Электрооборудование токарных станков кратко

Обновлено: 30.06.2024

Электрооборудование металлообрабатывающих станков,
токарные станки,общие сведения

Предназначены для обработки поверхностей вращающихся заготовок (изделий) резцами и другими применимыми инструментами.
Основные узлы станка:
• станина, для размещения и крепления оборудования,
• передняя и задняя бабки,
• суппорт,
• шкаф с электрооборудованием.
Станина является несущей конструкцией станка. По ее направляющим перемещается нижняя каретка суппорта и задняя бабка.
Передняя бабка (шпиндельная) совмещена с коробкой скоростей.
Шпиндель имеет полый вал, через который можно пропускать прутковый материал при его обработке.
На шпиндель навертывается патрон или планшайба для закрепления обрабатываемого изделия, а при обработке изделия в центрах — передний центр.
Задняя бабка используется в качестве второй опоры при обработке в центрах длинных деталей.
Она имеет выдвижную пиноль для закрепления заднего центра или инструмента для обработки отверстий (сверла, метчики и др.)
Суппорт используется для закрепления резца и обеспечения продольной и поперечной подач.
Фартук суппорта соединен с нижней кареткой и перемещается вдоль станины. На фартуке размещен механизм, передающий движение от ходового винта или ходового вала коробки подач.
Ходовой винт используется при нарезании резьбы, а ходовой вал - при всех других операциях.
В серийном производстве для обработки деталей сложной формы применяются токарно-револьверные станки.
Процесс обработки включает несколько последовательных операций различными инструментами.
Инструмент закрепляется в револьверной головке, установленной на суппорте.
Суппорт с головкой может быстро перемещаться по направляющим станины в продольном направлении.
Револьверная головка, обычно, шестигранная. Режущий инструмент (резцы, сверла, метчики и др.) крепится в радиальных отверстиях (гнездах) головки, что обеспечивает их быструю смену.
Применение таких станков повышает производительность, по сравнению с токарно-винторезными, до трех раз.
Для обработки наружных и внутренних цилиндрических поверхностей крупных изделий большого диаметра (до 13 м и более) применяются карусельные станки.
Изделие закрепляется на планшайба. Станки имеют два верхних суппорта, расположенных на поперечной траверсе и один боковой суппорт. Суппорты перемещаются вертикально по двум стойкам.
Управление от кнопочного подвесного поста.

Копирование на токарных станках.
Принцип копирования применяется для обработки тел вращения сложной формы (конусной, ступенчатой или криволинейной).
Требуемый профиль воспроизводится по шаблону.
Копирование поверхности производится автоматически копировальным пальцем, который имеет форму резца.
Характер перемещения передается в систему управления, которая вырабатывает сигнал на перемещение суппорта с резцом. Траектория движения резца повторяет траекторию движения копировального пальца
В конце обработки заготовки получается готовая копия шаблона.
По сравнению с универсальными станками, копировальные обладают большей производительностью, а полученные изделия—большей схожестью.
По принципу действия выделяют три основных вида токарных копировальных станков:
• с непосредственным механическим управлением,
• с гидравлическим следящим управлением,
• с электрическим следящим управлением.
Широкое применение получили копировальные системы с электрическим следящим управлением (рис. 4.2-1).
Такой вериант дает представление о принципе действия системы и взаимодействии узлов станка.





Принципиальная электрическая схема управления ЭП токарно-винторезного станка (рис. 4.2-2)


Токарный станок – это станок, который предназначен для обработки металлических, деревянных и прочих заготовок посредством их обтачивания (резания).

На токарных станках выполняется чистовое и черновое точение фасонных, цилиндрических и конических поверхностей, обработка и подрезка торцов, нарезание резьбы, развертывание отверстий, нарезание резьбы, зенкерование, сверление и т.п. Вращение заготовка получает от шпинделя, резец двигается вместе с салазками суппорта от ходового вала или винта, которые получают вращение от механизма подачи. Общая схема токарного станка изображена на рисунке ниже.

Рисунок 1. Схема токарного станка. Автор24 — интернет-биржа студенческих работ

Здесь: 1 - станина; 2 - передняя бабка; 3 - суппорт; 4 - задняя бабка.

Самыми распространенными видами токарных станков являются:

  1. Токарно-винторезный, который используется для работы с черными или цветными металлами.
  2. Токарно-карусельный, который используется для токарной обработки деталей больших размеров.
  3. Лобовой, который используется для обтачивания коротких деталей большого диаметра.
  4. Токарно-револьверный, который используется для обработки деталей из калиброванного прутка.
  5. Автомат продольного точения, которые используются при изготовлении серийных мелких деталей из фасонного профиля, калиброванного прутка и т.п.
  6. Многошпиндельный токарный автомат, который используется при токарной обработки точных и сложных деталей из прутка.
  7. Токарно-фрезерный обрабатывающий центр, который совмещает в себе функции фрезерного и токарного станка.

Электрическое оборудование токарного станка

Как правило, в современных токарных станках малых и средних размеров в качестве главного привода используется привод от короткозамкнутого асинхронного двигателя. Данный привод хорошо конструктивно сочетается с коробкой скоростей станка, а также обладает высокой степенью надежности при эксплуатации и не требует специального обслуживания. В тяжелых токарных станках часто имеет место быть электромеханическое ступенчато-плавное регулирование скоростей основного привода с применением двигателя постоянного электрического тока. Двухзонное или бесступенчатое электрическое регулирование скорости используется в случае автоматизации станков с сложным циклом работы. Данное решение позволяет сильно упростить процесс переналадки станка на любые скорости резания.

Готовые работы на аналогичную тему

Привод подачи средних и малых токарных станков, как правило, осуществляется от главного двигателя, что обеспечивает нарезание резьбы. В этом случае, чтобы регулировать скорость передачи используются многоступенчатые коробки подач. Само переключение ступеней происходит вручную или дистанционно (при помощи электромагнитных фрикционных муфт). В некоторых моделях тяжелых токарных станков в качестве привода подачи применяется отдельный широкорегулируемый электрический привод постоянного тока, а в современных его функции может выполнять асинхронный частотно-регулируемый привод.

В некоторых моделях станков предусмотрено использование вспомогательных приводов, выполняющих следующие функции:

  1. Зажим задней бабки.
  2. Передвижение задней бабки.
  3. Охлаждение насоса.
  4. Быстрое перемещение суппорта.
  5. Перемещение люнета.
  6. Вращение шпинделей съемных приспособлений.
  7. Зажим деталей.
  8. Перемещение блоков зубчатых колес коробки скоростей.
  9. Перемещение движка регулировочного реостата.

Для того, чтобы переключать скорости шпинделя и управлять подачей суппорта в токарных станках предусмотрены электромагнитные муфты. Современные токарные станки оснащаются разнообразными устройствами и приборами автоматизации, задачи которых заключаются в автоматическом отводе резца по окончании обработки детали или заготовки, отключение двигателя во время перерыва в работе станка, электрическом копировании, а также программном цикловом и числовом управлении. Для контроля и сигнализации в состав токарного станка могут входить тахометры, ваттметры, амперметры, приборы контроля температуры подшипников, устройства контроля наличия смазки и приборы для определения скорости резания.

Тахометр - устройство для измерения частоты вращения вращающихся деталей.

Сущность электрического копирования заключается в том, что необходимы профиль изделия воспроизводится по подготовленному заранее шаблону или по ранее обработанной детали. Во время копирования по подготовленному контуру шаблона двигается копировальный палец, форма которого такая же, как и у резца. Перемещение пальца происходит автоматически, через систему управления станком передаются суппорту с резцом таким образом, чтобы траектория перемещения резца совпадала с траекторией копировального пальца. Использование станков с функцией копирования позволяет значительно увеличить повторяемость деталей по размерам и форме, а также производительность труда.


Для обеспечения высокой надежности в работе и обслуживания электрооборудования токарного станка 16К20 специалистами средней квалификации вся релейно — контакторная аппаратура и другие электроаппараты имеют простую конструкцию и испытаны многолетней эксплуатацией в различных условиях. Электроаппаратура (за исключением нескольких аппаратов) смонтирована в шкафу управления, расположенном с задней стороны станка. Электрооборудование станка предназначено для подключения к трехфазной сети переменного тока с глухо заземленным или изолированным нейтральным проводом.

Основные параметры электрооборудования

Потребляемая мощность, кВт — 11

Напряжение сети, В — 380

Напряжение в цепи управления, В — 110

Напряжение в цепи местного освещения, В — 24

Частота, герц — 50

Описание электрической схемы

Пуск электродвигателя главного привода M1 и гидростанции М4 осуществляется нажатием кнопки S4 (рис. 1), которая замыкает день катушки контактора К1, переводя его на самопитание. Останов электродвигателя главного привода Ml осуществляется нажатием кнопки S3. Управление электродвигателем быстрого перемещения каретки и суппорта М2 осуществляется нажатием толчковой кнопки, встроенной в рукоятку фартука и воздействующей на конечный выключатель S8. Пуск и останов электронасоса охлаждения М3 производятся переключателем S7. Работа электронасоса сблокирована с электродвигателем главного привода M1, и включение его возможно только после замыкания контактов пускателя К1.

Для ограничения холостого хода электродвигателя главного привода в схеме имеется реле времени КЗ. В средних (нейтральных) положениях рукояток включения фрикционной муфты главного привода замыкается нормально закрытый контакт конечного выключателя S6 и включается реле времени К3, которое через установленную выдержку времени отключит своим контактом электродвигатель главного привода. Производить перестройку выдержки времени в рабочем состоянии реле категорически запрещается.

Защита электродвигателей главного привода, привода быстрого перемещения каретки и суппорта, электронасоса охлаждения и трансформатора от токов коротких замыканий производится автоматическими выключателями и плавкими предохранителями.

Защита электродвигателей (кроме электродвигателя М2) от длительных перегрузок осуществляется тепловыми реле.

Нулевая защита электросхемы станка, предохраняющая от самопроизвольного включения электропривода при восстановлении подачи электроэнергии после внезапного ее отключения, осуществляется катушками магнитных пускателей.












Конструктивные особенности

Независимо от технических характеристик в состав токарных установок входит примерно один и тот же набор узлов и агрегатов:

  1. Станина. Это сварная или литая конструкция для размещения всех остальных механизмов. Она устанавливается на виброопоры или крепится анкерными болтами к бетонному полу цеха. На станине монтируется передняя бабка и горизонтальные направляющие.
  2. Передняя бабка. Внутри нее находится главный привод, коробка скоростей и шпиндель. Для зажима заготовки используется кулачковый патрон или планшайба, которые крепят на конец шпинделя.
  3. Задняя бабка. Расположена на продольных направляющих напротив передней бабки. Предназначена для фиксации второго конца заготовок или закрепления инструмента для работы с цилиндрическими и коническими отверстиями.
  4. Суппорт. Служит для позиционирования резца или поворотной инструментальной головки. В его состав входят каретка, поперечные салазки, верхние салазки, резцедержатель и механизм, обеспечивающий перемещение этих устройств.


Конструкция токарного станка с ЧПУ

Эти агрегаты дополняют устройства регулировки вращения главного привода и скорости перемещения режущего инструмента. При ручном механическом управлении — это коробка скоростей и коробка подач, а также гитара — сменный набор шестерен для изменения скорости подачи или шага резьбы. В современных установках вместо механических приводов применяют раздельные электроприводы (главный, отдельных осей, дополнительных устройств) с цифровым управлением.











Система СОЖ орошает рабочую зону смазочно-охлаждающей жидкостью (СОЖ), которая охлаждает обрабатываемый металл и инструмент, а также улучшает условия резания. Транспортеры стружкоудаления отводят металлическую стружку из рабочей зоны и доставляют ее в накопительные контейнеры.

Главное отличие механообработки с использованием ЧПУ от выполнения технологических операций в ручном режиме — это не только программное управление перемещениями и режимами резания, но и полная автоматизация всех вспомогательных операций. Конструкция токарного станка с ЧПУ позволяет управлять не только позиционированием и работой инструмента, но и такими вспомогательными действиями, как:

  • зажим заготовки;
  • позиционирование револьверной головки;
  • включение и выключение системы охлаждения;
  • управление транспортером стружкоудаления;
  • блокировка и разблокировка защитного ограждения.

При разработке CNC-программ применяют программное обеспечение, которое позволяет генерировать последовательность команд для вычисления траектории резца на основании чертежа в электронном формате DXF. Технологу-программисту остается только задать параметры режущей кромки и режимы резания. Большинство современных систем ЧПУ отображают такие чертежи на своем экране, что очень удобно для корректировки программы при ее отладке или пробном изготовлении детали.

Спецификация электрооборудования

  • Р – Указатель нагрузки Э38022 на номинальный ток 20 А
  • F1 – Выключатель автоматический АЕ-2043-12, 1PОO, расцепитель 32 А, с катушкой независимого расцепителя 110 В, 50 Гц, отсечка 12 (Ag—9,489 г)
  • F2 – Автомат АЕ-20-33-10
  • F3, F4 – Е2782—6/380 – плавкая вставка в предохранитель
  • F5 – ТРН-40 – реле тепловое
  • F6, F7 – ТРН-10 – реле тепловое
  • Н1 – устройство предохранительное светосигнальное УПС-3
  • Н2 – НКСО1Х100/П00-09 – лампа накаливания С24-25.
  • Н3 – КМ24-90 – коммутаторная лампа накаливания
  • К1 – ПАЕ-312 – магнитный пускатель
  • К2 – ПМЕ-012 – магнитный пускатель
  • КЗ – РВП72-3121-00У4 – реле времени пневматическое (Лимит работы электромотора главного движения без нагрузки)
  • К4 – РПК-1—111 – пускатель двигателя
  • М1 – Электродвигатель главного движения 4А132 М4, номинальной мощностью 11 кВт
  • М2 – 4А71В4 – электродвигатель (ускоренное смещение суппорта)
  • М3 – электронасос типа ПА-22 (подача эмульсии)
  • М4 – 4А80А4УЗ – асинхронный электродвигатель
  • S1 – ВПК-4240 – выключатель путевой (Дверца распределительного устройства)
  • S2 – ПЕ-041 – поворотный переключатель управления (деблокирующий S1)
  • S3 и S4 – ПКЕ-622-2 – пост управления кнопочный
  • S5 – МП-1203 – микровыключатель
  • S6 – ВПК-2111 – концевой выключатель нажимной
  • S7 – ПЕ-011 – поворотный переключатель управления
  • S8 – ВПК-2010 выключатель путевой нажимной
  • Т – ТБСЗ-0,16 – трансформатор однофазный понижающий

Органы управления

На лицевой стороне шкафа управления имеются следующие органы управления:

  • рукоятка включения и отключения вводного автоматического выключателя с максимальным и дистанционным расцепителями;
  • сигнальная лампа с линзой белого цвета, сигнализирующая о включенном состоянии вводного автоматического выключателя; переключатель для включения и отключения электронасоса охлаждения;
  • указатель нагрузки, показывающий загрузку электродвигателя главного привода.

На каретке установлена кнопочная станция пуска и останова электродвигателя главного привода. В рукоятке фартука встроена кнопка включения электродвигателя привода быстрых перемещений суппорта.

Программирование токарного оборудования

Система ЧПУ токарного станка управляет обработкой детали в соответствии с программой, составленной технологом-программистом. Эти программы пишутся на языке G-code (стандарт RS274), разработанном специально для установок, управляемых с помощью числового программного управления.

Программа на G-code состоит из последовательных нумерованных блоков, называемых кадрами. Каждый такой блок содержит набор команд, на основании которых совершается элементарное технологическое действие, например, позиционирование резца в исходную точку или его движение с определенной подачей и оборотами вглубь металла. Перемещение режущей кромки по заданной программе производится в инкрементной системе координат. Это означает, что координаты каждой последующей точки указываются в виде приращения к координатам предыдущей позиции инструмента. И только выход на исходное положение задается в начале программы в абсолютных координатах.


Программирование станков с ЧПУ

Первая группа — это подготовительные команды, которые задают:

  • систему координат и рабочую плоскость;
  • точку начала координат;
  • тип движения (ускоренное, рабочее);
  • вид траектории движения (линейное, круговое);
  • координаты позиционирования;
  • значение подачи и оборотов шпинделя;
  • переход к сверлению и нарезанию резьбы;
  • значение коррекции инструмента (по радиусу и по длине).

Группа M-команд — это вспомогательные команды. Они управляют электромеханическими и гидравлическими устройствами, а также выполнят служебные функции внутри программы. Чаще всего применяют следующие M-команды:










  • включение шпинделя и задание ему направления вращения;
  • остановка вращения шпинделя;
  • автоматическая смена инструмента (поворот инструментальной головки);
  • ручная смена инструмента;
  • включение и выключение подачи СОЖ.


Принцип числового программного управления токарным станком

В отличие от фрезерных, в токарных станках вращается не инструмент, а заготовка. Поэтому программирование для их систем CNC имеет некоторые особенности. Во-первых, перемещение в радиальном направлении задается по оси X, а в продольном — по оси Z. Во-вторых, при составлении программ ЧПУ параметры задаются в миллиметрах на оборот, а не в миллиметрах в секунду, как при операциях фрезерования.

Электрооборудование металлорежущих станков отличается разнообразием, сложностью и высоким уровнем автоматизации. Наиболее массовым видом металлорежущего оборудования является сравнительно небольшое число типов станков общепромышленного назначения, повсеместно распространенных на предприятиях самого различного профиля. К ним относятся универсальные станки широкого назначения для точения, сверления, нарезания резьбы и т. д.

Электрооборудование таких станков обычно однотипно и определяется использованием простых электроприводов ограниченной мощности. В системах управления широко применяют серийную электроаппаратуру (магнитные и тиристорные пускатели, автоматические выключатели, разнообразные реле и т. п.).

В качестве примера рассмотрим основные части и электрическую схему универсального токарно-винторезного станка 1К62 (рис. 143).

Общий вид и схема управления токарно-винторезного станка 1К62


Рис. 143. Общий вид (а) и схема управления (б) токарно-винторезного станка 1К62:
1 — передняя бабка; 2 — шпиндель; 3 — суппорт; 4 — задняя бабка; 5 — шит управления; 6 — ходовой винт; 7 — вал; 8 — коробка подачи; 9 — станина

Привод шпинделя 2, ходовых винта 6 и вала 7 осуществляется через коробку скоростей, расположенную в передней бабке 1, и коробку подач 8 от главного электродвигателя М 1, скрытого внутри станины 9. Мощность Ml составляет 10 кВт. Кроме главного двигателя станок оборудован электродвигателем М4 (электродвигатель быстрых ходов установочных перемещений суппорта 3), электродвигателем насоса охлаждения М2 и электродвигателем привода гидросистемы М3, подключаемым с помощью штепсельного разъема ШР. Двигатель М3 используют тогда, когда на станке применяется гидрокопировальное устройство. Задняя бабка 4 станка служит для установки второго поддерживающего центра (при обработке в центрах) или режущего инструмента для обработки отверстий (сверла, метчика, развертки). Резцы устанавливают в головке суппорта, сообщающего им продольную и поперечную подачу.

Напряжение на станок подается включением пакетного выключателя Q1. Питание цепи управления осуществляется через разделительный трансформатор Т с вторичным напряжением 110 В.

Двигатель М1 запускается кнопкой SВП, с нажатием которой включается контактор КМ. Одновременно с Ml запускается двигатель М2 (двигатель насоса охлаждения) при включенном пакетном выключателе Q2 и М3 (двигатель гидросистемы) при включенном штепсельном разъеме ШР.

Работа двигателя Ml на холостом ходу ограничивается выдержкой времени реле КТ. Обмотка реле КТ включается переключателем SO, замыкающим контакты при остановке шпинделя. Если пауза в работе превышает 3 — 8 мин, то контакт реле КТ размыкается и на контактор КМ питание не подается, и двигатель Ml останавливается, ограничивая тем самым работу холостого хода, уменьшая потери электроэнергии.

Работа двигателя М4 зависит от перемещения суппорта, который нажимает на переключатель SAB, через контакт замыкает цепь катушки контактора КМБ и включает двигатель. Возврат рукоятки суппорта в среднее положение приводит к отключению двигателя М4.

Трансформатор Т обеспечивает освещение станка напряжением 36В. Защита от коротких замыканий осуществляется предохранителями F1 — F5, а от перегрузок — тепловым реле KST1, KST2 и KST5. Двигатель М4 работает кратковременно и в защите от перегрузок не нуждается.

Электрооборудование сварочных установок

Среди большого разнообразия сварочных электроустановок широкое общепромышленное применение получили установки электродуговой сварки.

Наиболее простыми являются сварочные установки (посты) для ручной дуговой сварки. Основу электрооборудования такого сварочного поста составляет источник сварочного тока. В качестве источников применяют специальные сварочные трансформаторы, выпрямители и электромашинные преобразователи переменного тока в постоянный. Кроме источника тока в состав сварочного поста входят распределительный щит, соединительные гибкие провода и электрододержатель.

Сварочные трансформаторы по конструктивным и электромагнитным схемам подразделяют на трансформаторы: с отдельным дросселем, с совмещенным дросселем, с подвижными обмотками, с магнитным шунтом и с подмагничиванием постоянным током. Дроссели, магнитные шунты, подвижные обмотки или подмагничивание постоянным током используют в этих трансформаторах для регулировки сварочного тока.

Сварочный трансформатор с подвижными катушками


Рис. 144. Сварочный трансформатор с подвижными катушками

Наиболее часто применяют трансформаторы с подвижными обмотками, как наиболее простые и надежные (рис. 144). Сердечник такого трансформатора — стержневого типа, шихтованный. Первичная и вторичная обмотки — слоевые, с развитой поверхностью охлаждения. Каждая обмотка состоит из двух катушек, которые могут соединяться последовательно и параллельно. На магнитопроводе 1 расположены неподвижная первичная 4 и подвижная вторичная 3 обмотки, которые ходовым винтом с помощью рукоятки регулирования тока 2 перемешаются вдоль магнитопровода, изменяя магнитный поток рассеяния, а следовательно, сварочный ток. Для повышения коэффициента мощности служит конденсатор 5.

Сварочный выпрямитель


Рис. 145. Сварочный выпрямитель:
а — внешний вид; б — электрическая схема.

Сварочные выпрямители (рис. 145) применяют при сварке на постоянном токе, представляющем более широкие технологические возможности, чем переменный ток. Основными составными частями выпрямителей являются трехфазный трансформатор, состоящий из неподвижных 3 и подвижных 2 катушек с регулировкой напряжения и блок ВБ полупроводниковых вентилей 1, собранных по схеме трехфазного моста. Сварочный ток изменяется рукояткой 5. Для охлаждения сварочною агрегата используют электровентилятор 4.

Все более широкое распространение получает полуавтоматическая сварка в среде защитных газов и под флюсом. При полyaвтоматической сварке механизирована подача сварочной проволоки в зону сварки. Одним из наиболее простых по конструкции и управлению является шланговый полуавтомат ПШ для сварки под флюсом (рис. 146).

Электрическая схема шагового сварочного полуавтомата ПШ


Рис. 146. Электрическая схема шагового сварочного полуавтомата ПШ

В электроприводе подающего механизма использован асинхронный электродвигатель М с короткозамкнутым ротором. Двигатель через редуктор (на схеме не показан) связан с ведущим роликом ВР механизма подачи сварочной проволоки СП. Питание двигателя осуществляется от двух однофазных трансформаторов Т1 и Т2, понижающих напряжение до безопасного значения (42 В). Реверс двигателя для установочных ходов механизма подачи осуществляется с помощью переключателя ПР. Ступенчатая регулировка скорости подачи проволоки производится изменением передаточного отношения редуктора механизма.

Для управления полуавтоматом используется однокнопочный пост SB, смонтированный на рукоятке горелки. При нажатии SB срабатывает промежуточное реле Р, которое включает двигатель подачи М и силовой контактор КМ. Во время работы полуавтомата кнопка SB, не имеющая самоблокирования, должна быть нажата. При отпускании SB сварочный трансформатор отключается. Общий выключатель и аппараты на схеме не показаны.

При сварочных работах выполняют ряд условий по соблюдению правил охраны труда и техники безопасной работы. Если электросварочные работы проводят внутри помещений, то они должны быть хорошо вентилируемые. Электросварщик должен работать в специальной одежде (брезентовом костюме, рукавицах, ботинках), для защиты глаз и лица использовать щиток-шлем или маску с защитными стеклами.

Сварочный агрегат и его аппаратуру осматривают и чистят не реже одного раза в месяц. Ремонт сварочного оборудования выполняют в соответствии с графиком, утвержденным главным энергетиком предприятия.

При текущих ремонтах установки измеряют сопротивление изоляции электрических цепей, а после капитального ремонта изоляцию испытывают на электрическую прочность.

Электролизные установки

Электролиз — это электрохимический процесс окисления-восстановления на погруженных в электролит электродах при прохождении через него электрического тока. Электролиз осуществляют в специальных аппаратах-электролизерах.

Электролизер представляет собой сосуд или систему сосудов, наполненных электролитом с размещенными в нем электродами — катодом и анодом, —соединенными соответственно с отрицательным и положительным полюсами источника постоянного тока. Процесс электрохимического окисления происходит на аноде, а восстановление — на катоде. Аноды изготовляют из графита, углеграфитового материала, окислов некоторых металлов, свинца и его сплавов, а катоды — из стали.

Современные крупные электролизные установки имеют нагрузку до 500 кА. В промышленности с помощью электрохимических процессов в электролизных установках получают простые и сложные вещества. Электролиз является основным методом промышленного получения алюминия, едкого натра, хлора и др. Путем электролиза воды получают кислород и водород. Электролиз применяют также для обработки поверхностей гальванопокрытиями (катодные процессы), полировки, травления, анодирования (анодные процессы) металлических изделий.

Металлопокрытие проводят в гальванических ваннах при напряжении 3,5 — 24 В и токах до 500 А. Электропитание ванн осуществляют от общих магистралей преобразователей, а регулирование напряжения и тока — с помощью реостатов. Если от одного генератора питается несколько ванн, то их включают параллельно с установкой реостата у каждой ванны. Шинопровод выполняют, как правило, из алюминиевых шин со сварными контактными соединениями, имеющими меньшее переходное сопротивление, чем болтовые соединения контактов.

Обслуживание электролизных установок заключается в организации периодических осмотров, измерений сопротивления изоляции всех частей установки и проведении ремонтов в соответствии с графиками ППРЭО.

Внешний осмотр установок дежурный электромонтер проводит ежесменно. При осмотре обращается внимание на температуру контактных соединений, состояние шинопроводов, отсутствие замыканий в цепи анодов и катодов, состояние поверхности изоляции шинопроводов (изоляторов, прокладок, клиц и т. д.), наличие и исправность защитных приспособлений. Кроме того измеряют потенциал на концах линий электролизных ванн по отношению к земле.

Сопротивления изоляции всех частей установки измеряют не реже одного раза в три месяца.

Капитальный ремонт всех токопроводящих элементов электролизных установок проводят не реже одного раза в год, а для тех участков, которые находятся в зоне высоких температур или подвергаются коррозии, механическим воздействиям, периодичность может быть уменьшена и устанавливается местной инструкцией.

Электротермические установки

Электрические печи служат для нагревания, расплавления или обработки металлов за счет теплового эффекта электрических явлений. По способу преобразования электрической энергии в тепловую различают печи дуговые, индукционные и сопротивления.

В состав электропечной установки входят электрическая печь, электропечной трансформатор, выпрямитель, генератор повышенной частоты; коммутационное оборудование (выключатель, разъединитель и т. д.) и вспомогательное оборудование (дроссели, конденсаторы, анодные выпрямители и др.). Электрические печи являются энергоемкими установками.

Дуговые электропечи применяют для плавки стали, чугуна, меди и других металлов. Мощность этих печей достигает 80000 кВт. Участок электросети от трансформатора до электродов печи состоит из шин, гибких соединений и токопровода. В этой сети ток достигает несколько десятков тысяч ампер.

Индукционные однофазные печи (рис. 147) работают при различных частотах тока (50-75 000 Гц). Нагрев происходит за счет токов, индуктируемых в металле.

Схема установки индукционного нагрева


Рис. 147. Схема установки индукционного нагрева:
1 — источник питания; 2 — конденсатор; 3 — индуктор; 4 — нагреваемое тело; 5 — тигель.

Индукционные печи нормальной частоты представляют собой трансформатор, в котором роль вторичной обмотки выполняет металлическая ванна в виде замкнутого кольца. Мощность этих печей достигает 17000 кВт.

Широкое применение имеют установки индукционного нагрева для сушки электрических машин, аппаратов, подогрева жидкостей в трубопроводах и т. д. Печи, работающие с частотой 2500 — 8000 Гц, используются для закалки металлов.

Осмотр электропечных установок производят ежедневно. Во время осмотров удаляют пыль, грязь, проверяют состояние контактов электроде держателей, шинопроводов, кабелей, проводов, смазку механизмов. Особое внимание обращают на работу и состояние блокировочных устройств: нарушение их работы может привести к нарушению технологии, поломке оборудования и к несчастным случаям. Периодически в дуговых печах очищают окалину с контактных поверхностей электрододержателей, из трансформаторов печных установок отбирают для анализа пробы масла.

При осмотре печей сопротивления обращают внимание на работу нагревательных элементов. Работа печей с неисправными нагревательными элементами, с нагревателями, установленными на другие марки сплава; отключенными элементами; неравномерной нагрузкой по фазам на печах с керамическими нагревателями не допускается. Каждая установка электрической печи сопротивления должна иметь инструкцию по обслуживанию. Весь обслуживающий персонал проходит специальное обучение по эксплуатации этих печей и соблюдению правил охраны труда.

Ремонты электропечных установок проводят в соответствии с графиком, установленным главным энергетиком предприятия.

Аккумуляторные батареи

Основными частями кислотного аккумулятора являются бак с электролитом и свинцовые пластины, изолированные друг от друга сепараторами. В качестве положительных используют свинцовые пластины с большим числом ребер, увеличивающих рабочую поверхность, а в качестве отрицательных — пластины коробчатой формы. Электролит представляет собой смесь серной кислоты с дистиллированной водой. Для пополнения в аккумуляторах электрической энергии служат зарядные и подзарядные устройства.

Как правило, аккумуляторные батареи эксплуатируются и режиме постоянного подзаряда. В этом случае заряженную батарею включают на шины параллельно с постоянно работающим зарядным устройством. Метод постоянного подзаряда повышает надежность работы электроустановки, обеспечивает резерв в случае выхода из строя зарядного устройства. Аккумуляторную батарею поддерживают в полностью заряженном состоянии. Уровень напряжения на каждом элементе должен быть 2,1 —2,2 В. Плотность электролита поддерживают на уровне 1,24.

Щелочные аккумуляторы подразделяются на кадмиево-никелевые и железо-никелевые. Баки изготовляют из никелированного железа. Электролит составляют в стальной или эмалированной посуде и заменяют ежегодно. Для этого аккумуляторы разряжают до напряжения 1 В, сливают электролит, промывают дистиллированной водой и сразу заливают свежим электролитом. Через 2 ч проверяют плотность электролита и доводят до нормы (при t = 20 °С она должна быть равна 1.19—1,21) и включают на зарядку. В начале зарядки напряжение аккумулятора резко повышается с 1 В до 1,6 В, потом медленно возрастает до 1,75 В. Окончанием заряда является установившееся напряжение в течение 20 — 30 мин (у железо-никелевых — 1,8—1,9 В и у кадмиево-никелевых 1,75—1,85 В).

При обслуживании аккумуляторных установок строго соблюдают правила эксплуатации по обеспечению исправной и безаварийной работы и безопасному ее обслуживанию. В помещении аккумуляторных батарей поддерживают чистоту и следят за работой приточно-вытяжной вентиляции. Вентиляция должна быть включена во все время зарядки батареи и 1,5 — 2 ч после ее окончания.

В этих помещениях запрещено устанавливать предохранители, штепсельные розетки, автоматы, люминесцентные лампы, выключатели, у которых может образоваться искра.

Осмотр батарей проводят в следующие сроки: дежурный электромонтер — ежедневно, мастер — два раза в месяц, специалист-аккумуляторщик — по графику.

Все металлические части в помещении батареи окрашивают кислотоупорной краской. Покрашенные и непокрашенные шины аккумуляторных батарей смазывают вазелином.

При работах с кислотой или щелочью обязательно следует надевать костюм из грубой шерсти, защитные очки, резиновые перчатки, брюки костюма заправлять поверх голенищ резиновых сапог. Переносить бутыли с кислотой или щелочью необходимо вдвоем на специальных носилках, в которых бутыль закреплена. Во время составления раствора кислоту следует лить тонкой струей в сосуд с дистиллированной водой (а не наоборот!). Пораженные кислотой участки кожи промывают струей холодной воды и нейтрализуют 5 %-ным раствором соды, а при ожоге щелочью — промывают струей воды и нейтрализуют раствором борной кислоты.

Читайте также: