит, что в условиях однородной прозрачной среды свет распространяется прямолинейно. Согласно теореме Ферма, распространение света происходит в том направлении, время распространения по которому будет минимально.

Доказательством того, что свет в оптически однородной среде распространяется прямолинейно, является тень с резкими границами, которую отбрасывают непрозрачные предметы во время освещения их источниками с небольшими габаритами. Подробные экспериментальные опыты установили нарушение этого закона в случае прохождения света через отверстия очень малого диаметра. При этом степень отклонения от прямолинейности распространения возрастает при уменьшении отверстия.

Солнце

Тень, которую отбрасывает предмет, объясняется прямолинейностью распространения световых лучей в условиях оптически однородной среды. В качестве астрономической иллюстрации данного явления формирования тени и полутени служит затенение одних планет другими. К примеру, затмение Луны можно наблюдать, когда она находится в области тени, отбрасываемой Землей. По причине взаимного перемещения нашей планеты и ее спутника тень от Земли движется по Луне, и лунное затмение можно наблюдать через несколько частных фаз.

Луна

Закон отражения света

Во втором законе геометрической оптики рассматриваются законы отражения света. Основные положения закономерности:

  • отраженный, падающий лучи и перпендикуляр, установленный на границе раздела двух сред, находятся в одной плоскости;
  • углы падения и отражения равны.

Закон отражения

Закон независимости световых пучков заключается в том, что эффект, который производит отдельный пучок, не зависит от одновременного действия остальных пучков или их отсутствия. Если световые пучки разбить на отдельные компоненты, к примеру, используя диафрагму, можно продемонстрировать независимое действие выделенных световых пучков.

Объктив

Закон отражения можно схематично представить на рисунке.

Закон отражения схематично

Вывести закон отражения можно с помощью принципа Гюйгенса. Можно предположить, что плоская волна, то есть фронт волны АВ, распространяясь в вакуумной среде по направлению I со скоростью C, попадает на границу раздела двух сред.

Граница раздела двух сред

В том случае, когда фронт волны АВ достигает отражающую поверхность в точке А, эта точка излучает вторичную волну. Для того чтобы волна прошла расстояние ВС, потребуется затратить время, вычисляемое по формуле:

За такой же промежуток времени фронт вторичной волны достигнет точек полусферы. Ее радиус AD можно определить с помощью формулы:

Положение фронта, характерного для отраженной волны, в рассматриваемый момент времени, согласно принципу Гюйгенса, будет задано с помощью плоскости DC. Направление, в котором распространяется эта волна, определяется лучом II. Согласно равенству треугольников ABC и ADC , сформулирован закон отражения: угол падения α и угол отражения у равны друг другу.

Закон преломления света

Согласно третьему закону геометрической оптики объясняется характер преломления света. Закономерность заключается в следующем:

  • преломленный, падающий лучи и перпендикуляр, который восстановлен в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления является величиной, которая постоянна для данных двух сред и представляет собой показатель преломления(n).

Призма

Показатели интенсивности, которыми обладают отраженный и преломленный лучи, определяются средой и границей раздела.

Закон преломления

Физический смыл показателя преломления можно записать с помощью уравнения:

Показатель преломления представляет собой относительную величину. Это связано с особенностью измерений, которые выполняются относительно двух сред.

В том случае, когда одна из сред является вакуумом, применим принцип Ферма:

где с является скоростью света в вакууме;

n представляет собой абсолютный показатель преломления, который характеризует среду относительно вакуума.

В том случае, когда наблюдается переход света из среды, которая отличается меньшей оптической плотностью, в более плотную среду, скорость света будет снижаться. Оптически более плотной средой называют среду, характеризующуюся меньшей скоростью света. Оптически менее плотная среда представляет собой среду с большей скоростью света.

Применение явления полного отражения на практике

В геометрической оптике используют понятие предельного угла преломления. Данный термин обозначает наибольший угол падения луча, при котором наблюдают преломление в процессе перехода луча в среду с меньшей плотностью.

Преломление

Если углы падения больше, чем предельный угол, то можно рассматривать полное внутреннее отражение.

Закон полного внутреннего отражения

Границы применимости геометрической оптики состоят в необходимости учеты размеров, которыми характеризуются препятствия для света. Параметром света является длина волны, которая составляет примерно \(10^\) метра. В том случае, когда габариты препятствия превышают длину волны, используют размеры геометрической оптики. Явление полного отражения света применяют для конструирования призмы полного отражения.

Полное отражение

Величина преломления стекла составляет n>1.5. Исходя из этого, предельный угол для границы стекло – воздух составляет:

Если свет падает на границу стекло – воздух при угле α больше 42 градусов, можно наблюдать полное отражение. На рисунке изображены призмы полного отражения, благодаря которым можно выполнить следующие действия:

  • поворот луча на 90 градусов;
  • поворот изображения;
  • оборот лучей.

Призмы полного отражения применяют при конструировании оптического оборудования, например, биноклей и перископов. Также данное изобретение используют при сборке рефрактометров, предназначенных для определения показателей преломления тел. Принцип действия устройства таков: согласно закону преломления, измеряют угол α, определяют относительный показатель преломления двух сред, а также абсолютную величину преломления одной из сред при известной величине преломления второй среды.

Оптика

Полное отражение используют в производстве светодиодов. Световые элементы являются тонкими, произвольно изогнутые волокна, изготовленные из оптически прозрачного материала.

Светодиод

В волоконных устройствах используют стеклянные нити со световедущей жилой или сердцевиной, окруженной стеклом или оболочкой из другого стекла, характеризующейся меньшей величиной преломления. Свет, который падает на торец световода под углом, превышающим предельный, подвергается на поверхности раздела сердцевины и оболочки полному отражению и распространяется только вдоль световедущей жилы.

Световоды являются неотъемлемым компонентом при изготовлении телеграфно-телефонных кабелей с большой емкостью. Конструкция включает сотни и тысячи тонких волокон, диаметр которых сравним с толщиной человеческого волоса. Провода служат для передачи до восьмидесяти тысяч телефонных разговоров одновременно. Также световоды активно применяют в производстве электронно-лучевых трубок, электронно-счетных машин, для кодирования данных, в медицинской отрасли в сфере интегральной оптики.

Волокно

Законы геометрической оптики послужили основой для великих изобретений, которые применяются по сей день. Закономерности данной области научных знаний являются неотъемлемой частью образовательных программ многих современных вузов. Если в процессе освоения дисциплин возникают сложности, то студенты всегда могут обратиться за помощью к ресурсу Феникс.Хелп.


Разработка большинства модификаций оптического оборудования основана на законах распространения света. В некоторых закономерностях учитывается двойственная природа света, а в других – нет. Геометрическая оптика – это наука, в которой рассматриваются особенности распространения света, не имеющие общих связей с его природой. Данная дисциплина представляет собой наиболее древнюю часть оптики, как области научных знаний.

Физика

Геометрическая оптика — что изучает предмет

Разработка большинства модификаций оптического оборудования основана на законах распространения света. В некоторых закономерностях учитывается двойственная природа света, а в других – нет. Геометрическая оптика – это наука, в которой рассматриваются особенности распространения света, не имеющие общих связей с его природой. Данная дисциплина представляет собой наиболее древнюю часть оптики, как области научных знаний.

Геометрическая оптика является разделом оптики, в котором изучают распространение света в условиях разнообразных оптических систем, включая линзы и призмы, не принимая во внимание вопрос о природе света.

Одним из ключевых терминов в оптике, включая направление геометрической оптики, является понятие луча.

Световой луч является линией, вдоль которой происходит распространение световой энергии.

Световой луч представляет собой пучок света с толщиной, которая намного меньше, чем расстояние его распространения. Подобное определение можно сравнить с объяснением материальной точки, характерным для кинематики.

Важные закономерности геометрической оптики известны с давних времен. В 430 г. до н.э. Платон вывел закон прямого распространения света. Трактаты Евклида содержат формулировку закона прямолинейного распространения света, а также закон равенства углов падения и отражения. Аристотель и Птолемей проводили исследования в области преломления света. Однако перечисленные научные труды не содержали точные формулировки законов геометрической оптики.

Геометрическая оптика представляет собой предельный случай волновой оптики, в котором длина световой волны приближается к нулевым значениям. Наиболее простые оптические явления такие, как тень и формирование изображений в оптических приборах, рассматривают в рамках геометрической оптики. Основой формального построения научны знаний являются четыре закона, справедливость которых была обоснована опытным путем:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения;
  • закон преломления света.

Анализ этих закономерностей выполнен Х. Гюйгенсом с помощью простого и наглядного метода, который в дальнейшем получил название принцип Гюйгенса.

Свет

Принцип Гюйгенса: любая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Гюйгенс Христиан (1629-1695), нидерландский ученый, который в период с 1665 по 1681 гг. работал в Париже. В 1657 году Гюйгенс изобрел маятниковые часы, дополненные спусковым механизмом, сформулировал закономерности колебаний физического маятника. В 1690 году ученый опубликовал волновую теорию света и представил объяснение двойного лучепреломления. Благодаря его научным исследованиям, был усовершенствован телескоп, сконструирован окуляр. Также Гюйгенс совершил открытие кольца у Сатурна и его спутника Титана. Ученый являлся автором одного из первых учений по теории вероятностей, отмеченного 1657 г.

Основные законы геометрической оптики

Исходя из собственных исследований, Гюйгенс представил объяснение прямолинейности распространения света. Ученый сформулировал закономерности для отражения и преломления света.

Закон прямолинейного распространения света

Данное утверждение является первым законом геометрической оптики. Закон о прямолинейном распространении света гласит, что в условиях однородной прозрачной среды свет распространяется прямолинейно. Согласно теореме Ферма, распространение света происходит в том направлении, время распространения по которому будет минимально.

Доказательством того, что свет в оптически однородной среде распространяется прямолинейно, является тень с резкими границами, которую отбрасывают непрозрачные предметы во время освещения их источниками с небольшими габаритами. Подробные экспериментальные опыты установили нарушение этого закона в случае прохождения света через отверстия очень малого диаметра. При этом степень отклонения от прямолинейности распространения возрастает при уменьшении отверстия.

Солнце

Тень, которую отбрасывает предмет, объясняется прямолинейностью распространения световых лучей в условиях оптически однородной среды. В качестве астрономической иллюстрации данного явления формирования тени и полутени служит затенение одних планет другими. К примеру, затмение Луны можно наблюдать, когда она находится в области тени, отбрасываемой Землей. По причине взаимного перемещения нашей планеты и ее спутника тень от Земли движется по Луне, и лунное затмение можно наблюдать через несколько частных фаз.

Луна

Закон отражения света

Во втором законе геометрической оптики рассматриваются законы отражения света. Основные положения закономерности:

  • отраженный, падающий лучи и перпендикуляр, установленный на границе раздела двух сред, находятся в одной плоскости;
  • углы падения и отражения равны.

Закон отражения

Закон независимости световых пучков заключается в том, что эффект, который производит отдельный пучок, не зависит от одновременного действия остальных пучков или их отсутствия. Если световые пучки разбить на отдельные компоненты, к примеру, используя диафрагму, можно продемонстрировать независимое действие выделенных световых пучков.

Объктив

Закон отражения можно схематично представить на рисунке.

Закон отражения схематично

Вывести закон отражения можно с помощью принципа Гюйгенса. Можно предположить, что плоская волна, то есть фронт волны АВ, распространяясь в вакуумной среде по направлению I со скоростью C, попадает на границу раздела двух сред.

Граница раздела двух сред

В том случае, когда фронт волны АВ достигает отражающую поверхность в точке А, эта точка излучает вторичную волну. Для того чтобы волна прошла расстояние ВС, потребуется затратить время, вычисляемое по формуле:

За такой же промежуток времени фронт вторичной волны достигнет точек полусферы. Ее радиус AD можно определить с помощью формулы:

Положение фронта, характерного для отраженной волны, в рассматриваемый момент времени, согласно принципу Гюйгенса, будет задано с помощью плоскости DC. Направление, в котором распространяется эта волна, определяется лучом II. Согласно равенству треугольников ABC и ADC , сформулирован закон отражения: угол падения α и угол отражения у равны друг другу.

Закон преломления света

Согласно третьему закону геометрической оптики объясняется характер преломления света. Закономерность заключается в следующем:

  • преломленный, падающий лучи и перпендикуляр, который восстановлен в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления является величиной, которая постоянна для данных двух сред и представляет собой показатель преломления(n).

Призма

Показатели интенсивности, которыми обладают отраженный и преломленный лучи, определяются средой и границей раздела.

Закон преломления

Физический смыл показателя преломления можно записать с помощью уравнения:

Показатель преломления представляет собой относительную величину. Это связано с особенностью измерений, которые выполняются относительно двух сред.

В том случае, когда одна из сред является вакуумом, применим принцип Ферма:

где с является скоростью света в вакууме;

n представляет собой абсолютный показатель преломления, который характеризует среду относительно вакуума.

В том случае, когда наблюдается переход света из среды, которая отличается меньшей оптической плотностью, в более плотную среду, скорость света будет снижаться. Оптически более плотной средой называют среду, характеризующуюся меньшей скоростью света. Оптически менее плотная среда представляет собой среду с большей скоростью света.

Применение явления полного отражения на практике

В геометрической оптике используют понятие предельного угла преломления. Данный термин обозначает наибольший угол падения луча, при котором наблюдают преломление в процессе перехода луча в среду с меньшей плотностью.

Преломление

Если углы падения больше, чем предельный угол, то можно рассматривать полное внутреннее отражение.

Закон полного внутреннего отражения

Границы применимости геометрической оптики состоят в необходимости учеты размеров, которыми характеризуются препятствия для света. Параметром света является длина волны, которая составляет примерно \(10^\) метра. В том случае, когда габариты препятствия превышают длину волны, используют размеры геометрической оптики. Явление полного отражения света применяют для конструирования призмы полного отражения.

Полное отражение

Величина преломления стекла составляет n>1.5. Исходя из этого, предельный угол для границы стекло – воздух составляет:

Если свет падает на границу стекло – воздух при угле α больше 42 градусов, можно наблюдать полное отражение. На рисунке изображены призмы полного отражения, благодаря которым можно выполнить следующие действия:

  • поворот луча на 90 градусов;
  • поворот изображения;
  • оборот лучей.

Призмы полного отражения применяют при конструировании оптического оборудования, например, биноклей и перископов. Также данное изобретение используют при сборке рефрактометров, предназначенных для определения показателей преломления тел. Принцип действия устройства таков: согласно закону преломления, измеряют угол α, определяют относительный показатель преломления двух сред, а также абсолютную величину преломления одной из сред при известной величине преломления второй среды.

Оптика

Полное отражение используют в производстве светодиодов. Световые элементы являются тонкими, произвольно изогнутые волокна, изготовленные из оптически прозрачного материала.

Светодиод

В волоконных устройствах используют стеклянные нити со световедущей жилой или сердцевиной, окруженной стеклом или оболочкой из другого стекла, характеризующейся меньшей величиной преломления. Свет, который падает на торец световода под углом, превышающим предельный, подвергается на поверхности раздела сердцевины и оболочки полному отражению и распространяется только вдоль световедущей жилы.

Световоды являются неотъемлемым компонентом при изготовлении телеграфно-телефонных кабелей с большой емкостью. Конструкция включает сотни и тысячи тонких волокон, диаметр которых сравним с толщиной человеческого волоса. Провода служат для передачи до восьмидесяти тысяч телефонных разговоров одновременно. Также световоды активно применяют в производстве электронно-лучевых трубок, электронно-счетных машин, для кодирования данных, в медицинской отрасли в сфере интегральной оптики.

Волокно

Законы геометрической оптики послужили основой для великих изобретений, которые применяются по сей день. Закономерности данной области научных знаний являются неотъемлемой частью образовательных программ многих современных вузов. Если в процессе освоения дисциплин возникают сложности, то студенты всегда могут обратиться за помощью к ресурсу Феникс.Хелп.

Читайте также: