Электромагнитные силы в природе кратко

Обновлено: 02.07.2024

Электромагнитное взаимодействие – это взаимодействие, осуществляемое между заряженным телом (или несколькими телами) и электромагнитным полем.

Электромагнитное поле в данном случае выступает основным проводником между заряженными частицами.

Электромагнитное взаимодействие относится к так называемым фундаментальным взаимодействиям (наряду с сильным, слабым и гравитационным). Его проявления видны повсюду в окружающем нас мире. Электромагнитная природа характерна для многих сил в механике, например, сил упругости, натяжения и других.

Источником электромагнитного поля служат заряженные частицы. Взаимодействие нейтральных (лишенных заряда) частиц осуществляется благодаря квантовым эффектам или особенностям их сложной внутренней структуры. Именно это является основным отличием электромагнитного поля от гравитационного, сила воздействия которого распространяется на все частицы без исключения. Однако именно электромагнитное взаимодействие обеспечивает существование молекул и атомов, потому что они связаны между собой электромагнитными силами. Таким образом, именно этот тип взаимодействия лежит в основе всех явлений на нашей планете.

Электромагнитную природу имеют и химические силы, поскольку они объединяют атомы в молекулы. Сила воздействия электромагнитного поля значительно больше, чем гравитационного. В отличие от сильного и слабого взаимодействия радиусом его действия является бесконечность. Такую особенность можно объяснить тем, что главным переносчиком электромагнитного поля является фотон, не имеющий массы.

От слабого взаимодействия электромагнитные силы также отличаются тем, что по отношению к заряду и пространству они всегда сохраняют свою четность. Однако в отличие от сильного взаимодействия, в нем не происходит сохранения изотопического спина.

Сравнение сил электромагнитного взаимодействия с гравитационными

Попробуем сравнить электромагнитное взаимодействие с гравитационным на основе их отношения к протону. Он является стабильной частицей с массой m p = 1 , 67 · 10 - 27 к г и зарядом q p = 1 , 6 · 10 - 19 К л .

Параметр сравнения Электромагнитное взаимодействие Гравитационное взаимодействие
1 Источник Электрический заряд Тензор энергии-импульса
2 Продолжительность 10 - 21 c 10 16 с
3 Тип проявления Существование молекул, атомов и химических сил Универсальное с участием всех частиц
4 Радиус распространения Бесконечный Бесконечный
5 Переносчик Фотон Гравитон
6 Какие частицы взаимодействуют Заряженные частицы, нейтральные частицы с определенной структурой Все без исключения
7 Статическая сила взаимодействия между протонами F e = q p 2 4 π ε ε 0 r 2 , где ε 0 = 8 , 8 · 10 - 12 Ф м является электрической постоянной, ε - диэлектрической проницаемостью среды, а r – расстоянием между частицами. F g = G m p 2 r 2 где показатель G равен 6 , 67 · 10 - 11 м 3 к г с 2 , а r означает расстояние между частицами.

Что такое постоянная электромагнитного взаимодействия

Существует важная величина, называемая постоянной электромагнитного взаимодействия, которая выражается так:

a = e 2 4 π ε 0 h c .

Здесь заряд электрона будет равен e = - 1 , 6 · 10 - 19 К л , а скорость света, распространяющегося в вакууме, – h = h 2 π = 1 , 05 · 10 - 34 Д ж · c , c = 3 · 10 8 м с . Вычислим значение постоянной:

α = ( 1 , 6 · 10 - 19 ) 2 4 · 3 , 14 · 8 , 8 · 10 - 12 · 1 , 05 · 10 - 34 3 · 10 8 ≈ 2 , 56 · 10 - 38 348 , 15 · 10 - 38 ≈ 1 137 .

Разберем несколько примеров применения постоянной в решении задач.

Условие: в вакууме на расстоянии одного метра находятся два протона. Определите силу электростатического и гравитационного взаимодействия между ними.

Решение

Чтобы найти силу гравитации, нам нужно использовать формулу F g = G m p 2 r 2 . Здесь расстояние между частицами будет равно G = 6 , 67 · 10 - 11 м 3 к г с 2 , а m p = 1 , 67 · 10 - 27 к г .

Вычислим значение с учетом этих данных:

F g = 6 , 67 · 10 - 11 1 , 67 · 10 - 27 2 1 2 = 18 , 6 · 10 - 45 ( Н ) .

Для нахождения силы электростатического взаимодействия нам потребуется закон Кулона:

F e = q p 2 4 π ε ε 0 r 2 .

Здесь электрическая постоянная будет равна ε 0 = 8 , 8 · 10 - 12 Ф м . Буквой ε обозначена диэлектрическая проницаемость среды. В вакууме значение данного параметра будет равно единице. Заряд протона такой же, как у электрона, но с противоположным знаком: q p = 1 , 6 · 10 - 19 К л .

У нас есть все нужные данные для расчета. Вычислим ответ:

F e = 1 , 6 · 10 - 19 2 4 · 3 , 14 · 8 , 8 · 10 - 12 · 1 2 = 2 , 56 · 10 - 38 110 , 53 · 10 - 12 = 2 , 31 · 10 - 28 ( Н ) .

Ответ: итоги расчета говорят нам о том, что два протона будут испытывать силу гравитационного притяжения на заданном расстоянии, равную 18 , 6 · 10 - 45 Н . Электростатическое отталкивание в этом случае будет значительно больше: 2 , 31 · 10 - 28 Н .

Условие: найдите значение удельного заряда частицы, при котором сила гравитационного воздействия будет равна по модулю силе электростатического. Взаимодействующие частицы при этом будут одинаковы.

Решение

Решить эту задачу можно с помощью закона всемирной гравитации и закона Кулона.

F g = G m 2 r 2 , буквой m обозначена масса частицы, G – гравитационная постоянная, а r ­ расстояние, на котором расположены частицы.

F e = q 2 4 π ε ε 0 r 2 , буквой q обозначен заряд каждой частицы, ε 0 – электрическая постоянная, а r ­ расстояние между частицами.

Согласно первоначальным условиям, F g = F e , значит, G m 2 r 2 = q 2 4 π ε ε 0 r 2 и 4 π ε ε 0 G m 2 = q 2 → q m = 4 π ε ε 0 G .

Допустим, что данные частицы находятся в вакууме, тогда ε = 1 . Зная, что значение гравитационной постоянной G = 6 , 67 · 10 - 11 м 3 к г с 2 , а электрической – ε 0 = 8 , 8 · 10 - 12 Ф м , можем вычислить ответ:

q m = 4 · 3 , 14 · 8 , 8 · 10 - 12 · 6 , 67 · 10 - 11 ≈ 8 , 9 · 10 - 11 .

Ответ: искомый заряд частицы будет равен 8 , 9 · 10 - 11 К л к г .

В механике изучают различные виды движения макроскопических тел под действием определенных сил, в молекулярной физике — хаотическое движение атомов и молекул, составляющее основу тепловых процессов. Природу же сил, их происхождение не исследуют ни в рамках механики, ни в молекулярной физике.

Для расчета движения тел в механике достаточно знать, чему равна сила количественно. А знать значения сил, определить, когда и как они действуют, можно и не вникая в природу сил, а лишь располагая способами их измерения. Гравитационные силы, силы упругости и силы трения, с которыми преимущественно имеют дело в классической механике, определяются экспериментально. Из этих трех типов сил только гравитационные силы являются фундаментальными, т. е. не сводимыми ни к каким более общим и глубоким взаимодействиям. Силы упругости и трения не фундаментальны: они представляют собой сложное проявление электромагнитных сил. В электродинамике рассматриваются как раз фундаментальные силы, имеющие электромагнитную природу и действующие между электрически заряженными частицами. Изучение этих взаимодействий приводит нас к одному из самых глубоких понятий физики — понятию электромагнитного поля.

Электродинамика — это наука о свойствах и закономерностях поведения особого вида материи — электромагнитного поля, осуществляющего взаимодействие между электрически заряженными телами или частицами.

Четыре типа фундаментальных взаимодействий

Несмотря на видимое разнообразие действий тел друг на друга, все взаимодействия, все силы сводятся к четырем типам: гравитационные, электромагнитные, сильные (ядерные) и слабые взаимодействия. Чтобы наглядно представить себе роль электромагнитных сил в природе, остановимся бегло на главных особенностях всех четырех фундаментальных взаимодействий и укажем сферу их действия (см. табл. 1). Таблица 1


Из всех фундаментальных сил в первую очередь были открыты гравитационные. Эти силы абсолютно универсальны: они действуют между всеми объектами, обладающими массой, а массой обладают все тела и частицы. Исключение не составляют даже свет и само гравитационное поле. Гравитационные силы медленно (пропорционально — ) убывают с расстоянием.

Но они чрезвычайно слабы: самые слабые силы в природе. Именно поэтому их роль существенна лишь при взаимодействии космических тел. Эти силы определяют строение Вселенной в целом, строение галактик, звезд и планетных систем.

Сильные взаимодействия (ядерные силы) не универсальны. В сильных взаимодействиях участвует большинство элементарных частиц. Исключение составляет группа элементарных частиц — лептоны, фотоны и переносчики слабых взаимодействий (векторные бозоны). К лептонам относится электрон. Короткодействующий характер ядерных сил определяет сферу их действия — атомные ядра. Эти самые мощные силы природы обеспечивают устойчивость атомных ядер.

Слабые взаимодействия так же универсальны, как и гравитационные. Все частицы участвуют в слабых взаимодействиях. Эти взаимодействия являются еще более короткодействующими, чем ядерные силы. Распад большинства элементарных частиц обусловлен этими силами. Связанных систем частиц слабые взаимодействия не образуют.

Электромагнитные взаимодействия

Трудно даже перечислить все проявления электромагнитных сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) сред. Все виды сил упругости и трения имеют электромагнитную природу; силы мышц и вся жизнедеятельность нашего организма и организмов животных основаны на электромагнитных взаимодействиях. То же самое относится и ко всем растениям.

Велика роль электрических сил в ядре атома. В атомном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн: свет, радиоволны, тепловое излучение и др.

Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. В чем же тогда состоит причина такой необычайно широкой сферы действия электромагнитных сил? Почему именно они определяют структуру материи и физические процессы в огромной области пространственных масштабов — от 10 -15 до 10 7 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших нужно учитывать и гравитационные силы)?

Главная причина состоит в том, что вещество построено из электрически заряженных частиц — электронов и атомных ядер. Причем имеются заряды двух знаков: положительные и отрицательные, что обеспечивает существование как сил притяжения, так и сил отталкивания. И эти силы очень велики по сравнению с гравитационными.


Электромагнитные силы медленно, как - , убывают с расстоянием, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы — атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существен еще сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений.

Роль электродинамики в технике

К созданию электродинамики привела длинная цепь планомерных исследований и случайных открытий, начиная с обнаружения способности янтаря, потертого о шерсть, притягивать легкие предметы и кончая гипотезой Максвелла о порождении магнитного поля переменным электрическим полем.

Лишь во второй половине XIX в., после создания Максвеллом классической электродинамики, началось широкое практическое использование электромагнитных явлений. Изобретение радио А. С. Поповым и Г. Маркони — одно из важнейших применений принципов новой теории.

При развитии электродинамики впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания термодинамики, то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики.

Широкое применение электродинамики связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, с помощью сравнительно несложных устройств преобразовывать в другие энергии: механическую, внутреннюю, энергию излучения и т. д.

Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Электродинамика составляет фундамент таких актуальных направлений современной физики, как физика плазмы и проблема управляемых термоядерных реакций, нелинейная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и т. д.

Границы применимости классической электродинамики

Как и любая другая физическая теория, классическая электродинамика Максвелла не является абсолютно точной. Она имеет определенные границы применимости.

Создание теории относительности не внесло каких-либо принципиальных изменений в электродинамику Максвелла. Напротив, именно развитие электродинамики привело в начале XX в. к созданию теории относительности. Дело в том, что электромагнитные процессы связаны с большими скоростями распространения взаимодействий. Теория Максвелла, описывающая эти взаимодействия, применима для процессов, протекающих с любыми скоростями, меньшими скорости света.

Границы применимости классической электродинамики устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно малых частотах колебаний этого поля. Чем больше частота колебаний, тем отчетливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля. Подробнее этот вопрос мы обсудим в дальнейшем.

Наша задача в дальнейшем будет состоять в изучении основных законов электромагнитных взаимодействий, а также в знакомстве со способами получения электрической энергии и использованием ее на практике.

Дело в том, что дать краткое, удовлетворительное во всех отношениях определение заряда вообще невозможно. Важно уяснить себе именно это. Мы привыкли находить понятные нам объяснения весьма сложных образований и процессов вроде атома, жидких кристаллов, распределения молекул по скоростям и т. д. Действительно, такое сложное образование, как атом, не так уж трудно пояснить, хотя его нельзя видеть не только простым глазом, но и в микроскоп. В центре атома находится ядро, а вокруг него движутся электроны. А вот самые основные, фундаментальные понятия, нерасчленимые на более простые, лишенные, по данным науки на сегодняшний день, какого-либо внутреннего механизма, кратко удовлетворительным образом уже не пояснить. Особенно если объекты непосредственно не воспринимаются нашими органами чувств. Именно к таким фундаментальным понятиям относится электрический заряд.

Электрический заряд

Попытаемся вначале выяснить не что такое электрический заряд, а что скрывается за утверждением данное тело или частица имеют, электрический заряд. Это почти одно и то же, но не совсем, и второе проще для понимания.

Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу. Согласно закону всемирного тяготения сила притяжения сравнительно медленно убывает по мере увеличения расстояния между ними: обратно пропорционально квадрату расстояния. Кроме того, большинство элементарных частиц, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила в огромное число раз превосходит силу тяготения. Так, в атоме водорода, схематически изображенном на рисунке 1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.


Если частицы взаимодействуют друг с другом с силами, которые медленно уменьшаются с увеличением расстояния и во много раз превышают силы всемирного тяготения, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействия между заряженными частицами носят название электромагнитных. Когда мы говорим, что электроны и протоны электрически заряжены, то это означает, что они способны к взаимодействиям определенного типа (электромагнитным), и ничего более. Отсутствие заряда у частиц означает, что подобных взаимодействий она не обнаруживает. Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий. Электрический заряд — вторая (после массы) важнейшая характеристика элементарных частиц, определяющая их поведение в окружающем мире.

Два знака электрических зарядов

В природе имеются частицы с зарядами противоположных знаков. Заряд протона называется положительным, а электрона — отрицательным. Положительный знак заряда у частицы не означает, конечно, наличия у нее особых достоинств. Введение зарядов двух знаков просто выражает тот факт, что заряженные частицы могут как притягиваться, так и отталкиваться. При одинаковых знаках заряда частицы отталкиваются, а при разных — притягиваются.

Никакого объяснения причин существования двух видов электрических зарядов сейчас нет. Во всяком случае, никаких принципиальных различий между положительными и отрицательными зарядами не обнаруживается. Если бы знаки электрических зарядов частиц изменились на противоположные, то характер электромагнитных взаимодействий в природе не изменился бы.

Положительные и отрицательные заряды очень хорошо скомпенсированы во Вселенной. И если Вселенная конечна, то ее полный электрический заряд, по всей вероятности, равен нулю.

Элементарный заряд

Кроме электронов и протонов, есть еще несколько типов элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии.

Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно мало, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в дальнейшем.

К частицам, не имеющим электрического заряда, относится нейтрон. Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомных ядер.

Наиболее замечательным является то, что электрический заряд всех элементарных частиц строго одинаков по модулю. Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы. Заряд может быть положительным, как у протона, или отрицательным, как у электрона, но модуль заряда во всех случаях один и тот же.

Равенство зарядов элементарных частиц проверено сейчас экспериментально с фантастической точностью. Так, заряд протона равен заряду электрона с погрешностью не более 10 -20 . А ведь электрон и протон во всех прочих отношениях радикально отличаются друг от друга. Они имеют различные размеры и массы; электрон в отличие от протона не участвует в сильных взаимодействиях.

Отделить часть заряда, например, у электрона невозможно. Это, пожалуй, самое удивительное. Никакая современная теория не может объяснить, почему заряды всех частиц одинаковы, и не в состоянии вычислить значение минимального электрического заряда. Оно определяется экспериментально с помощью различных опытов. О них мы расскажем в дальнейшем.

Кварки

В 60-е гг., после того как число вновь открытых элементарных частиц стало угрожающе расти, была выдвинута гипотеза о том, что все сильно взаимодействующие частицы являются составными. Более фундаментальные частицы были названы кварками.

Поразительным оказалось то, что кварки должны иметь дробный электрический заряд: 1/3 и 2/3 элементарного заряда. Для построения протонов и нейтронов достаточно двух сортов кварков. А максимальное их число, по-видимому, не превышает шести.

Кварки в свободном состоянии искали повсюду: в материковых породах, отложениях на дне океанов, в лунном грунте, но не нашли. Тем не менее экспериментальные доказательства кварковой структуры протонов и нейтронов были получены. В настоящее время считается, что межкварковые силы не убывают с расстоянием. Поэтому вылет кварков из протонов и других частиц невозможен ни при каких условиях.

Закон сохранения электрического заряда

Электрический заряд сохраняется для замкнутой системы, т. е. для системы, в которую не входят извне и не выходят наружу заряженные частицы.

Электрический заряд имеют элементарные частицы. Если бы число элементарных частиц сохранялось, то закон сохранения заряда был бы тривиальным следствием неизменности элементарных частиц. Однако в действительности закон сохранения заряда имеет гораздо более глубокий смысл из-за того, что элементарные частицы способны превращаться друг в друга и число их не остается неизменным. В дальнейшем об этих превращениях будет подробно рассказано.

Вряд ли можно даже приблизительно назвать число превращений элементарных частиц, которые наблюдались в лабораториях всех стран мира. Наверняка это число превышает многие миллиарды. И всегда при рождении заряженных частиц наблюдается появление пары частиц с зарядами противоположного знака. На рисунке 2 показана фотография рождения пары элементарных частиц: положительно заряженной (позитрона е + ) и отрицательной (электрона е - ).


Может наблюдаться и одновременное рождение нескольких таких пар. При распаде электрически заряженной частицы в продуктах ее распада обязательно обнаруживается новая элементарная частица с зарядом того же знака. Исчезают заряженные частицы, превращаясь в нейтральные, тоже только парами.

Все эти факты не оставляют сомнений в строгом выполнении закона сохранения электрического заряда. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.

Электромагнитные силы в широком разнообразии существуют вокруг нас в окружающем пространстве. С их помощью мы видим окружающий мир, так как свет – это один из примеров проявления электромагнитных сил.

Поведение этих сил описывается законами взаимодействия тел с заряженными частицами. Электромагнитные силы появляются между электрически заряженными частичками.

Электромагнитные взаимодействия могут появляться и осуществляться исключительно в электромагнитном поле.

Электромагнитные силы в магнитном поле


Энергия магнитного поля воздействует на подвижный электрический заряд посредством электромагнитной силы. Эта сила действует на магнитное поле в направлении, перпендикулярном силовым линиям, и стремится вытолкнуть заряженную частичку за границы магнитного поля.

При помещении в магнитное поле проводника с электрическим током \(I\) , между электронами, которые находятся в проводнике, и магнитным полем появятся магнитные силы, которые способствуют образованию силы \(F\) , пытающейся вытолкнуть проводник из магнитного поля.

Величину этой электромагнитной силы определяют из закона Ампера, который гласит, что электромагнитная сила действия на проводник, по которому течет электрический ток, располагается в магнитном поле и действует перпендикулярно силовым линиям данного поля, рассчитывается так:
\(F=IBl\) ,
где \(I\) - сила тока;
\(B \) - магнитная индукция;
\(l\) - длины проводника.

Направление воздействия силы \(F\) устанавливают по правилу левой руки, оно звучит так: если левую руку повернуть так, чтобы линии магнитного поля были направлены в ладонь, четыре пальца – по действию силы тока, тогда вытянутый под прямым углом большой палец будет показывать направление действия силы.

Выталкивающая сила возникает лишь в тех случаях, когда проводник размещен перпендикулярно силовым линиям магнитного поля или под углом к ним. Если же проводник размещен вдоль силовых линий, то выталкивающая сила будет равняться нулю.

Для изменения направления электромагнитной силы изменяют направление силовых линий или силы тока в проводнике.

Возникновение электромагнитной силы \(F\) , что образуется между магнитным полем и проводником с током, можно объяснить как результат взаимного воздействия двух полей. Вокруг проводника, по которому течет электрический ток, появляется магнитное поле, которое вступает во взаимодействие с другим магнитным полем. В процессе такого взаимодействия с правой стороны от проводника, где силовые линии его поля совпадают с силовыми линиями внешнего поля, происходит разрежение силовых магнитных линий.

Силовые линии магнитного поля считаются упругими. В данном случае можно провести параллель с резиновыми нитями, которые стремятся сократиться при растяжении и вытеснить проводник из магнитного поля с места сгущения в место их разрежения. Вот почему появляется электромагнитная сила \(F\) .

Не нашли что искали?

Просто напиши и мы поможем

При помещении в магнитное поле катушки или витка из проводника и вертикальном ее расположении, по правилу левой руки получается, что электромагнитные силы действуют во всех направлениях, порождая вращающий момент \(M\) , стремящийся повернуть эту катушку (виток).
\(M=FD\) ,
где \(D\) – диаметр катушки.
Такой крутящий момент используется в двигателях, для его увеличения увеличивают количество витков.

Классификация электромагнитных сил

Электромагнитные силы появляются между объектами, потому что они содержат подвижные заряженные частички, между которыми существуют электрические и магнитные силы. Электромагнитными силами считаются сила трения \(\vec< F_>\) , сила упругости \(\vec< F_>\) и вес тела \(\vec< P>\)

Сила трения \(\vec< F_>\) появляется из-за того, что соприкасаются тела с неровными поверхностями. Направление данной силы всегда располагается против движения и не имеет точки приложения. Различают две разновидности этой силы:

  • сила трения покоя. Имеет место тогда, когда тела, что соприкасаются, абсолютно неподвижны. Сила трения покоя равняется силе внешнего воздействия и направлена в противоположную сторону. Максимальное ее значение рассчитывается по формуле:
  • сила трения скольжения. Возникает тогда, когда сила внешнего воздействия превышает \(F_\) , в результате чего наблюдается проскальзывание. Рассчитывается сила трения скольжения таким образом:

\(F_=μN\) ,
где \(μ\) – коэффициент трения, зависящий от структуры материала;
\(N\) – сила реакции опоры.

  • сила вязкого трения;
  • сила трения качения.

Сила упругости \(\vec< F_>\) появляется в процессе упругой деформации тела. Ее направление противоположно деформации. Модуль силы упругости определяется следующим образом:
\(|F_ |=kδl,\)
где \(k\) – жесткость пружины;
\(δl \) – деформация.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Вес тела \(\vec< P>\) – это сила воздействия тела на прочие тела вследствие его тяжения к Земле. Считается, что у тела, которое перемещается равномерно вверх или вниз либо пребывает в состоянии покоя, вес равняется силе тяжести:
\(P=mg\)
При перемещении тела вниз с ускорением или вверх с замедлением, его вес будет меньше силы тяжести и рассчитается по такой формуле:
\(P=m(g-a)\)
При свободном падении тела в состоянии невесомости его вес равняется нулю:
\(P=0\)
При перемещении тела вниз с замедлением или вверх с ускорением, его вес будет больше силы тяжести и рассчитается по такой формуле:
\(P=m(g+a)\)
Соотношение веса тела и силы тяжести называют перегрузкой.
Вес тела, движущегося равноускорено, можно рассчитать через векторные величины:
\(\vec< P>=m(g ⃗-a ⃗)\)

Электромагнитные силы в природе

Сложно перечислить все существующие в природе электромагнитные силы. С их помощью атомы соединяются в молекулы, формируя жидкие и твердые тела. В любых процессах трения и упругости наблюдается электромагнитная природа.

Многие взаимодействия между объектами сопровождаются электромагнитными силами – радиоволны, свет, тепло и прочее.

Электри́чество (от греч. elektron — янтарь) — совокупность явлений, обусловленных существованием, движением и взаимодействием посредством электромагнитного поля заряженных тел или частиц — носителей электрических зарядов.

Связь электричества и магнетизма

Взаимодействие неподвижных электрических зарядов осуществляется посредством электростатического поля. Движущиеся заряды (электрический ток) наряду с электрическим полем возбуждают и магнитное поле, то есть порождают электромагнитное поле, посредством которого осуществляются электромагнитные взаимодействия. Таким образом, электричество неразрывно связано с магнетизмом. Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Максвелла.

Электромагнитные силы в природе

Трудно даже перечислить все проявления электрических (точнее, электромагнитных) сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) тел. Все виды сил упругости и трения также имеют электромагнитную природу.

Велика роль электрических сил в ядре атома. В ядерном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн — света, радиоволн, теплового излучения и др.

Основные особенности электромагнитных сил

Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. Тем не менее они определяют структуру материи и физические процессы в широком пространственном интервале масштабов — от 10 -13 до 10 7 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших — нужно учитывать и гравитационные силы). Главная причина в том, что вещество построено из электрически заряженных частиц — отрицательных — электронов и положительных атомных ядер. Именно существование зарядов двух знаков — положительных и отрицательных — обеспечивает действие как сил притяжения между разноименными зарядами, так и сил отталкивания между одноименными, и эти силы очень велики по сравнению с гравитационными.

С увеличением расстояния между заряженными частицами электромагнитные силы медленно (обратно пропорционально квадрату расстояния) убывают, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы — атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существенен также сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений.

Применение электричества в технике

Широкое практическое использование электрических явлений началось лишь во второй половине 19 в., после создания Дж. К. Максвелломклассической электродинамики. Изобретение радио А. С. Поповым и Г. Маркони — одно из важнейших применений принципов новой теории. Впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания теории теплоты (термодинамики), то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики.

Широкое применение электричества связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, преобразовывать с помощью сравнительно несложных устройств в другие виды энергии: механическую, тепловую, энергию излучения и т. д. Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Теория электричества составляет фундамент таких актуальных направлений современной науки, как физика плазмы и проблема управляемых термоядерных реакций, лазерная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и др.

Границы применимости классической электродинамики

С прогрессом науки значение классического учения об электричестве не уменьшилось. Были определены лишь границы применения классической электродинамики. Эти границы устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно медленных колебаниях этого поля. Чем больше частота колебаний, тем отчетливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля.

Читайте также: