Электроизоляционные материалы это кратко

Обновлено: 06.07.2024

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ — вещества, служащие для изоляции токоведущих частей электрических устройств, напр., обмоток машин и аппаратов, проводов, линий электропередачи и т. п. Э. м. обеспечивают прохождение электрического тока по намеченным в электрических устройствах путям и препятствуют утечке тока. Качество изоляции электроустановок определяет надежность работы последних. Наибольшее количество аварий в электроустановках вызвано нарушениями изоляции.

Качество Э. м. зависит от их электрических и механических свойств, их теплостойкости, кислотоустойчивости и устойчивости против др. физико-химических воздействий. Электрические свойства Э. м. в основном характеризуются: сопротивлением или электропроводностью изоляции; чем меньше ток утечки, тем Э. м. лучше. Диэлектрическая проницаемость имеет особо большое значение в производстве электрических конденсаторов. Чем она выше, тем меньше размеры конденсатора при заданной его емкости. Значительную роль диэлектрическая проницаемость играет при изготовлении многослойной изоляции, состоящей из ряда слоев Э. м. Исключительно важным является удаление воздушных промежутков в многослойной изоляции путем компаундирования ее под вакуумом.

Применение Э. м. высокой электрической прочности позволяет уменьшить толщину изоляции. Диэлектрические потери, возникающие в изоляции при переменном электрическом поле, вызывают нагрев Э. м., что может привести к разрушению изоляции. Чем диэлектрические потери Э. м. меньше, тем надежнее изоляция. Механическая прочность Э. м. не менее важна, т. к. их механическое повреждение приводит к снижению электрической стойкости изоляции. Влажность и ряд др. физико-химических воздействий на Э. м. снижают их изолирующие свойства. Э. м. применяются как в твердом, жидком, так и в газообразном виде. Основные Э. м. — бумага изоляционная, электроизоляционный картон, пряжа, дерево, каучук, лаки, компаунды, масло трансформаторное, парафин, бакелит, полистирол, полиэтилен, полиизобутилен, синтопленки, электрофарфор, слюда, миканит, микалента, микафолии, стекло, асбест, мрамор.

Бумагу изоляционную получают из древесной целлюлозы, хлопкового или льняного волокна и т. п. Разделяют на телефонную, кабельную, применяемую для изоляции электрических кабелей, обмоток трансформаторов и т. п.; конденсаторную, используемую в качестве диэлектрика конденсаторов; микалентную (шелковку), служащую основой для микалент и микафолия; оклеенную, предназначенную для оклейки листов электротехнической стали.

Электроизоляционные картоны изготавливают из целлюлозы, хлопкового и льняного волокна. Применяют для изоляции электрических машин, трансформаторов и т. п. Пряжу изготавливают из органических (хлопок, натуральный шелк) или из синтетических волокон (вискозный шелк, ацетатный шелк, капрон). Применяют в виде крученых нитей для изоляции проводов, шнуров, в виде лент, тканей для изоляции обмоток электрических машин, аппаратов и т. п.

Дерево (бук, граб, ясень и др.) применяют в пропитанном маслом, парафином и т. п. виде для изготовления конструктивных и изолирующих элементов электрических устройств. Используют также для изготовления столбов и мачт линий электропередачи.

Каучук натуральный добывают из растений каучуконосов (кок-сагыз, хандирилла и др.). Каучук синтетический получают путем полимеризации газообразного углеводорода бутадиена. Применяют в вулканизированном виде, т. е. с прибавлением серы с целью предохранения от окисления. Используют гл. обр. для изоляции проводов и некоторых видов кабелей.

Лаки — коллоидные растворы смол, битумов, высыхающих масел и т. п. в летучих растворителях — применяют для пропитки волокнистых Э. м.

Компаунды — коллоидные растворы смол, битумов и т. п. без летучих растворителей — применяют для пропитки волокнистых Э. м., заливки кабельных муфт и т. п.

Масло трансформаторное — лучший сорт нефтяного масла — применяют гл. обр. для заполнения баков трансформаторов с целью изоляции и охлаждения трансформаторов, заполнения баков выключателей масляных, пропитки кабельной бумаги.

Парафин — воскообразное вещество, полученное при перегонке нефти или каменноугольной смолы, применяют для пропитки конденсаторов.

Бакелит — синтетическая смола, получаемая при нагревании смеси фенолболовой кислоты и формалина. В зависимости от условий процесса изготовления получают или мягкий (плавкий) бакелит, используемый для пропитки бумаги, или твердый (неплавкий) бакелит, идущий на литые изоляционные изделия.

Полистирол, полиэтилен, полиизобутилен — синтетические смолы, получаемые при полимеризации сложных углеводородов. Применяются для изготовления лаков и пластмасс, обладающих высокими электроизоляционными свойствами. Пригодны для радиочастот.

Синтопленки — прозрачные, тонкие, гибкие пленки толщиной 0,02 мм и выше, получаемые из синтетических смол (из полистирола, триацетат целлюлозы и т. д.). Изготавливают в виде синтоленты — пленки, наклеенной на бумажную ленту (шелковку), в виде синтофолия — пленки, наклеенной на листы изоляционной бумаги. Применяются для изоляции обмоток электрических машин и аппаратов.

Электрофарфор получают из глины, песка и полевого шпата и применяют для изготовления изоляторов и деталей аппаратуры.

Слюда — минерал кристаллического строения, расщепляющийся на тонкие листочки; обладает высокими изоляционными свойствами. Применяется для изготовления миканитов, микалент, микафолия.

Миканит — листочки слюды, склеенные лаком глифталевым, битумным и т. п., прессованные в виде листов и др. формы. Применяется для изготовления коллекторов электрических машин, а также различных изоляционных прокладок. Микалента — листочки слюды, склеенные между двумя слоями тонкой изоляционной бумаги в виде гибкой ленты. Применяется для изоляции обмоток электрических машин и аппаратов.

Микафолии — листочки слюды, вклеенные в один или два слоя на лист изоляционной бумаги. Применяются для изоляции обмоток электрических машин и аппаратов.

Стекло применяется как для изготовления изоляторов, так и в виде пряжи, ленты и тканей. Используют для теплостойкой изоляции электрических машин и аппаратов.

Асбест — волокнистый минерал. Применяют как теплостойкую изоляцию в виде пряжи, лент, тканей, картона и др. изделий. Обычно пропитывают битумом.

Мрамор — кристаллический известняк. Применяется гл. обр. для изготовления распределительных щитов и т. п.

Российская энциклопедия по охране труда. — М.: НЦ ЭНАС . Под ред. В. К. Варова, И. А. Воробьева, А. Ф. Зубкова, Н. Ф. Измерова . 2007 .

Автор: Евгений Живоглядов.
Дата публикации: 17 марта 2015 .
Категория: Статьи.

В электротехнике для изоляции токоведущих частей и обеспечения их надежной работы находят применение множество электроизоляционных материалов с различными изоляционными свойствами. Среди этого множества можно выделить наиболее часто используемые.

Асбест

Минерал, имеющий волокнистое строение. Длина волокна – от десяти долей миллиметра до нескольких сантиметров. Из асбеста изготовляют пряжу, ленты, ткани, бумагу, картон и другие изделия. Ценным качеством асбеста является его высокая нагревостойкость. Нагрев до 300 – 400 °С не меняет свойств асбеста. Благодаря низкой теплопроводности асбест применяют в качестве тепловой изоляции при высоких температурах. Асбест обладает гигроскопичностью, которая уменьшается при пропитке его смолами, битумами и тому подобным. Асбестовое волокно, пропитанное битумом и подклеенное к проводу лаком, образует дельта-асбестовую изоляцию. Асбест входит в качестве наполнителя в состав пластичных масс. Электроизоляционные свойства асбеста невысоки. Электрическая прочность его 0,6 – 1,2 кВ/мм. Поэтому он не применяется при высоких напряжениях.

Асбоцемент

Пластическая масса холодного прессования. В качестве наполнителя входит асбестовое волокно, связующим веществом является цемент. Асбоцемент идет на изготовление щитков, панелей, оснований аппаратов, труб и тому подобного. Асбоцемент обладает хорошими механическими свойствами, высокой дугостойкостью, теплостойкостью и негорючестью. Электроизоляционные свойства асбоцемента низки. Пропитка его расплавленным парафином, льняным маслом, битумом и другими составами уменьшает гигроскопичность асбоцемента.

Бакелит

Искусственная смола, получаемая варкой фенола (спирта) с формалином (водным раствором формальдегида – продукта окисления спирта). Полученная в результате варки масса называется бакелитом стадии А. Температура размягчения бакелита А около 80 °С. Он может растворяться в спирте и в ацетоне. При нагреве до 110 – 140 °С бакелит А переходит в бакелит С, который не плавится и не растворяется. Бакелит применяют для пропитки дерева и других материалов, изготовления пластических масс – гетинакса, текстолита, склейки фанеры. Электрическая прочность бакелита 10 – 20 кВ/мм; ε = 4,5 – 6.

Бумага

Изготовляется путем специальной обработки щелочью измельченной древесины деревьев хвойных пород. В электротехнике применяют следующие основные сорта электроизолирующих бумаг: конденсаторную, кабельную, пропиточную (для изготовления листового гетинакса), намоточную (для изготовления бумажно-бакелитовых цилиндров), микалентную (для изготовления клееной слюдяной изоляции), оклеечную (для изготовления листов электротехнической стали).

Галовакс

Получают хлорированием нафталина. Галовакс имеет температуру плавления 95 – 135 °С. Ввиду высокой диэлектрической проницаемости (около 5) галовакс применяют для пропитки бумажных конденсаторов. В отличие от парафина и церезина галовакс не горюч.

Гетинакс

Изготовляют из бумаги, пропитанной искусственной смолой (бакелитом). Листы бумаги сдавливают прессом, одновременно нагревают до 160 – 165 °С, в результате чего бакелит стадии А переходит в стадию С. Таким образом получают гетинаксовые доски, которые имеют толщину от 0,5 до 50 мм. Гетинакс хорошо подвергается механической обработке: сверлению, обтачиванию, фрезерованию, распиливанию. При толщине от 2,5 до 3 мм гетинакс можно штамповать. Под действием электрической дуги блестящая поверхность гетинакса обугливания и становится электропроводящей. Гетинакс применяется для изготовления щитков, панелей, прокладок, каркасов изоляции в трансформаторах. Электрическая прочность гетинакса 20 – 25 кВ/мм; ε = 5 – 6.

Древесина

Природный волокнистый органический материал. Применяется для изготовления малоответственных изоляционных деталей. Используют обычные твердые лиственные породы: березу, дуб, бук, клен. Для повышения электрической прочности древесины ее пропитывают парафином, льняным маслом, смолами. Древесину в электротехнике применяют для опорных и крепежных деталей трансформаторов, пазовых клиньев электрических машин, деревянных опор линий связи и электропередач и так далее.

Канифоль

Хрупкая смола светло-желтого или коричневого цвета, получаемая путем обработки смолы хвойных деревьев (сосны). Канифоль растворяется в нефтяных маслах, жидких углеводородах, растительных маслах, спирте, скипидаре. Температура размягчения канифоли 50 – 70 °С. Электрическая прочность канифоли 10 – 15 кВ/мм. Канифоль употребляют для приготовления пропиточных и заливочных масс.

Картон электротехнический

Отличается от бумаги повышенной толщиной. Изготовляют два сорта картона: ЭВ – для работы на воздухе и ЭМ – для работы в масле. Картон применяют для изготовления мелких деталей. Электрическая прочность картона 8 – 10 кВ/мм; ε = 2,5 – 4.

Картон электротехнический

Каучук

Каучук (резина) получается из сока растений каучуконосов. Такой каучук называют натуральным (НК). Каучук можно получить также искусственным путем. Искусственный или синтетический каучуке (СК) изготовляют из спирта или нефтепродуктов. Нагретый до 50 °С каучук размягчается и становится липким, а при низкой температуре – хрупким. Каучук хорошо растворяется в углеводородах и сероуглероде. Для увеличения механической прочности, нагревостойкости и морозоустойчивости, стойкости к растворителям к каучуку добавляют 3 – 10 % серы. Этот процесс называется вулканизацией, в результате чего получается резина. В электротехнике резину применяют для изоляции установочных и монтажных проводов и кабелей некоторых конструкций, для изолирующих трубок, защитных перчаток, галош, ковриков и тому подобного. Резина обладает высокими электроизоляционными свойствами, влагостойкостью, непроницаемостью для воды и газов, имеет невысокую нагревостойкость (при нагреве свыше 60 – 75 °С резина делается хрупкой и трескается), при действии на резину нефтяных масел она набухает, при действии света – стареет. Электрическая прочность резины 24 кВ/мм; ε = 2,5 – 3.

Лаки электроизоляционные

Лакоткани

Изготовляют из хлопчатобумажной, шелковой или стеклянной ткани, которую затем пропитывают масляным или масляно-битумным лаком. Лакоткани применяют для изолирования обмоток машин и аппаратов. Хлопчатобумажные лакоткани имеют толщину 0,15 – 0,25 мм, электрическую прочность 35 – 40 кВ/мм. Шелковые лакоткани имеют толщину 0,05 – 0,1 мм и повышенную электрическую прочность (в 1,5 – 2 раза по сравнению с хлопчатобумажными лакотканями).

Трансформаторное масло

Мрамор

Горная порода зернисто-кристаллического строения. Глыбы мрамора распиливают на доски, которые затем фрезеруют и полируют. Недостатки мрамора: гигроскопичность, хрупкость, способность растрескиваться при сильном нагреве, способность разлагаться кислотами. Пропитка мрамора парафином, битумом, канифолью делает его практически негигроскопичным. Электрическая прочность мрамора 2,5 – 3,5 кВ/мм; ε = 8.

Пластические массы

Пропиточные и заливочные составы

По другому такие составы называют – компаунды. Они применяются для пропитки и заливки различных частей электрических установок. Эти составы изолируют отдельные токоведущие части, создают водостойкую изоляцию и улучшают условия охлаждения. Пропиточные и заливочные составы изготовляют из нефтяных битумов и сплавов минерального масла с канифолью. Иногда для увеличения теплопроводности в битумы вводят наполнитель, например кварцевый песок.

Пропиточные и заливочные составы

Слюда

Минерал кристаллического строения. Благодаря своему строению слюда легко расщепляется на отдельные листочки. Она обладает высокой электрической прочностью (80 – 200 кВ/мм), высокой нагревостойкостью, влагостойкостью, механической прочностью и гибкостью. В электротехнике применяют два вида слюды: мусковит и флогопит, различающиеся по составу, цвету и свойствам. Лучшей слюдой является мусковит. Из листочков слюды штампуют прямоугольные пластинки для конденсаторов, шайбы для электротехнических приборов и тому подобное. Однако чаще отдельные листочки слюды при помощи клеящих лаков (глифталевого, битумно-масляного, шеллачного и других) склеивают между собой. Такой материал называется миканитом. Различают миканиты: коллекторный (для изоляции коллекторных пластин), прокладочный (для изоляции шайб, прокладок), формовочный (прессуется при нагреве для изготовления фасонных деталей), гибкий (для межвитковой и пазовой изоляции электрических машин), жароупорный (для электронагревательных приборов). Иногда пластинки слюды наклеивают на бумагу или ткани (микалента, микафолий, стекломикафолий).

предохранителей, патронов, штепселей и тому подобные). Электрическая прочность фарфора 6 – 10 кВ/мм; ε = 5 – 6,5. Кроме фарфора, применяется другой керамический материал – стеатит, изготовляемый на основе минерала – талька. Стеатит по сравнению с фарфором обладает более высокими электроизоляционными и физико-механическими свойствами.

Фарфор электротехнический

Фибра

Изготовляется из пористой бумаги, обработанной раствором хлористого цинка. Фибра хорошо поддается механической обработке. Большим недостатком фибры является ее гигроскопичность. Фибра разъедается кислотами и щелочами. Из нее изготовляют мелкие детали, прокладки, каркасы катушек. Электрическая прочность фибры 5 – 11 кВ/мм; ε = 2,5 – 5. тонкая фибра (0,1 – 0,5 мм) называется летероидом.

Церезин

Получают путем очистки воскообразного минерала – озокерита или петролатума. Церезин по сравнению с парафином имеет повышенную температуру плавления (65 – 80 °С) и повышенную стойкость против окисления. Церезин применяют для пропитки бумажных конденсаторов, приготовления изолирующих составов и другого. Электрическая прочность церезина 15 кВ/мм.

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

Изоляция обмотки якоря

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Диэлектрические изделия для электроприборов

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Свойства изоляционных материалов

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Параметры изоляции для силовых кабелей

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Твердые неорганические диэлектрики

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Виды жидких диэлектриков

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Свойства газообразных диэлектриков при нормальном давлении

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

Ткань с лаковой пропиткой

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Электроизоляционными материалами называют особый тип диэлектриков, который позволяет обеспечить изоляцию токоведущих частей в электроустановках.


Диэлектрики (или диэлектрические материалы) - отдельный класс изоляторов с диэлектрическими свойствами. Они обладают способностью оказывать сопротивление прохождению электрического тока (нетокопроводящие), а также способностью поляризоваться во внешнем электрическом поле. Характеристики диэлектрических материалов определены в ГОСТ 21515-76.

Если к диэлектрическому электроизоляционному материалу приложить высокое напряжение, то может возникнуть электрический пробой (по материалу проходит ток большой величины).

Типы диэлектрических материалов

Диэлектрические материалы делятся по своему химическому составу на две большие группы:

• Диэлектрики органического происхождения.
• Диэлектрики неорганического происхождения.

Понятно, что основным элементом, образующим органический диэлектрик, является углерод (С). Неорганические диэлектрики (керамика, слюда и т.п. композиции с похожей основой) построены не из углерода, то есть они могут сопротивляться высоким температурам.

Диэлектрики также классифицируются по происхождению и делятся на два класса:

• Материалы естественного происхождения.
• Синтетические материалы.

В свою очередь, класс синтетических материалов разделяют на подгруппы:

• Плёночные изоляторы: материалы изготавливают из полимеров в форме лент или плёнок разной толщины.
• Изоляторы-растворы: материалы производят в форме лаков или эмалей, при этом раствор, высыхая, образует изоляционную плёнку. Это могут быть различные варианты смол, быстросохнущих масел, битумов, а также эфиры целлюлозы и композиты на основе этих соединений.
• Компаунды: эта подгруппа электроизоляционных материалов представляет жидкости, которые затвердевают сразу после нанесения на изолируемую поверхность.
Электроизоляционные компаунды в своём составе не содержат растворителей. В зависимости от сферы применения они подразделяются на заливочные и пропиточные композиции. Заливочные применяются для заливки кабельных муфт, полостей оборудования с целью его герметизации. Пропиточные составы используют для пропитки обмоток электрических аппаратов.
• Листовые и рулонные электроизоляционные материалы: эта подгруппа производится из непропитанных волокон неорганического или органического происхождения. Например, бумага, картон, ткань или фибра готовятся на основе волокон древесины, хлопка или натурального шёлка.
• Лакоткани: это пластичные материалы, в основе которых лежит ткань, пропитанная каким-либо изоляционным составом (например, специальным лаком).

После того как пропитка затвердевает, на поверхности ткани образуется изоляционная пластичная плёнка, благодаря которой ткань приобретает электроизоляционные свойства. В зависимости от характеристик тканой основы лакоткани подразделяются на хлопчатобумажные, шёлковые, капроновые и стеклянные (так называемые стеклоткани).

Материалы искусственного происхождения характеризуются определёнными физико-химическими свойствами, которые обеспечивает технология производства. Благодаря известным параметрам искусственные изоляторы находят широкое применение в электротехнике.

В зависимости от своего агрегатного состояния диэлектрики могут быть газообразными, жидкими и твёрдыми.

Свойства твёрдых диэлектриков

Группа твёрдых диэлектриков является самой многочисленной. Свойства материалов оцениваются по ряду диэлектрических характеристик.


Основные диэлектрические характеристики (группа твёрдых диэлектриков):

1. Поверхностное сопротивление изоляционного материала.
2. Объёмное сопротивление.
3. Электрическая прочность.
4. Диэлектрическая проницаемость.

Величины будут зависеть от типа синтетического материала. Набор характеристик определяет область применения диэлектрика.

Явление электрического пробоя может возникнуть в любом электроизоляционном материале, в связи с чем введён такой параметр как электрическая прочность. Количественное значение этой характеристики определяется величиной напряжения, приложенного к диэлектрику, при котором возникает пробой. Величина приложенного напряжения пробоя зависит как от свойств изоляционного материала, так и от его толщины.

Применение электроизоляционных материалов

Электроизоляционные материалы применяются в электротехнике для производства различных групп изделий:

• Электронные печатные платы и панели, которые используют для расшивки проводников.
• Изоляционные покрытия с разными классами защиты.
• Изоляционные оболочки для проводов, шнуров и кабелей.
• Изоляционные элементы арматуры электроустановочного оборудования (розетки распределительные коробки, кабельные разъёмы, патроны, переключатели и т.п.).
• Каркасы электротехнических изделий (корпуса, панели, стойки, катушки индуктивности и т.п.).

Параметры электроизоляционных материалов влияют на надёжность оборудования и безопасность людей.

Виды электроизоляционных материалов

В настоящее время электрохимическая промышленность выпускает огромное количество электроизоляционных материалов. Материалы на основе стекловолокна с добавлением синтетических смол прочно вошли в нашу жизнь. Эти материалы обладают такими свойствами, как влагостойкость и нагревостойкость, высокая электрическая и механическая и прочность.
Наряду с природными электроизоляционными материалами (электрокартон, хлопчатобумажные ленты, асбест, слюда) распространены материалы на основе стекловолокна в сочетании с синтетическими смолами, обладающие, хорошими диэлектрическими свойствами. Например, стекловолокно, применяемое для многих видов изоляции (стеклолакоткань, стеклолента, стекломиканит, стеклотекстолит), имеет высокую влагостойкость, нагревостойкость, прочность на разрыв, химическую стойкость и высокую теплопроводность. Широкое распространение получили синтетические пленки, такие, как лавсан, мелинекс и др.
Синтетические изоляционные материалы позволяют повысить мощность электротехнического оборудования при сохранении их внешних физических размеров (двигателей, агрегатов, трансформаторов) и обеспечить наиболее продолжительный их срок службы.
Представляем наиболее распространенные и применяемые изоляционные материалы.

Непропитанные волокнистые и изоляционные материалы

Электрокартон

Выпускается в нескольких видах. Электрокартон для работы в воздушной среде (марки ЭВТ и ЭВ) толщина (0,1мм—3 мм). Электрокартон для работы в масле (марки ЭМТ и ЭМЦ), толщина (1мм—3 мм). Выпускается как в листах (листовой), так и в рулонах (рольный).
Если электрокартон выпущен в непропитанном виде, то является невлагостойким материалом, и хранят его надо в сухом помещении. Диэлектрическая прочность сухого электрокартона марки ЭВ, который имеет влажность около 8%, равна 8—11 кВ/мм, а марки ЭМТ уже 20—30 кВ/мм.

Электрокартон в рулонах

Изоляционные бумаги

Изготовляется из измельченной древесины хвойных пород и обрабатывается щелочью.
Имеется несколько видов изоляционной бумаги. Это телефонная бумага, кабельная бумага и конденсаторная бумага.
Телефонная бумага. Марка бумаги КТ-05 выпускается толщиной 0,04 — 0,05 мм. Кабельная бумага марки К-120. Ее толщина 0,12 ми она пропитана трансформаторным маслом, имеющим хорошие диэлектрические свойства. Такими же свойствами обладает конденсаторная бумага, только толщина ее гораздо меньше.

Внешний вид телефонной бумаги

Фибра

Изготовляется из бумаги и обрабатывается раствором хлористого цинка. Имеет малую механическую прочность по этому хорошо обрабатывается. Диэлектрическая прочность фибры составляет 5 – 11 кВ/мм. Не стойкая к щелочам и кислотам. Выпускается в виде листов и имеет толщину 0,6— 12 мм. Так же выпускается в виде трубок и круглых стержней. Из фибры делают каркасы катушек, прокладки.

Фибра

Летероид

Электроизоляционный материал, который представляет собой одну из разновидностей фибры, имеющей малую толщину. Летероид выпускается в виде рулонов и листов и имеет толщину 0,1—0,5 мм.

Летероид

Хлопчатобумажные ленты

Промышленность выпускает хлопчатобумажные ленты следующих разновидностей: киперную, тафтяную, батистовую и миткалевую. Ленты производятся следующих видов и размеров:

  • Киперная лента ЛЭ изготавливается по ГОСТ4514-78 из х/б нити и имеет ширину 10—60 мм, а толщину 0,45 мм, используется в электромонтажных работах, для стягивания кабелей и проводов, для обвязки катушек, обмоток двигателей и трансформаторов;
  • Тафтяная лента ЛЭ изготавливается по ГОСТ4514-78 из х/б или шелковой нити и имеет ширину 10-50 мм с шагом 5мм, а толщину 0,25 мм, используется при проведении электромонтажных работ. Похожа на киперную ленту, отличается только плетением нити. По прочностным характеристикам уступает киперной ленте.
  • Батистовая лента ЛЭ изготавливается по ГОСТ4514-78 из х/б нити полотняного плетения, имеет ширину 10—20 мм и толщину 0,12-0,16-0,18 мм. Самая тонкая из лент. Может быть заменена тафтяной.
  • Миткалевая лента ЛЭ изготавливаются по ГОСТ4514-78, имеет ширину 12—35 мм и толщину 0,22 мм. По физическим свойствам менее прочная, чем киперная, но прочней тафтяной, хотя тоньше их.

Асбестовые материалы

Асбест — природный минерал, который имеет волокнистое строение. Качественным показателем асбеста является его высокая нагревостойкость (300 – 400°С) и низкая теплопроводность. Из асбеста изготавливают материалы в виде листов разной толщины в виде веревок разного диаметра и асбестовых тканей. У асбеста плохие электроизоляционные свойства (диэлектрическая прочность 0,6 – 1,2 кВ/мм). Чаще всего асбест применяют в качестве теплоизолятора. В качестве электроизолятора используется только в низковольтных установках.

Электроизоляционные лакированные ткани

Лакоткани и стеклоткани представляют собой гибкий материал и изготовляют из х/б, стеклянной или шелковой ткани. После этого ткань пропитывают масляно-битумным или масляным лаком или другим изоляционным составом. Они выпускаются рулонами толщиной 0,1—0,3 мм и шириной от 700 до 1000 мм. Марки лакоткани, выпускаемые промышленностью ЛХС, ЛХСМ, ЛХСС, ЛХЧ, ЛШС. Марки стеклоткани ЛСБ, ЛСМ, ЛСЭ, ЛСММ, ЛСК, ЛСКР, ЛСКЛ. Лакоткань шелковую марки ЛШС выпускают также и толщиной 0,08 мм, а ЛШСС может иметь толщину 0,04 мм.

У марок лакотканей и стеклотканей аббревиатура в названии расшифровывается следующим образом:
Л — лакоткань;
X — хлопчатобумажная;
С — на втором месте — стеклянная;
К — на втором месте — капроновая;
С — на третьем месте — светлая;
К — на третьем месте — кремнийорганическая;
С — на четвертом месте — специальная;
Л — на четвертом месте — липкая;
Ч — черная;
Ш — шелковая;
Б — битумно-маслянноалкидная;
М — маслостойкая;
Р — резиновая;
Э — эскапоновая.
Стеклоткань имеет высокую нагревостойкостью. Марки ЛСКЛ и ЛСК — около 180°С, а марка ЛБС доходит до 130° С. Их электрическая прочность составляет 35 – 40 кВ/мм.

Лакоткань и стеклоткань используются в качестве электро и тепло изоляционных материалов. Чаще всего ими изолируют слои обмоток катушек.

Пленочные материалы

К этим материалам относятся лавсановая пленка, фторопластовая пленка, пленкоэлектрокартон (электрокартон, оклеенный изоляционной пленкой, например триацетатной), терфан, мелинекс (полиэтилентерефталатные пленки). Данные изоляционные материалы имеют диэлектрическую прочность до 200 кВ/мм, прочность на разрыв равную 30 кг при толщине пленки 0,05 мм.
Их нагревостойкость достигает, а иногда и превосходит 120° С.

Фторопластовая пленка

Фторопластовая пленка

Слоистые изоляционные материалы

К слоистым изоляционным материалам относятся текстолит, стеклотекстолит, и гетинакс.

Текстолит

Текстолит представляет собой слоистый изоляционный материал. Изготовлен методом прессованния при 150°С многослойной х/б ткани, пропитанную резольной смолой. По сравнению с другим изоляционным материалом, гетинаксом имеет более высокую механическую прочность, но худшие некоторые характеристики, такие, как влагостойкость и цена. Выпускается в форме цилиндров, стержней, трубок и листов. Имеет две основные марки: А — которая обладает высокой электрической прочностью, и Б — с лучшими механическими свойствами и хорошей влагостойкостью. Текстолит хорошо механически обрабатывается. Из него изготавливаются каркасы катушек, диэлектрические щиты, платы, штанги, прокладки. Благодаря хорошим износостойким свойствам из него делают шестеренки, вкладыши для подшипников.

Текстолит

Стеклотекстолит

Стеклотекстолит изготовляют та же, как и текстолит, только из стеклоткани, пропитанной теплостойкой смолой. Характеристики стеклотекстолита выше, чем у текстолита и гетинакса. Стеклотекстолит имеет высокую электрическую прочность (20 кВ/мм), большую механическую прочность, нагревостойкость (от 180 до 225° С) и влагостойкостью. Но имеет себестоимость выше текстолита.

Стеклотексталит

Гетинакс

Гетинакс изготовляют из прессованной бумаги, пропитанной бакелитовой смолой. Современная промышленность выпускает в виде листов толщиной от 0,4 до 50 мм. Так же гетинакс выпускается в виде стержней различного диаметра. Гетинакс маркируется А, Б, В, Вс. Диэлектрическая прочность гетинакса составляет 20 – 25 кВ/мм и может работать как на воздухе, так и в масле. Гетинакс превосходно обрабатывается как ручным инструментом, так и станками. Из гетинакса могут изготовляться диэлектрические щиты, штанги, прокладки, платы, каркасы катушек и трансформаторов. К недостаткам можно отнести низкую нагревостойкость. При нагреве поверхность гетинакса обугливается и начинает проводить электрический ток.

Гетинакс

Слюдяные изоляционные материалы

Слюдяные изоляционные материалы изготавливаются из слюды — минерала кристаллического строения. Слюду расщепляют на отдельные пластинки и склеивают с помощью лака или смолы. Промышленность выпускает несколько видов слюдяных изоляционных материалов. Это мусковит, миканит, флогопит. Мусковит обладает самыми лучшими характеристиками и применяется при изготовлении конденсаторов, прокладок электроприборов. Миканиты бывают гибкие (марки ГФС, ГМС), твердые (марки ПМГ, ПФГ), чаще используются для прокладок и формовочные (мари ФФГ и ФМГ). Миканиты применяются для изготовление каркасов и используются в качестве прокладок и для загильзовки в обмотках электрических машин. Слюдяные изоляционные материалы имеют высокую нагревостойкость порядка 130—180° С, диэлектрическую прочность в пределах 15—20 кВ/мм и отличную влагостойкость.

Изоляционные материалы из слюды


Из щипаной слюды, наклеенной на ткань или бумагу изготовляют микаленту. Микалента имеет ширину 12—35 мм и толщину 0,08—0,17 мм. Микалента выпускается марками ЛФЧ, ЛМЧ, ЛМС, ЛФС. В конце марки ставят римские цифры I или II. Миколента с цифрой I имеет повышенную электрическую прочность, а с цифрой II -нормальную электрическую прочность.
В настоящее время из за дефицита слюды как сырья и ее дороговизны, часто стали использовать отходы слюды. Из отходов стали изготавливать слюдяную бумагу, слюдиниты, стеклослюдиниты и другие электроизоляционные материалы.

Керамические изоляционные материалы

Фарфор

Фарфор или, так называемая, электротехническая керамика. Обладает такими свойствами, как нагревостойкость ( 150—170°С), диэлектрическая прочность (20—28 кВ/мм), высокая механическая прочность, устойчивость к проникновению воды ( воду не поглощает), устойчив к агрессивным средам, радиационным излучениям. Электротехническая керамика используется в таких отраслях, как электрика, электроника, автоматика и телемеханика, вычислительная техника. Из электротехнического фарфора делают различные изоляторы, изоляционные тяги.

Изделия из фарфора

Стеатит

Стеатит это керамический материал. Обладает высокой диэлектрической прочностью (30—50 кВ/мм). Благодаря хорошим диэлектрическим свойствам стеатит применяется для изготовления особо ответственных изоляторов и изоляционных узлов.

Читайте также: