Электрический ток через контакт полупроводников р и n типов кратко

Обновлено: 07.07.2024

На рисунке 192 изооражена схема полупроводника, правая часть которого содержит донорные примеси и поэтому является полупроводником я-типа, а левая — акцепторные примеси и представляет собой полупроводник -типа. Электроны изображены цветными кружками, а дырки — черными. Контакт двух полупроводников называют — -переходом.

Включим полупроводник с -переходом в электрическую цепь (рис. 193). Подключим сначала батарею так, чтобы потенциал полупроводника -типа был положительным, а -типа — отрицательным. При этом ток через -переход будет осуще ствляться основными носителями: из области в область электронами, а из области в область —дырками (рис. 194). Вследствие этого проводимость всего образца будет большой, а сопротивление — малым.

Рассмотренный здесь переход называют прямым. Зависимость силы тока от разности потенциалов — вольт-амперная характеристика прямого перехода — изображена на рисунке 195 сплошной линией.

Переключим полюса батареи. Тогда при той же разности потенциалов сила тока в цепи окажется значительно меньшей, чем при прямом переходе. Это обусловлено следующим. Электроны через контакт идут теперь из области в область а дырки из области в область Но ведь в полупроводнике -типа мало свободных электронов, а в полупроводнике типа мало дырок. Теперь переход через контакт осуществляется неосновными носителями, число которых мало (рис. 196). Вследствие этого проводимость образца оказывается незначительной, а сопротивление — большим. Образуется так называемый запирающий слой. Этот переход называют обратным. Вольт-амперная характеристика обратного перехода изображена на рисунке 195 пунктирной линией.

Таким образом, -переход по отношению к току оказывается несимметричным: в прямом направлении сопротивление перехода значительно меньше, чем в обратном. Данное свойство -перехода используют для выпрямления переменного тока.

На протяжении половины периода, когда потенциал полупроводника -типа положителен, ток свободно проходит через -переход.

Зависимость проводимости полупроводников от температуры и освещенности

Полупроводники – это вещества, сопротивление которых убывает с повышением температуры, изменения освещенности, наличия примесей.

При нагревании полупроводникового термистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

зависимость сопротивления полупроводников от температуры

При освещении полупроводникового фоторезистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

Типичными полупроводниками являются кристаллы германия (Ge) и кремния (Si).

Собственная проводимость полупроводников

В идеальном кристалле германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется свободное вакантное место – положительная дырка.

В идеальном кристалле четырехвалентного германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. Четыре валентных электрона связаны с четырьмя соседними атомами. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется положительная дырка.

В чистом полупроводнике электрический ток создается равным количеством электронов и дырок. Такой тип проводимости называется собственной проводимостью полупроводников.

Примесная проводимость полупроводников

При внесении примеси электрическая проводимость полупроводников увеличивается. Такой полупроводник обладает примесной проводимостью.

При добавлении донорной примеси (с большей валентностью) в полупроводнике образуются лишние электроны. Например, если в четырехвалентный кристалл германия добавить пятивалентный мышьяк, то четыре электрона мышьяка образуют ковалентные связи, а пятый остается свободным. Проводимость становится электронной, а полупроводник называют полупроводником n-типа.

При добавлении акцепторной примеси (с меньшей валентностью) в полупроводнике образуются лишние дырки. Например, если в четырехвалентный кристалл германия ввести трехвалентный индий, то одна ковалентная связь останется незавершенной. Проводимость становится дырочной, а полупроводник называют полупроводником p-типа.

Электронно-дырочный переход

В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой, называемый p-n-переходом. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Полупроводниковые приборы и их применение

Полупроводниковый диод

Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

Электрический ток через контакт полупроводников p-n-типа:

прямой ток через диод

Идет значительный ток.

обратный ток через диод

Ток практически отсутствует.

вольт-амперная характеристика диода

Вольт-амперная характеристика p-n-перехода.

Правая часть графика соответствует прямому направлению тока, а левая – обратному.

Полупроводниковый диод используется как выпрямитель переменного тока.

полупроводниковый диод

Транзистор

Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

транзистор

Интегральные схемы

На основе полупроводниковых кристаллов создаются интегральные схемы, в которых сотни тысяч элементов соединяются в единую электрическую цепь.

интегральная схема

Полупроводники используются при создании:

фоторезисторов , которые находят применение в автоматических выключателях света, индикаторах на ИСЗ;

термисторах , используемых для измерения температуры, в пожарной сигнализации, реле времени;

фотоэлементах , используемых в солнечных батареях;

фотодиодах , используемых для измерения интенсивности света;

фототранзисторах , используемых в различных датчиках;

светодиодах , используемых в качестве источника инфракрасного излучения, знаковых индикаторах, полупроводниковых лазерах.

Подведем итог

Полупроводники по электропроводности занимают промежуточное положение между диэлектриками и проводниками. К полупроводникам относится большая группа веществ (Si, Ge и др.). В отличие от металлов с ростом температуры удельное сопротивление полупроводников уменьшается.

Проводимость полупроводников обусловлена наличием свободных электронов и дырок. В чистом кристалле электроны и дырки присутствуют в равном количестве. Такой полупроводник обладает собственной проводимостью.

При наличии примесей в полупроводниках возникает примесная проводимость. При добавлении донорной примеси с валентностью на единицу больше, чем у полупроводника, один электрон остается свободным. Получается полупроводник n-типа.

Если же добавить акцепторную примесь с валентностью на единицу меньше, чем у полупроводника, то в таком полупроводнике концентрация дырок превышает концентрацию электронов. Получается полупроводник p-типа.

Область контакта полупроводников двух типов называется p-n-переходом. Важным свойством p-n-перехода является его односторонняя проводимость. Данное свойство используется в работе полупроводникового диода.

Полупроводники используются при создании транзисторов, термисторов, светодиодов, фотоэлементов, интегральных схем.

В настоящее время полупроводниковые приборы находят широкое применение в радиотехнике, автоматике, вычислительной технике, телемеханике.

Примеси, легко отдающие свои электроны, называются донорными. Если добавить их, получается полупроводник n-типа с электронной проводимостью.

Примеси, легко принимающие электроны, называются акцепторными. Если добавить их, получается полупроводник p-типа с дырочной проводимостью.

При контакте двух полупроводников с разным типом проводимости образуется так называемый p-n-переход.

Он обладает односторонней проводимостью.

Решение задачи

p–n-переход

О полупроводниковом диоде

При контакте полупроводников p- и n-типов образуется контактное электрическое поле, в результате диффузии электронов в полупроводник р-типа, а дырок в полупроводник n-типа. Создаётся запирающий слой для основных носителей заряда.

Односторонняя проводимость p–n-перехода

При включении в цепь p–n-перехода, когда область с электронной проводимостью соединена с отрицательным полюсом источника тока, а область с дырочной проводимостью – с положительным полюсом, внешнее электрическое поле ослабляет контактное поле, обогащает пограничный слой основными носителями и обеспечивает ток значительной силы, называемый прямым и обусловленный движением основных носителей заряда.

При обратном включении внешнее поле усиливает контактное поле, и пограничный слой обедняется основными носителями заряда. Течёт очень малый ток, обусловленный движением через p-n-переход неосновных носителей заряда, которых очень мало.

Полупроводниковый диод – устройство, содержащее p–n-переход и способное пропускать ток в одном направлении и не пропускать в обратном.

Транзистор или полупроводниковый триод – устройство, содержащее два p–n-перехода, прямые направления которых противоположны.

Современная электроника базируется на микросхемах и микропроцессорах, включающих в себя колоссальное число транзисторов. Транзисторы получили очень широкое распространение в современной технике. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой аппаратуры.

Открытие p–n перехода

Создание средств современной цифровой техники базируется на одном изобретении – транзисторе, основной принцип работы которого был открыт дважды, более полувека назад. И за 50 лет использования транзисторов у них не появилось серьёзных конкурентов. Кто же был первооткрывателем физического явления, положенного в основу работы транзистора?

Но более чем за 15 лет до этого, в начале 1941 года молодой украинский учёный Вадим Лашкарёв первый в мире экспериментально обнаружил p–n-переход и раскрыл механизм электронно-дырочной диффузии, на основе которых в годы Великой Отечественной войны были созданы первые в СССР полупроводниковые диоды, а в начале 50-х годов – первые в Украине полупроводниковые триоды.

Рассмотрим явление прохождения электрического тока через контакт полупроводников p- и n-типов. На следующем рисунке изображен такой контакт.

Левая часть представленного полупроводника содержит акцепторные примеси. Правая часть представленного полупроводника содержит донорные примеси. Соответственно левая часть является полупроводником p-типа, а правая полупроводником n-типа.

Между полупроводниками образуется особенная зона – зона перехода. В ней совсем мало зарядов, тут происходит рекомбинация электронов и дырок.

Контакт полупроводников р- и п- типов

На рисунке электроны представлены кружочками голубого цвета, а дырки – кружочками серого цвета. Контакт двух полупроводников n- и p- типов называют p-n- переходом, или n-p – переходом.

В результате контакта между полупроводниками начинается диффузия. Некоторая часть электронов переходит к дыркам, а некоторая часть дырок переходит на сторону электронов. В результате чего полупроводники заряжаются: n- положительно, а p – отрицательно.

После того, как электрическое поле, которое будет возникать в зоне перехода, начнет препятствовать перемещению электронов и дырок, диффузия прекратится.

Для исследования свойств pn-перехода подключим его в цепь так, как показано на следующей схеме.

Сначала подключим источник питания так, чтобы потенциал на сторону полупроводника p-типа приходился положительный потенциал, а на сторону n-типа отрицательный.

При таком подключении проводимость полупроводника будет велика. Ток через переход будет создаваться основными носителями: из n в p – электронами, а из p в n – дырками.

Сопротивление будет очень маленьким. Такое подключение pn-перехода называется прямым. Теперь изменим полярность подключения источника питания.

Значение силы тока значительно уменьшится, чем в предыдущем случае. Ток в этом случае будет создаваться неосновными носителями, число которых значительно меньше, чем число основных носителей.

Вольт-амперная характеристика

Проводимость в этому случае будет маленькой, а сопротивление большим. Образуется запирающий слой. Такое подключение pn-перехода называется обратным.

При исследовании свойств какого либо элемента, часто строят зависимость силы тока от разности потенциалов. Данный тип зависимости получил в физике название вольт-амперной характеристики. Иногда для удобства записи пишут просто ВАХ.

На следующем графике показаны вольт-амперные характеристики прямого и обратного подключения pn-перехода.

Сплошной линией нарисована вольт-амперная характеристика прямого подключения pn-перехода, а пунктирной – обратного подключения.
На основе свойств pn-перехода сделаны различные радиотехнические элементы, например, диоды.

Читайте также: