Электронная теория это кратко

Обновлено: 05.07.2024

Интерпретация разных свойств вещества с точки зрения движения и существования электронов является содержанием электронной теории. Эту теорию создал Друде, а доработал Лоренц. Он исходил из того, что электроны в металле ведут себя как молекулы идеального газа. В классической теории металлов считают, что движение электрона описывают законы Ньютоновой механики.

В этой теории считают, что взаимодействие электронов между собой несущественно, а взаимодействие ионов и электронов осуществляется только как соударения.

В промежутках между соударениями электроны движутся свободно, проходя в среднем путь $\lambda $. Взаимодействия электронов и ионов (их соударения) ведут к тому, что кристаллическая решетка и электронный газ приходят в состояние теплового равновесия. На электронный газ Друде распространил результаты кинетической теории газов.

Так, например, среднюю скорость движения электронов делают в соответствии с формулой:

где $k$ -- постоянная Больцмана, $m_e$ -- масса электрона.

В том случае, если проводник находится во внешнем электрическом поле, то на тепловое движение электронов накладывается упорядоченное движение с некоторой скоростью $\left\langle u\right\rangle .$ Размер этой скорости можно оценить из формулы:

\[j=nq_e\left\langle u\right\rangle \left(2\right),\]

где $n$ -- концентрация свободных электронов, $q_e$ -- величина заряда электрона, $j$ -- плотность тока. Расчеты показывают, что $\left\langle u\right\rangle \approx ^\frac$, тогда как $\left\langle v\right\rangle \approx ^5\frac$ . Получается, что при больших плотностях тока средняя скорость упорядоченного движения электронов в $^8$ раз меньше, чем их средняя скорость хаотического движения. Следовательно, если требуется вычислить модуль суммарной скорости, то полагают, что:

Определим, насколько внешнее электрическое поле изменяет среднее значение кинетической энергии электронов. Средний квадрат суммарной скорости равен:

\[\left\langle <\left(\overrightarrow+\overrightarrow\right)>^2\right\rangle =\left\langle v^2+2\overrightarrow\cdot \overrightarrow+u^2\right\rangle =\left\langle v^2\right\rangle +\left\langle 2\overrightarrow\cdot \overrightarrow\right\rangle +\left\langle u^2\right\rangle \left(4\right),\]

То, что электроны будут иметь скорость теплового движения равную $\left\langle v\right\rangle ,\ $а скорость упорядоченного движения составит $\left\langle u\right\rangle $ -- независимые события, следовательно, из теоремы об умножении вероятностей можно записать, что:

\[\left\langle \overrightarrow\cdot \overrightarrow\right\rangle =\left\langle \overrightarrow\right\rangle \cdot \left\langle \overrightarrow\right\rangle \left(5\right).\]

Но мы знаем, что $\left\langle \overrightarrow\right\rangle =0$, значит выражение (4) примет вид:

\[\left\langle <\left(\overrightarrow+\overrightarrow\right)>^2\right\rangle =\left\langle v^2\right\rangle +\left\langle u^2\right\rangle \left(6\right).\]

Можно сделать вывод о том, что наложение внешнего поля увеличивает кинетическую энергию электронов в среднем на величину, равную:

Друде считал, что при соударении электрона с ионом, энергия, представленная в выражении (7) передается от электрона иону, при этом скорость электрона после удара становится равной нулю. Исходя из этой предпосылки Друде получал закон Ома в виде:

где величина, которая стоит перед напряженностью электрического поля (E), есть не что иное, как коэффициент удельной проводимости ($\sigma $), равный:

Поучилось, что по классической электронной теории электросопротивление металлов вызвано соударениями электронов об ионы, в узлах кристаллической решетки.

Также, классическая теория объяснила закон Джоуля -- Ленца. Опять - таки, соударениями электронов с ионами решетки, и выделением тепла в их результате.

Эта теория дала качественное толкование закона Видемана -- Франца исходя из посыла о том, что теплопередача осуществляется в металле не кристаллической решеткой, а свободными электронами и рассматривая эти электроны как одноатомный газ. При этом было использовано выражение для коэффициента теплопроводности из кинетической теории газов.

Однако эта теория не смогла объяснить все явления связанные с поведением металлов в электрических полях. Так, например, не было дано объяснение того, что электросопротивление металлов растет пропорционально температуре в первой степени. Следующая серьезная проблема, с которой столкнулась классическая теория электронной проводимости, было объяснение того, что теплоемкость металлов несущественно отличается от теплоемкости неметаллических кристаллов (тогда как согласно классической теории получалось, что молярная теплоемкость металла должна быть в 1,5 раза больше, чем у диэлектриков).

Опыты Толмена и Стюарта

Прямое доказательство того, что электрический ток в металлах вызван движением электронов было сделано в опытах Толмена и Стюарта (1916 г.). Идея этих опытов была выдвинута Мандельштамом и Папалески еще в 1913 г.

Проводящая катушка может вращаться вокруг своей оси. Концы катушки замыкают на гальванометр посредством скользящих контактов. Катушку, вращающуюся с высокой скоростью, резко тормозят. При этом свободные электроны продолжают по инерции двигаться. Гальванометр регистрирует импульс тока.

Если через $\dot$ обозначить линейное ускорение катушки в момент торможения (оно направлено по касательной к поверхности катушки, а при плотной намотке и тонких проводах можно положить, что ускорение направлено вдоль проводов), при торможении каждому свободному электрону приложена сила инерции ($F_i$), направленная противоположно ускорению, равная:

где $m_e$ -- масса электрона. Под воздействием силы $F_i$ электрон ведет себя так, как на него действовало бы поле ($E_$):

Следовательно, ЭДС в катушке может быть записана как:

где $L$ -- длина провода на катушке. Считаем, что все токи провода тормозятся с одним ускорением. Закон Ома для нашей цепи можно записать в виде:

где $I$ -- сила тока в цепи, $R$ -- полное сопротивление цепи. Заряд, который протекает по цепи за время dt, будет равен:

В таком случае за время торможения от скорости $v\left(t=0\right)=v_0$ до остановки, через гальванометр пройдет заряд, равный:

В опыте величину $q$ находили по показаниям гальванометра, $L,\ R$, $v_0$ были известны. Следовательно, можно найти знак и величину $\frac$. Опыты показали, что найденное отношение соответствует отношению заряда электрона к его массе. Так, доказано, что ток, который проходит через гальванометр, вызван движением электронов.

Задание: Вычислите среднюю скорость теплового движения электронов при T=300K.

Так как электронный газ подчиняется тем же законам, что идеальный газ, то среднюю скорость вычислим используя формулу:

Ответ: $\left\langle v\right\rangle \approx ^5\frac.$

Задание: Вычислите скорость упорядоченного движения электронов, если металл находится в электрическом поле. Сравните ее со средней скоростью теплового движения электронов в медных проводах, если предельная допустимая плотность тока для них равна $^7\frac$, концентрация электронов меди n=$^м^.$

Используем формулу для вычисления плотности тока:

\[j=nq_e\left\langle u\right\rangle \left(2.1\right).\]

Скорость упорядоченного движения электронов выразим как:

\[\left\langle u\right\rangle =\frac\left(2.2\right),\]

Используем результат, полученный в примере 1, получим, что отношение ($\frac<\left\langle v\right\rangle ><\left\langle u\right\rangle >$)=$^8$.

Электронные теории в органической химии

Электр о нные те о рии в орган и ческой х и мии, теории, рассматривающие строение, физические свойства и реакционную способность органических соединений на основе представлений о распределении электронной плотности в атомах и молекулах, а также о смещениях её при химических реакциях.

Электронные теории возникли на рубеже 19 и 20 вв. вскоре после открытия электрона. В первых электронных теориях представления о существовании электростатических связей в неорганических соединениях были механически перенесены на неполярные органические соединения. Эти теории не смогли объяснить многие экспериментальные факты органической химии и потому уступили место теориям, базирующимся на представлениях о существовании ковалентных связей (немецкий учёный И. Штарк, 1908—15, Г. Льюис, 1916—23). Образование ковалентной связи, осуществляемое, по Льюису, общей для двух атомов электронной парой (дублетом), впоследствии было интерпретировано в рамках квантовой механики как эффект перекрывания электронных плотностей взаимодействующих атомов (см. Химическая связь, Валентность).

Концепция ковалентной связи оказалась наиболее плодотворной в органической химии. Созданными в 20—30-е гг. на её основе электронными теориями было объяснено строение большого числа органических соединений и установлена зависимость между свойствами этих соединений и их строением, чему способствовали появившиеся в это время квантовохимического представления о различных типах ковалентной связи (см. Сигма- и пи-связи, Семиполярная связь).

Наибольшее распространение в этот период получили используемые и поныне электронные теории, развивавшиеся английскими химиками Т. Лоури, Р. Робинсоном, К. Инголдом, а также Л. Полингом. Введённые ими в рамках так называемой теории электронных смещений представления о статическом и динамическом смещениях электронных пар (индуктивный, мезомерный, индуктомерный и электромерный эффекты) широко используются для объяснения, а в некоторых случаях и для предсказания свойств и реакционной способности разнообразных органический соединений. Английские химики предложили также классификацию органических реакций в соответствии с механизмом электронных смещений и механизмом электростатической ориентации реагентов при их взаимодействии — нуклеофильным, электрофильным и радикальным (см. Органическая химия, Сопряжение связей, Мезомерия, Нуклеофильные и электрофильные реагенты). Теория электронных смещений позволила объяснить выравнивание связей в цепях сопряжения (в частности, равноценность связей в бензоле), передачу влияния заместителя по системе сопряжённых связей, порядок замещения в ароматическом кольце при наличии в нём заместителя (см. Ароматические соединения, Ориентации правила) и многие другие закономерности, экспериментально установленные в органической химии, например Марковникова правило, Эльтекова правило.

Электронные теории развивались в тесной связи как с классической химического строения теорией, так и с квантовой химией, являющейся основой всех современных электронных теорий.

Г.Льюисом и В.Косселем (1916 г.) была предложена электронная теория химической связи. Согласно этой теории ковалентная связь образуется за счет пары электронов, общей для двух связываемых атомов. Частица устойчива, если валентная оболочка элементов первого периода (Н) содержит два (правило дублета), а элементов второго периода (C, N, O, F) - восемь электронов (правило октета).

Электронное строение органических соединений изображают с помощью электронных формул Льюиса. В них с помощью точек указывают положение всех валентных электронов: электронов химических связей и неподеленных пар электронов. При этом считают, что неподеленные пары электронов составляют часть внешней оболочки только одного атома, а электроны, участвующие в образовании ковалентной связи, являются частью внешней оболочки обоих атомов. Например, в приведенной ниже формуле Льюиса для тетрахлорметана все атомы имеют октет электронов.

Для каждого атома в структуре Льюиса определяют формальный заряд. При этом полагают, что атому принадлежат все неподеленные электроны и половина электронов ковалентных связей. Избыток электронов, принадлежащих атому в молекуле по сравнению со свободным атомом, обусловливает отрицательный заряд, а недостаток - положительный заряд. Сумма формальных зарядов всех атомов дает заряд частицы в целом.

Электропроводность твердых тел обусловлена коллективным направленным движением свободных электронов.

К концу XIX века ученые знали связь между электрическим сопротивлением, силой тока и напряжением, которая описывается законом Ома. Благодаря эффекту Холла знали они и то, что носителями электрического тока в металлах являются отрицательно заряженные электроны. Оставалось составить описание электрического сопротивления на атомном уровне. Первую попытку такого рода предпринял в 1900 году немецкий физик Пауль Друде (Paul Drude, 1863–1906).

Смысл электронной теории проводимости сводится к тому, что каждый атом металла отдает валентный электрон из внешней оболочки, и эти свободные электроны растекаются по металлу, образуя некое подобие отрицательно заряженного газа. Атомы металла при этом объединены в трехмерную кристаллическую решетку, которая практически не препятствует перемещению свободных электронов внутри нее (см. Химические связи). Как только к проводнику прикладывается электрическая разность потенциалов (например, посредством замыкания на два его конца двух полюсов аккумуляторной батареи), свободные электроны приходят в упорядоченное движение. Сначала они движутся равноускоренно, но длится это недолго, поскольку очень скоро электроны перестают ускоряться, сталкиваясь с атомами решетки, которые, в свою очередь, от этого начинают колебаться всё с большей амплитудой относительно условной точки покоя, и мы наблюдаем термоэлектрический эффект разогревания проводника.

На электроны же эти столкновения оказывают затормаживающее воздействие, аналогично тому, как, допустим, человеку тяжело с достаточно большой скоростью передвигаться в плотной людской толпе. В результате скорость электронов устанавливается на некоей усредненной отметке, которая называется скоростью миграции, и скорость эта, на самом деле, отнюдь не высока. Например, в обычной бытовой электропроводке средняя скорость миграции электронов составляет всего несколько миллиметров в секунду, то есть, электроны отнюдь не летят по проводам, а скорее ползут по ним темпами, достойными разве что улитки. Свет же в лампочке зажигается практически моментально лишь потому, что с места все эти медлительные электроны трогаются одновременно, как только вы нажимаете на кнопку выключателя, и электроны в спирали лампочки также приходят в движение сразу же. То есть, нажимая на кнопку выключателя, вы производите в проводах эффект, аналогичный тому, как если бы включили насос, подсоединенный к поливочному шлангу, до отказа заполненному водой, — струя на противоположном от насоса конце хлынет из шланга незамедлительно.

Друде весьма серьезно подошел к описанию свободных электронов. Он предположил, что внутри металла они ведут себя подобно идеальному газу, и применил к ним уравнение состояния идеального газа, достаточно справедливо проведя аналогию между соударениями электронов и тепловыми соударениями молекул идеального газа. Это позволило ему сформулировать формулу электрического сопротивления, как функции среднего времени между соударениями свободных электронов с атомами кристаллической решетки. Подобно многим простым теориям, электронная теория проводимости хорошо описывает некоторые основные явления из области электропроводности, но бессильна описать многие нюансы этого явления. В частности, она не только не объясняет явления сверхпроводимости при сверхнизких температурах (см. Теория сверхпроводимости, но, напротив, предсказывает неограниченный рост электрического сопротивления любого вещества при стремлении его температуры к абсолютному нулю. Поэтому сегодня электропроводящие свойства вещества принято интерпретировать в рамках квантовой механики (см. Уравнение Шрёдингера).

Читайте также: