Электромагнитное поле и электромагнитные волны кратко

Обновлено: 02.07.2024

Электромагнитная волна – распространяющееся в среде переменное электромагнитное поле. Теория электромагнитного поля была создана Д. Максвеллом на основе экспериментальных законов электромагнетизма. Согласно этой теории: 1) переменное магнитное поле создает в окружающем его пространстве вихревое электрическое поле; 2) переменное электрическое поле создает в окружающем его пространстве вихревое магнитное поле. Совокупность неразрывно связанных изменяющихся вихревых электрического и магнитного полей называют электромагнитным полем. Из теории Максвелла вытекает: 1)переменное электромагнитное поле распространяется в среде в виде электромагнитной волны; 2)любой движущийся с ускорением (например, колеблющийся ) электрический заряд должен излучать электромагнитную волну.

Свойства электромагнитной волны.

1. В электромагнитной волне колеблются векторы и . - напряженность электрического поля, - индукция магнитного поля.

2. Векторы и взаимно перпендикулярны и лежат в плоскости, перпендикулярной направлению распространения волны, т.е. перпендикулярны скорости волны. Значит, электромагнитная волна – поперечная волна (рис.15.2). Векторы , иобразуют правую тройку. Если вращать правый винт от вектора к вектору , то поступательное перемещение винта будет совпадать с вектором скорости волны.

3. Векторы и колеблются в одинаковой фазе, одновременно обращаются в нуль и одновременно достигают максимальных значений (рис.15.2).


4. Скорость распространения электромагнитных волн в вакууме:

= с = 3·10 8 м/с;

где и - диэлектрическая и магнитная проницаемости среды. Следовательно, в любой среде скорость распространения электромагнитных волн меньше, чем в вакууме.

5. Связь между длиной, скоростью и

Рис.15.2 частотой электромагнитной волны:

где - длина волны в вакууме; - длина волны в среде. Видим, что длина волны, также как и скорость, уменьшается в среде, частота остается неизменной.

Итак, существование электромагнитных волн было предсказано теоретически Максвеллом. Только спустя тридцать лет электромагнитные волны были экспериментально получены Г.Герцем, изучены их свойства. Для получения электромагнитных волн Герц использовал простое устройство, которое в его честь было названо вибратором Герца. Это устройство представляет собой открытый колебательный контур. С этим устройством, с опытами Герца предлагаем познакомиться, прочитав внимательно учебник [2, §49].

Открытие электромагнитных волн имело большое практическое значение для человечества. С историей изобретения радио, принципами радиосвязи (модуляция и детектирование электромагнитных волн), радиолокации, телевизионной связи познакомьтесь по учебнику [2, §§51-58].

Тема 16. (6 часов)

Оптика. Законы геометрической оптики. Оптические приборы. Волновые свойства света.

Электромагнитная волна – распространяющееся в среде переменное электромагнитное поле. Теория электромагнитного поля была создана Д. Максвеллом на основе экспериментальных законов электромагнетизма. Согласно этой теории: 1) переменное магнитное поле создает в окружающем его пространстве вихревое электрическое поле; 2) переменное электрическое поле создает в окружающем его пространстве вихревое магнитное поле. Совокупность неразрывно связанных изменяющихся вихревых электрического и магнитного полей называют электромагнитным полем. Из теории Максвелла вытекает: 1)переменное электромагнитное поле распространяется в среде в виде электромагнитной волны; 2)любой движущийся с ускорением (например, колеблющийся ) электрический заряд должен излучать электромагнитную волну.

Свойства электромагнитной волны.

1. В электромагнитной волне колеблются векторы и . - напряженность электрического поля, - индукция магнитного поля.

2. Векторы и взаимно перпендикулярны и лежат в плоскости, перпендикулярной направлению распространения волны, т.е. перпендикулярны скорости волны. Значит, электромагнитная волна – поперечная волна (рис.15.2). Векторы , иобразуют правую тройку. Если вращать правый винт от вектора к вектору , то поступательное перемещение винта будет совпадать с вектором скорости волны.




3. Векторы и колеблются в одинаковой фазе, одновременно обращаются в нуль и одновременно достигают максимальных значений (рис.15.2).


4. Скорость распространения электромагнитных волн в вакууме:

= с = 3·10 8 м/с;

где и - диэлектрическая и магнитная проницаемости среды. Следовательно, в любой среде скорость распространения электромагнитных волн меньше, чем в вакууме.

5. Связь между длиной, скоростью и

Рис.15.2 частотой электромагнитной волны:

где - длина волны в вакууме; - длина волны в среде. Видим, что длина волны, также как и скорость, уменьшается в среде, частота остается неизменной.

Итак, существование электромагнитных волн было предсказано теоретически Максвеллом. Только спустя тридцать лет электромагнитные волны были экспериментально получены Г.Герцем, изучены их свойства. Для получения электромагнитных волн Герц использовал простое устройство, которое в его честь было названо вибратором Герца. Это устройство представляет собой открытый колебательный контур. С этим устройством, с опытами Герца предлагаем познакомиться, прочитав внимательно учебник [2, §49].

Открытие электромагнитных волн имело большое практическое значение для человечества. С историей изобретения радио, принципами радиосвязи (модуляция и детектирование электромагнитных волн), радиолокации, телевизионной связи познакомьтесь по учебнику [2, §§51-58].

Тема 16. (6 часов)

Оптика. Законы геометрической оптики. Оптические приборы. Волновые свойства света.

Дж. Максвелл в 1864 г. создал теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. В пространстве, где существует переменное магнитное поле, возбуждается переменное электрическое поле, и наоборот.

Электромагнитное поле – один из видов материи, характеризуемый наличием электрического и магнитного полей, связанных непрерывным взаимным превращением.

Электромагнитное поле распространяется в пространстве в виде электромагнитных волн. Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

График электромагнитной волны

График электромагнитной волны.

Эти волны излучаются колеблющимися заряженными частицами, которые при этом движутся в проводнике с ускорением. При движении заряда в проводнике создается переменное электрическое поле, которое порождает переменное магнитное поле, а последнее, в свою очередь, вызывает появление переменного электрического поля уже на большем расстоянии от заряда и так далее.

Электромагнитное поле, распространяющееся в пространстве с течением времени, называется электромагнитной волной .

Электромагнитные волны могут распространяться в вакууме или любом другом веществе. Электромагнитные волны в вакууме распространяются со скоростью света c=3·10 8 м/с. В веществе скорость электромагнитной волны меньше, чем в вакууме. Электромагнитная волна переносит энергию.

Электромагнитная волна обладает следующими основными свойствами: распространяется прямолинейно, она способна преломляться, отражаться, ей присущи явления дифракции, интерференции, поляризации. Всеми этими свойствами обладают световые волны, занимающие в шкале электромагнитных излучений соответствующий диапазон длин волн.

Мы знаем, что длина электромагнитных волн бывает самой различной. Посмотрев на шкалу электромагнитных волн с указанием длин волн и частот различных излучений, мы различим 7 диапазонов: низкочастотные излучения, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.


Радио, Wi-Fi и вышки 5G — все это электромагнитные волны. Разбираемся, что это такое и рушим мифы про это странное явление.

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Волны: что это и какими бывают

Давайте сначала разберемся, что такое волна.

Волна — это распространение колебаний в пространстве.

Волны бывают механическими и электромагнитными.

Главные герои этой статьи — электромагнитные волны. Немного удовлетворим ваше любопытство и скажем, что это те волны, которые мы потрогать не можем. Но все остальное чуть позже. Главное — терпение.

Механические волны — это те волны, колебания которых можно почувствовать физически, потому что они распространяются в упругой среде.

Представьте, что вы стоите на железнодорожных путях. Нет, вы не Анна Каренина, вы — экспериментатор.

Если к вам приближается поезд, вы рано или поздно его услышите. Вернее, услышите, как только звуковая волна со скоростью 𝑣 = 330 м/с достигнет ваших ушей.

Если приложить ухо к рельсу, то это произойдет значительно быстрее, потому что скорость звука в твердом теле больше, чем в воздухе. Кстати, под водой скорость звука больше, чем в воздухе, но меньше, чем в твердых телах.

Если вы когда-нибудь трогали музыкальную колонку, то знаете, что звук чувствуется и на ощупь.

Волны также принято делить на продольные и поперечные:


продольные и поперечные волны

Продольные — это те волны, у которых колебание происходит вдоль направления распространения волны.

  • Дрожание окон во время грома или сейсмические волны (землетрясения) — это пример продольных волн.

Поперечные — волны, у которых колебание происходит поперек направления распространения волны.

  • Представьте, что вы запустили волну из людей на стадионе — она будет поперечной.
  • Видимый свет и дрожание гитарной струны — тоже поперечные волны.

Морская волна — продольная или поперечная?

На самом деле в ней есть и продольная, и поперечная составляющие, поэтому ее нельзя отнести к конкретному типу.

Электромагнитные волны

Увы, мы не можем потрогать руками электромагнитные волны. Осталось разобраться, как это так: волна есть, а возможности пощупать ее — нет.

Электромагнитная волна появляется благодаря электромагнитному полю.

Вот есть электрическое поле — его создает любой электрический заряд. Есть магнитное поле — оно возникает из-за движущегося заряда. А их взаимодействие — это электромагнитное поле.

Если совсем честно, то электрическое и магнитное поле не могут существовать в отдельности, потому что частицы всегда есть электрическое поле и она всегда худо-бедно да движется. Рассмотрение в отдельности электрических и магнитных полей может быть только в теоретической физике. В реальных инженерных задачах рассматривается обязательно электромагнитное поле.

Электромагнитная волна — это распространение электромагнитного поля. А если конкретнее, то электрическое поле колеблется (меняет свое значение и направление вектор напряженности электрического поля), магнитное поле колеблется (меняет значение и направление вектор магнитной индукции), эти колебания распространяются, и получается электромагнитная волна.


что такое электромагнитная волна

К электромагнитным волнам относятся радио, Wi-Fi и даже свет.

Разве свет не из частиц состоит?

Ничего от вас не скроешь. Дело в том, что свет — это как Гермиона с маховиком времени в двух местах сразу — одновременно и частица и волна.

Можете перечитать фразу выше, чтобы с ней смириться. Это не шутка. Экспериментально давно обнаружено, что свет в одних экспериментах ведет себя, как частица, а в других, как волна.

Все это безумство называется корпускулярно-волновым дуализмом. И это работает не только со светом, но и с другими волнами. В общем, у физики тоже бывает раздвоение личности.

Характеристики электромагнитной волны

Чтобы изучать любое явление, его нужно как-то охарактеризовать.

Длина волны

Обозначается эта величина буквой λ и измеряется в метрах.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [-]

Для электромагнитных волн есть целая шкала длин волн. Она показывает длину волны и частоту для разных типов электромагнитных волн.


шкала длины волн

Частота

Частота — это величина, обратно пропорциональная периоду. Она определяет, сколько колебаний в единицу времени совершила волна.

Формула частоты колебания волны

υ = N/t = 1/T

N — количество колебаний [-]

Скорость

Также важной характеристикой распространения волны является ее скорость.

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия.

Формула скорости

𝑣 = S/t

Переходя к волнам, можно провести следующие аналогии:

А для скорости даже аналогия не нужна — скорость и Африке скорость.

Формула скорости волны

𝑣 = λ/T

λ — длина волны [м]

Для электромагнитной волны скорость равна скорости света — 𝑣 = 3*10^8 м/с. Поэтому формулу скорости чаще всего используют для нахождения из нее длины волны или периода.

Задачка

Определить цвет освещения, проходящий расстояние, в 1000 раз больше его длины волны за 2 пс.

Решение:

Для начала переведем 2 пикасекунды в секунды — это 2*10^-12 с.

Теперь возьмем формулу скорости

По условию S = 1000λ

Выражаем длину волны

Подставляем значения скорости света и известного нам времени:

λ = 3*108* 2*10-121000 =600 нм

И соотносим со шкалой видимого света


шкала видимого света

Из шкалы видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!

А теперь давайте немного о распространенных заблуждениях. Присаживайтесь поудобнее — этот разговор, к сожалению, не на пару минут.

Миф 1. Вышки 5G вредны для нашего здоровья

Одна из теорий против 5G гласит, что новый тип связи может стать причиной раковых заболеваний. Справедливости ради — такие же обвинения не раз поступали в адрес 2G, 3G, 4G и более ранних поколений беспроводных сетей.

Стандарт 5G может использовать разные частотные диапазоны. Как правило, это низкий диапазон 600 МГц, а также средние частоты 2,5 ГГц, 3,5 ГГц и 3,7–4,2 ГГц.

Диапазон от 30 ГГц (миллиметровые волны) относится к так называемому спектру крайне высоких частот — и именно он вызывает большинство опасений по поводу вреда 5G для здоровья человека. Все еще недостаточно исследований, которые изучают влияние высоких частот на организм.


электромагнитный спектр волн

Тем не менее, известно, что даже в верхнем диапазоне излучение 5G не обладает достаточной энергией для разрушения человеческой ДНК или влияния на клетки. А значит, не может вызвать рак и не представляет опасность для нашего организма. По этой же причине нельзя верить в теорию, что 5G убивает птиц — этому излучению просто не хватит сил, чтобы кого-то убить.

К опасному излучению относятся волны, распространяемые на частотах от 30 ПГц (петагерц) — утрафиолетовые, рентгеновские и гамма-лучи. Они могут влиять на атомную структуру клеток и разрывать химические связи в ДНК. Именно поэтому, например, врачи советуют избегать долгого пребывания на солнце.

Миф 2. Шапочки из фольги защищают от вредного излучения

Кстати, они наоборот любую электромагнитную волну усиливают. Это доказали студенты из MIT (Массачусетский технологический институт), которые исследовали это опытным путем.

Ребята установили антенну в четырех частях от головы добровольцев: на лбу, затылке, висках и в районе мозга. И сравнивали показатели радиосигнала в шапочке для фольги и без нее. Оказалось, что сигнал не ослабляется, а усиливается. Так что шапочка вас не спасет от вредного излучения, а наоборот — только усилит сигнал.

Миф 3. Микроволновки убивают еду, и она становится неживой

Электромагнитный фон возле СВЧ-печей выше больше, чем природный более, чем в миллион раз, но вреда человеку не наносит. Санитарные требования к этим приборам очень жёсткие, поэтому опасности микроволновка не представляет. Например, благодаря системе блокировки дверцы генерация микроволнового излучения прекращается, когда дверца открыта. Также в микроволновке обязательно должна быть система защиты от утечки излучения. Гораздо опаснее электромагнитные излучения от солнца или солярия, потому что там есть ультрафиолет, который легко повреждает клетки кожи человека.

Продукты становятся теплее за счёт нагревания в них воды. И когда мы их греем, могут образовываться радикалы — но это происходит при любом способе теплового воздействия. Например, при жарке могут образовываться ещё и канцерогены.


Из этого видеоурока ребята узнают, какое электрическое поле называют вихревым. Выяснят, каков характер взаимосвязи электрического и магнитного полей. Узнают, что представляют собой электромагнитные волны. А также познакомятся с главным условием излучения электромагнитных волн.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Электромагнитное поле. Электромагнитная волна"

В течение довольно длительного времени мы с вами изучали механические волны и их свойства. При этом мы отмечали, что механические волны могут распространяться только в упругих средах. Однако существуют волны, которые не нуждаются в каком-либо веществе для своего распространения. Это электромагнитные волны.

Впервые гипотеза об их существовании была высказана ещё в 1864 году Джеймсом Максвеллом. После открытия Майклом Фарадеем явления электромагнитной индукции возник вопрос о том, как возникает индукционный ток. С одной стороны, как мы уже знаем, он возникает за счёт действия переменного магнитного поля. С другой же стороны заряды в проводнике придут в упорядоченное движение только тогда, когда на них действует электрическое поле. Тогда каким образом хаотически движущиеся между узлами кристаллической решётки свободные электроны приходят в направленное движение под действием магнитного поля?

Вопрос действительно непростой, поскольку непонятно, какие силы заставляют электроны двигаться направленно. Ведь само магнитное поле этого сделать не может, так как оно действует только на движущиеся электрические заряды. Наглядно это показали опыты Ампера, в которых магнитное поле оказывало действие только на проводник с током.

Ещё одним фактом является то, что электромагнитная индукция выглядит абсолютно одинаково в двух внешне различающихся опытах. Например, в одном опыте мы вращаем рамку в однородном магнитном поле, а в другом — вращаем магнит внутри рамки.


Принимая во внимание особенности магнитного поля, нужно также помнить о том, что на заряды действует ещё и электрическое поле. Однако это поле, называемое также электростатическим, создаётся неподвижными зарядами, а индукционный ток возникает под действием переменного магнитного поля.

Рассуждая аналогичным образом Максвелл теоретически показал, что источниками электрического поля могут быть как электрические заряды, так и магнитные поля, изменяющиеся во времени. В свою очередь, магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическим током), либо переменными электрическими полями. Изменение индукции магнитного поля с течением времени вызывает появление в окружающем пространстве индукционного электрического поля.

Но индукционное электрическое поле имеет совсем другую структуру, чем поле электростатическое, так как оно не связано с электрическими зарядами. Поэтому силовые линии этого поля не имеют ни начала, ни конца, и представляют собой замкнутые линии, похожие на линии магнитного поля. То есть это индукционное электрическое поле является вихревым.

Чем быстрее меняется магнитная индукция, тем больше напряжённость электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление силовых линии вектора напряжённости возникающего электрического поля совпадает с направлением вращения ручки буравчика, движущегося поступательно в направлении, противоположном вектору индукции магнитного поля. И, напротив, при убывании магнитной индукции буравчик должен поступательно двигаться по направлению вектора индукции магнитного поля, и направление вращения ручки буравчика укажет направление силовых линий напряжённости возникающего электрического поля.


В свою очередь, направление силовых линий напряжённости совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд (сторонняя сила), по-прежнему равна F = qE. Но в отличие от случая стационарного электрического поля, работа вихревого поля по перемещению заряда на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряжённости электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению.

Таким образом, работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.


Далее Максвелл предположил, что любое изменение напряжённости вихревого электрического поля сопровождается возникновением переменного магнитного поля. И этот процесс может повторяться до бесконечности, поскольку поля смогут попеременно воспроизводить друг друга даже в вакууме. Таким образом, в вакууме возникает система изменяющихся и взаимно порождающих друг друга электрических и магнитных полей, охватывающих все большие и большие области пространства.


Эти тесно взаимосвязанные и порождающие друг друга поля образуют электромагнитное поле.

При этом важно, что нельзя создать переменное магнитное поле без того, чтобы одновременно в пространстве не возникло и электрическое поле. И наоборот.

Не менее важно и то, что электрическое поле без магнитного или магнитное без электрического может существовать лишь по отношению к определённой системе отсчёта. Например, мы знаем, что покоящийся заряд создаёт только электрическое поле. Но ведь заряд покоится лишь относительно определённой системы отсчёта. А относительно других систем отсчёта он может двигаться и, значит, создавать магнитное поле.

Точно так же в системе отсчёта, связанной с магнитом, обнаруживается лишь магнитное поле. Но движущийся относительно магнита наблюдатель обнаружит и электрическое поле, так как в системе отсчёта, движущейся относительно магнита, магнитное поле будет меняться с течением времени по мере приближения наблюдателя к магниту или удаления от него. Переменное же во времени магнитное поле порождает вихревое электрическое поле. Значит, утверждение, что в данной точке пространства существует только электрическое или только магнитное поле, бессмысленно, если не указать, по отношению к какой системе отсчёта эти поля рассматриваются.

Сам Максвелл твёрдо верил в существование электромагнитного поля, хотя экспериментальное подтверждение этого факта было получено лишь спустя 22 года.

Одним из важных результатов, который вытекал из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Итак, согласно теории Максвелла при ускоренном движении свободных зарядов в проводнике в пространстве вокруг него создаётся переменное магнитное поле, которое порождает переменное вихревое электрическое поле. Последнее, в свою очередь, вновь вызывает появление переменного магнитного поля уже на большем расстоянии от заряда и так далее. Таким образом, в пространстве вокруг проводника образуются взаимосвязанные электрические и магнитные поля. Процесс распространения переменного электромагнитного поля и представляет собой электромагнитную волну.

Электромагнитные волны являются поперечными. В них направления колебаний векторов напряжённости электрического поля и индукции магнитного поля волны происходят в плоскости, перпендикулярной направлению распространения волны.

Подобно упругим механическим волнам, электромагнитные волны испытывают отражение от препятствий, но, в отличие от упругих волн, они могут распространяться и в вакууме.

Позже было показано, что электромагнитным волнам присуще все характеристики обычных механических волн: амплитуда, длина волны, период и частота. А также соотношения между этими величинами.


Как мы уже упоминали, экспериментально обнаружили электромагнитные волны лишь спустя 22 года, после их теоретического обоснования. Впервые это удалось немецкому учёному Генриху Рудольфу Герцу в 1887 году с помощью установки, представленной на экране (вибратор Герца).


Шарам сообщались большие разноимённые заряды, в результате чего между ними происходил электрический разряд, а в стержнях возникали электромагнитные колебания. Приём электромагнитной волны наблюдался в виде маленькой искры, которая проскакивала между двумя шариками приёмного устройства в виде проволочного витка.

Таким образом, Герц закончил гигантскую работу Майкла Фарадея. Максвелл превратил представления Фарадея в математические формулы, а Герц трансформировал математические образы в видимые и слышимые нами электромагнитные волны.

Сейчас мы точно знаем, что всё окружающее нас пространство окутано электромагнитными волнами различных частот. Их шкала необычайно широка, а применение — чрезвычайно многообразно.

В настоящее время все электромагнитные волны принято делить по длинам волн на шесть основных диапазонов. Их границы весьма условны, потому как в большинстве случаев соседние диапазоны несколько перекрывают друг друга.


Электромагнитные волны разных частот могут отличаться проникающей способностью, скоростью распространения в веществе, видимостью, цветностью и так далее. Они могут оказывать как благоприятное, так и негативное воздействие на всё живое. Например, благодаря инфракрасному излучению поддерживается жизнь на Земле. А видимое излучение даёт нам информацию об окружающем мире и возможность ориентироваться в пространстве.

Читайте также: