Электрические станции и подстанции кратко

Обновлено: 30.06.2024

Электрическая подстанция – это сложная электроустановка, выполняющая роль связующего, преобразующего и перераспределяющего звена при передаче электроэнергии на значительные расстояния. В процессе транспортировки преобразования электроэнергии осуществляется в диапазоне 0,4-1150 кВ.

Состав оборудования, входящего в состав электрических подстанций.

Традиционно, электрические подстанции состоят из нескольких элементов:

Силовые трансформаторы

Это электромагнитные приборы, состоящие из сердечника и двух либо более обмоток. Посредством процессовэлектромагнитной индукциитрансформатор трансформирует переменный ток одного напряжения в другой. Этот принцип используется для, чтобы передавать электрическую энергию с меньшими потерями в линии и без увеличения сечения проводов на значительные расстояния.

Силовые трансформаторы являются главными элементами трансформаторных подстанций, которые выполняют основную работу по преобразованию электроэнергий.

Выход из строя трансформатора зачастую приводит к отказу всей подстанции или переходу её работы в аварийный режим.

Интересное видео о компоновке подстанции можно посмотреть ниже:

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на: Водогрейные;
  • Паровые.

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев.

Виды децентрализованного отопления:

  • Малыми котельными;
  • Электрическое, которое делится на: Прямое;
  • Аккумуляционное;

Тепловые сети

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

Приборы защиты, фиксации отклонений, автоматического управления и сигнализации.

Эти устройства используются для предотвращения поломок и безотказной работы подстанций и каждый из них выполняет свою специфическую задачу. К ним относятся измерительные компоненты (трансформаторы тока, напряжения), нелинейные ограничители напряжения, разрядники, заземляющие устройства, плавкие предохранители, токоограничивающие и регулирующие устройства, а также приборы противоаварийной автоматики, телемеханики, сигнализации и т.п.

Все элементы этой граппу можно разделить на 2 категории:

  1. Первая — устройства релейной защиты, вторые — устройства противоаварийной защиты.

Первые выполняют защиту от аварийных процессов (КЗ, перегрузки трансформаторов, линий и др).

Элементы трансформаторной подстанции

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля — 27%, газа — 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Распределительные устройства (РУ)

Они отвечают за приём электроэнергии и распределение её между всеми потребителями электрической подстанции.

Все РУ классифицируются на:

  • открытые РУ — устанавливаются на открытом воздухе;
  • закрытые РУ – размещаются в помещении;
  • комплектное РУ — конструктивно состоят из шкафов, с встроенными компонентами и механизмами.

Вспомогательные системы призванные облегчать эксплуатацию электроустановок. К ним относятся системы вентиляции, кондиционирования и обогрева; автоматического пожаротушения, освещения территории, аварийного сбора масла, питания маслонаполненных кабелей и пр.

Элементы трансформаторной подстанции

Способы классификация устройств электрических подстанций

По методу конфигурации электросети подстанции могут быть:

В зависимости от назначения в системе электроснабжения подстанции бывают:

  • главные понизительные (ГПП);
  • глубокого ввода (ПГВ);
  • тяговые, предназначенные для обеспечения питания нужд электротранспорта;
  • комплектные подстанции 10 (6)/0,4 кВ.

Алгоритм проведения диагностики

Первым делом следует провести исследование уровня изоляции у силовых трансформаторов. Этот процесс происходит с использованием так называемого метода фиксации частичных разрядов.

Во время этой процедуры проводится регистрация электромагнитного излучения, которое находится на ультравысоких частотах. Оно пребывает в диапазоне существования импульсов, которые измеряются в наносекундах.

Также происходит вычисление места, где возникают эти колебания. Для этого используют специальные акустические датчики. Их, как правило, размещают в баках трансформаторов.

Этот способ в целом отображает отслеживание существующей реальной динамики всех характеристик изоляции. Таким образом, можно своевременно выявить наличие проблем и оптимизировать размеры ремонтных работ.

Огромным плюсом является факт того, что процесс мониторинга возможен без нарушения нормального функционирования трансформатора и полного отключения системы. Диагностика электрооборудования подстанций сопутствует своевременному выявлению сбоев и предоставляет шанс избежать капитальных ремонтов и непредусмотренных затрат.

Вторым шагом является проведение операций для диагностики муфт, открытых и закрытых распределительных установок. Такие процедуры обычно совершаются без полного отключения с наличием привычного уровня напряжения.







Метод заключается в контроле частоты разрядов, которые существуют при работе оборудования. Таким образом измеряется шкала электромагнитной активности.

Для обследования этого явления используют специальный УВЧ-сканер. С его помощью определяются сигналы по частотному диапазону. Во время таких работ существует возможность легко оценить наличие дефектов в работе устройств и вовремя предотвратить возможные аварийные ситуации и сбои.


Всю технологию можно разделить на три основных этапа:

  • автоматизированный контролинг основных приборов;
  • циклическая проверка оборудования в нормальном рабочем режиме;
  • апробация измерений на выключенных установках.

Первый этап представляет собой использование специальных разнообразных датчиков и приспособлений. Происходит тщательный анализ показателей и проработка технологии регулирования программного обеспечения.

Диагностика электрооборудования подстанций в первую очередь означает соблюдение всех технических норм и подходов. Для этого используют современные методики и инновационные системы, созданные для исследования потенциальных дефектов и неполадок.

Испытания силовых трансформаторовПроектирование систем освещенияТрехфазные силовые трансформаторы

Электрические станции и подстанции: конспект лекций / В.В. Больнов, В.П. Возовик, А.А. Егонский. — Красноярск: ИПЦ СФУ, 2008. - с.

Изложены вопросы производства электроэнергии на электростанциях различных типов, рассмотрены электрофизические процессы в проводниках и аппаратах описаны конструкции электрооборудования: синхронных генераторов, трансформаторов, коммутационной аппаратуры, силовых трансформаторов и автотрансформаторов, измерительных трансформаторов тока и напряжения, воздушных и кабельных линий электропередач. Рассмотрены главные схемы электрических соединений станций и подстанций, схемы собственных нужд, оперативный ток, схемы управления коммутационными аппаратами, заземление.

Оглавление

1. Раздел 1. Общие сведения об электроустановках. Лекции 1-2. Темы 1.1-1.4…………………………………………….……………………..………. 5

1.1. Краткая историческая справка о развитии электроэнергетики……. 5

1.2. Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений………………………………….…….8

1.3. Основные типы станций: ТЭЦ, КЭС, ГЭС, АЭС, ГТУ, ПГУ. Возобновляемые источники энергии: ГеоЭС, ВЭС, ПЭС и др….………. 14

1.4. Графики нагрузок СЭС………………………………………………. 19

2. Раздел 2. Электрофизические процессы в проводниках и аппаратах Лекции 2-4. Темы 2.1.-2.4……………………….………………….…..35

2.1.Основы теории электрической дуги и способы ее гашения………. 35

2.2. Нагрев проводников токами нормального режима……….………….44

2.3. Действие токов на проводники и аппараты…………………………..46

2.4. Координация токов КЗ. ………………………………………………. 52

3. Электрические аппараты и токоведушие части. Лекции 5-13. Темы 3.1-3.5…… 55

3.1. Шины, изоляторы и контактные соединения………………………. 55

3.2. Электрические аппараты. Коммутационные аппараты до 1000 В….74

3.3.Электрические аппараты. Коммутационные аппараты выше 1000 В.91

3.4. Измерительные трансформаторы…………………………………. 117

3.5. Устройство и выбор реакторов………………………………….…. 130

4. Основное оборудование. Лекции 14-18. Темы 4.1,4.2…………….…….135

4.1Синхронные генераторы…………………………………………. 135

4.2.Силовые трансформаторы…………………. ……. 156

5. Раздел 5. Электрические схемы РУ электростанций и подстанций. Лекции 19-23. Темы 5.1, 5.2.………………………………………. 157

5.1Схемы электрических станций и РУ…………………………………157

5.2Электрические схемы РУ электростанций и подстанций. ………. 229

6. Раздел 6. Вспомогательные устройства. Лекция 24-26. Темы 6.1-6.3. 250

6.1Заземляющие устройства и защита от перенапряжений . 250

6.2. Источники оперативного тока и схемы вторичной коммутации на электрических станциях………………………………….………………262

6.3. Схемы и аппаратура цепей управления коммутационными аппаратами………. ………………………………………………………..….……..267

ВВЕДЕНИЕ

Топливно-энергетический комплекс страны охватывает получение, передачу, преобразование и использование различных видов энергии и энергетических ресурсов.

Электроэнергетика — ведущая составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии.

У истоков электроэнергетики стояли учёные В. В. Петров, П. Н. Яблочков, А. Н. Лодыгин гг.), Н. Н. Бенардос, академики Б. С. Якоби и Э. X. Ленц, А. И. Полешко, В. Н. Чиколев, Д. А. Лачинов и многие другие.

На базе научных достижений созданы электротехническая промышленность и энергетическое машиностроение, которые производят практически все виды электротехнического и энергетического оборудования: котло- и турбоагрегаты, электродвигатели и генераторы, трансформаторы, электрические аппараты, средства автоматики, управления и защиты, оборудование для линий электропередач.




Во втором разделе рассмотрены электрофизические процессы в проводниках и аппаратах: электрическая дуга, тепловое действие тока, термическое и динамическое действие токов короткого замыкания (КЗ), координация токов КЗ.

В третьем разделе даны краткие сведения об электрических аппаратах до и выше 1000 В, о конструкциях контактов и токоведущих частей, изоляторах, измерительных трансформаторах.

Четвертый раздел посвящён основному оборудованию электростанций и подстанций — синхронным генераторам и силовым трансформаторам, в том числе: конструктивным особенностям, параметрам, системам охлаждения и возбуждения, гашению поля, режимам работы и включению генераторов на параллельную работу; системам охлаждения, техническим характеристикам, схемам и группам соединения трансформаторов, автотрансформаторам.

Пятый раздел — электрические схемы распределительных устройств и схемы собственных нужд электростанций и подстанций.

Шестой раздел — вспомогательные устройства: заземление, молниезащита, защита от перенапряжений, оперативный ток, схемы и аппаратура цепей управления коммутационными аппаратами.

ЭЛЕКТРИЧЕСКИЕ

СТАНЦИИ И ПОДСТАНЦИИ

Больнов В.В.

Электрические станции и подстанции: конспект лекций / В.В. Больнов, В.П. Возовик, А.А. Егонский. — Красноярск: ИПЦ СФУ, 2008. - с.

Изложены вопросы производства электроэнергии на электростанциях различных типов, рассмотрены электрофизические процессы в проводниках и аппаратах описаны конструкции электрооборудования: синхронных генераторов, трансформаторов, коммутационной аппаратуры, силовых трансформаторов и автотрансформаторов, измерительных трансформаторов тока и напряжения, воздушных и кабельных линий электропередач. Рассмотрены главные схемы электрических соединений станций и подстанций, схемы собственных нужд, оперативный ток, схемы управления коммутационными аппаратами, заземление.

Оглавление

1. Раздел 1. Общие сведения об электроустановках. Лекции 1-2. Темы 1.1-1.4…………………………………………….……………………..………. 5

1.1. Краткая историческая справка о развитии электроэнергетики……. 5

1.2. Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений………………………………….…….8

1.3. Основные типы станций: ТЭЦ, КЭС, ГЭС, АЭС, ГТУ, ПГУ. Возобновляемые источники энергии: ГеоЭС, ВЭС, ПЭС и др….………. 14

1.4. Графики нагрузок СЭС………………………………………………. 19

2. Раздел 2. Электрофизические процессы в проводниках и аппаратах Лекции 2-4. Темы 2.1.-2.4……………………….………………….…..35

2.1.Основы теории электрической дуги и способы ее гашения………. 35

2.2. Нагрев проводников токами нормального режима……….………….44

2.3. Действие токов на проводники и аппараты…………………………..46

2.4. Координация токов КЗ. ………………………………………………. 52

3. Электрические аппараты и токоведушие части. Лекции 5-13. Темы 3.1-3.5…… 55

3.1. Шины, изоляторы и контактные соединения………………………. 55

3.2. Электрические аппараты. Коммутационные аппараты до 1000 В….74

3.3.Электрические аппараты. Коммутационные аппараты выше 1000 В.91

3.4. Измерительные трансформаторы…………………………………. 117

3.5. Устройство и выбор реакторов………………………………….…. 130

4. Основное оборудование. Лекции 14-18. Темы 4.1,4.2…………….…….135

4.1Синхронные генераторы…………………………………………. 135

4.2.Силовые трансформаторы…………………. ……. 156

5. Раздел 5. Электрические схемы РУ электростанций и подстанций. Лекции 19-23. Темы 5.1, 5.2.………………………………………. 157

5.1Схемы электрических станций и РУ…………………………………157

5.2Электрические схемы РУ электростанций и подстанций. ………. 229

6. Раздел 6. Вспомогательные устройства. Лекция 24-26. Темы 6.1-6.3. 250

6.1Заземляющие устройства и защита от перенапряжений . 250

6.2. Источники оперативного тока и схемы вторичной коммутации на электрических станциях………………………………….………………262

6.3. Схемы и аппаратура цепей управления коммутационными аппаратами………. ………………………………………………………..….……..267

ВВЕДЕНИЕ

Топливно-энергетический комплекс страны охватывает получение, передачу, преобразование и использование различных видов энергии и энергетических ресурсов.

Электроэнергетика — ведущая составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии.

У истоков электроэнергетики стояли учёные В. В. Петров, П. Н. Яблочков, А. Н. Лодыгин гг.), Н. Н. Бенардос, академики Б. С. Якоби и Э. X. Ленц, А. И. Полешко, В. Н. Чиколев, Д. А. Лачинов и многие другие.

На базе научных достижений созданы электротехническая промышленность и энергетическое машиностроение, которые производят практически все виды электротехнического и энергетического оборудования: котло- и турбоагрегаты, электродвигатели и генераторы, трансформаторы, электрические аппараты, средства автоматики, управления и защиты, оборудование для линий электропередач.

Во втором разделе рассмотрены электрофизические процессы в проводниках и аппаратах: электрическая дуга, тепловое действие тока, термическое и динамическое действие токов короткого замыкания (КЗ), координация токов КЗ.

В третьем разделе даны краткие сведения об электрических аппаратах до и выше 1000 В, о конструкциях контактов и токоведущих частей, изоляторах, измерительных трансформаторах.

Четвертый раздел посвящён основному оборудованию электростанций и подстанций — синхронным генераторам и силовым трансформаторам, в том числе: конструктивным особенностям, параметрам, системам охлаждения и возбуждения, гашению поля, режимам работы и включению генераторов на параллельную работу; системам охлаждения, техническим характеристикам, схемам и группам соединения трансформаторов, автотрансформаторам.

Пятый раздел — электрические схемы распределительных устройств и схемы собственных нужд электростанций и подстанций.

Шестой раздел — вспомогательные устройства: заземление, молниезащита, защита от перенапряжений, оперативный ток, схемы и аппаратура цепей управления коммутационными аппаратами.

Ответ прост — при такой передаче электрической энергии на значительные расстояния, большая её часть будет теряться. Для уменьшения потерь напряжение необходимо повышать. К примеру, для того чтобы передать мощность, равную 100 кВт при напряжении 220 В, потребуется сила тока равная 454,55 А, что неминуемо приведёт к увеличению сечения проводов линии электропередач.

Выход — увеличить напряжение. К примеру, если увеличить напряжение до 10 кВ, для передачи этой мощности потребуется сила тока, равная 10 А. Соответственно, сечение проводов будет меньше и потери электроэнергии также будут меньше.

Что такое подстанция?

Для преобразования и распределения электроэнергии применяются специальные электроустановки — электрические подстанции (определение согласно п. 37 ГОСТ 19431-84). В состав подстанций (сокращённо ПС) входят различные устройства, которые мы сейчас и рассмотрим.

Виды подстанций

Подстанции подразделяются на трансформаторные и преобразовательные подстанции. Назначение трансформаторных подстанций заключается понижении и повышении напряжения, а преобразовательных — в преобразовании переменного тока в постоянный и наоборот.

Все трансформаторные подстанции можно разделить на два вида: повышающие напряжение и понижающие напряжение. Подстанции, повышающие напряжения, как правило, устанавливают рядом электростанциями. Подстанции, понижающие напряжение, или как их ещё называют понизительные подстанции можно встретить повсеместно.

На улицах чаще всего мы видим трансформаторные пункты (ТП) или комплектные трансформаторные подстанции (КТП).

Трансформаторная подстанция – важнейший элемент сети электропитания города, завода и других объектов, но назвать ее главным конечно нельзя. Такая подстанция является совокупностью различных отдельных устройств, в том числе трансформаторы, диоды, выпрямителя и другие. Трансформаторная подстанция выполняет три основные задачи – принимать электроэнергию, преобразовывать ее и передавать на дальнейшее ее распределение среди клиентов. Они также могут быть закрытого или открытого типа. Первые устанавливаются в каких-либо помещениях, а вторые могут быть смонтированы на улице, то есть защищены от внешних воздействий, например, погодных.

В данной статье будет подробно рассмотрено устройство, структура трансформаторной подстанции, из чего она состоит, а главное, как она работает. Чтобы было более понятнее, статье имеет несколько наглядных видеоматериалов.

Конструкция трансформаторной подстанции.

Способы классификация

По методу конфигурации электросети подстанции могут быть:

В зависимости от назначения в системе электроснабжения подстанции бывают:

  • главные понизительные (ГПП);
  • глубокого ввода (ПГВ);
  • тяговые, предназначенные для обеспечения питания нужд электротранспорта;
  • комплектные подстанции 10 (6)/0,4 кВ.

Устройство трансформаторной подстанции

Существуют различные модели трансформаторов: повышающие или понижающие входное напряжение электрического тока. От того, какими силовыми электромагнитными трансформаторами оснащена подстанция, зависит, является она понижающей, либо повышающей. Электрические станции оснащены специальными подстанциями для повышения напряжения силы электрической энергии.

Критерии силового трансформатора по мощности и допустимым аварийным нагрузкам

Специальное устройство (генератор) вырабатывает напряжение. Повышающий трансформатор действует как его усилитель. Это необходимо для того, чтобы иметь возможность передавать электрическую энергию. Электростанции часто расположены довольно удалённо от городов, поэтому приходится передавать энергию на весьма отдалённые расстояния.

Устройство трансформаторной подстанции.

При этом в линиях электропередач оказываются неизбежными определённые потери. Поэтому повысить напряжение силы тока бывает необходимо. В других случаях, чаще всего, требуется, напротив, уменьшение напряжения входящей энергии. Потому используют такие подстанции, которые снижают напряжение.

Критерии силового трансформатора по расчетной мощности

Трансформаторные подстанции бывают нескольких разновидностей:

  1. Подстанция узловая распределительная (УРП).
  2. Подстанция главная, предназначенная для понижения или повышения (ГПП).
  3. Подстанция для глубокого ввода (ПГВ).
  4. Трансформаторный пункт (ТП).

Распределительная узловая подстанция является центральной. Именно она получает электричество от энергетической системы, доводит напряжение до показателей от 110 до 120 кВт. На узловых подстанциях электрическая энергия, имеющая напряжение с высокими показателями, распределяется к местам назначения, точнее говоря, на расположенные вблизи промышленных предприятий подстанции глубокого ввода.

Распределительная подстанция, как правило, находится не на основной территории промышленного предприятия, которое снабжается электрической энергией. В таких обстоятельствах существует специальная организация, которая занимается электроснабжением предприятия. Если же распределительная узловая подстанция расположена непосредственно на территории промышленного объекта, то за деятельностью подстанции отвечает специальная служба, которая занимается распределением электроэнергии непосредственно на конкретном промышленном объекте.

Что такое трансформаторная подстанция

Функция главной понижающей подстанции заключается в том, что она должна получать электрическую энергию, которая имеет напряжение 35-220 кВ, от энергетической системы района. Эта подстанция требуется для распределения электричества на предприятии, при этом силовые показатели энергии у неё ниже.

Подстанция для глубокого ввода может получать энергию либо от центрального распределительного пункта предприятия, либо непосредственно от энергетической системы района. Эта подстанция требуется главным образом для того, чтобы осуществлять подачу электричества в определённые зоны предприятия, или несколько сгруппированных установок, работающих на электричестве. Такие подстанции на территории промышленных предприятий должны находиться неподалёку от таких объектов, которые требуют большего количества электроэнергии.

Что такое трансформаторная подстанция

Трансформаторный пункт — это отдельная компактная подстанция. Её предназначение — принимать подачу электричества напряжением 6 кВ, 10 кВ, 35 кВ. Понижающие силовые трансформаторы снижают показатели силы тока, доводя их до 380 – 400В. КТП – комплектная трансформаторная подстанция – одна из разновидностей трансформаторных пунктов. Обычно она оснащена одним или двумя трансформаторами. Однако бывает, что на такой подстанции имеется и три трансформатора силы напряжения электрической энергии. Количество подобных установок определяется тем, насколько надёжным является электроснабжение потребителей энергии. Они получают её от данной трансформаторной подстанции. КПТ бывают городскими, снабжающими электричеством города, и цеховыми, которые находятся на промышленных производственных предприятиях.

Силовой трансформатор - один из элементов ТП.

Но существуют и другие разновидности электрических трансформаторных подстанций. К ним относятся, например, тяговые. Они снабжают энергией линии для работы городского транспорта – трамваи и троллейбусы. Используются трансформаторы двух видов: сухого исполнения и масляные. Применение того или иного трансформатора определяется особенностью трансформаторной подстанции, а также её размерами и основным назначением. Так, в наше время комплектные подстанции нередко оснащаются сухими трансформаторами.

Строение подстанций

В состав подстанции входит множество различных элементов, позволяющих беспрерывно и стабильно работать всей системе продолжительное время. Все элементы можно разбить на несколько систем:

  1. автоматического управления;
  2. учёта электроэнергии;
  3. релейной и противоаварийной защиты;
  4. защиты от молний;
  5. заземления;
  6. вспомогательные, куда вошли системы по охранным функциям, плавки снега и льда на линиях, местного освещения, сбора масла и питания кабелей маслонаполненных, а также системы бытового потребления.

Несмотря на такую внутреннюю многоструктурную систематизацию, состоят подстанции из таких основных устройств, обеспечивающих нормальную их функциональность:

  • преобразовывающие силовые трансформаторы определенных мощностных характеристик;
  • устройство распределения электроэнергии, в том числе и конструкции для электропередачи воздушного и кабельного исполнения;
  • устройства защиты;
  • устройства автоматического управления;
  • вспомогательные устройства, обеспечивающие стабильность работы подстанций при любых погодных и временных условиях.

Выбирая трансформаторные подстанции, часто стоит вопрос о цене и отличии более дорогих от более бюджетных. Прежде всего, они отличаются количественным составом трансформаторов, набором устройств ввода и распределения напряжения, так же устройствами ,позволяющими находить применение таким станциям в определённых условиях.

Так, более дорогие подстанции могут быть снабжены устройствами защиты от молний, от погодных условий: гололёда, ветра, дождя, защиты от обрывов и резких перепадов напряжений в системе, а так же другими устройствами, позволяющими использовать подстанции на подвижных платформах, например, в шахтах, высокогорных предприятиях по добычи ископаемых, во влажных климатических зонах и других местах человеческой деятельности.

Виды трансформаторных подстанций

По исполнению выделяют несколько типов комплектных трансформаторных подстанций.

  1. КТП для внутренней установки.
    Применяют для электроснабжения предприятий, общественных зданий, электрических станций и районных подстанций. Они устанавливаются в непосредственной близости от потребителей электрической энергии.
  2. Комплектная мачтовая трансформаторная подстанция для внешней установки.
    Это открытая конструкция на специальной опоре. Применяются комплектные трансформаторные подстанции мачтового типа на железной дороге для снабжения электроэнергией сигнального, осветительного и блокирующего оборудования.
  3. Столбовая трансформаторная подстанция для внешней установки.
    Открытая конструкция, которая размещается на железобетонной стойке или на столбе электропередач. Для комплектной трансформаторной подстанции столбового типа не нужен фундамент и специальная площадка для обслуживания. Применяются такое оборудование для электроснабжения железнодорожных разъездов, остановочных пунктов, переездов.
  4. Контейнерная или киосковая трансформаторная подстанция для внешней установки.
    Применяется для снабжения электроэнергией сельхоз объектов, предприятий, объектов ЖКХ. Комплектующие трансформаторных подстанций киоскового типа вмонтированы в специальные отсеки защитного кожуха.
  5. Трансформаторная подстанция контейнерного типа с термоизоляцией.
    Это блочная трансформаторная подстанция. Варианты исполнения: КТП с железобетонным основанием и бетонными стенами; КТП в металлическом кожухе, утепленная сэндвич-панелями. Первые применяют на промышленных и сельскохозяйственных объектах. Вторые – в электрических сетях потребителей I категории благодаря 2 трансформаторам и системе АВР.

Перечисленные типы комплектных трансформаторных подстанций не дают полный ответ на вопрос, какие бывают трансформаторные подстанции вообще. Можно классифицировать КТП по принципу, из чего состоит трансформаторная подстанция. Например, по типу трансформатора выделяют масляные трансформаторные подстанции и сухие. По способу присоединения к питающей линии выделяют проходные, ответвительные и тупиковые трансформаторные подстанции.

Узловая распределительная подстанция

Сокращенно УРП – это такая центральная подстанция, на которую от энергосистемы подается электроэнергия при напряжении от 110 до 220 кВ, и где она распределяется, с частичной трансформацией или вообще без трансформации, по подстанциям глубокого ввода при напряжениях от 35 до 220 кВ, расположенным на территории промышленного предприятия.

Чаще всего узловые распределительные подстанции находятся в ведении организации, осуществляющей электроснабжение, поэтому и размещаются эти подстанции вне предприятия, но вблизи него. Когда УРП определенно предназначена для питания нескольких подстанций глубокого ввода, на одном предприятии, то рассматривают возможность размещения УРП на территории этого предприятия, и тогда эксплуатация подстанции ложится на плечи персонала предприятия.

Схема узловой подстанции.

Главная понизительная подстанция, сокращенно ГПП

Это подстанция рассчитанная на входное напряжение от 35 до 220 кВ, которая получает питание напрямую от районной энергетической системы, и распределяет электрическую энергию по предприятию, но уже при сильно пониженном напряжении. ГПП считается одним источником, если питается по одной двухцепной линии, и двумя источниками, если питается по двум одноцепным линиям ( на разных опорах) или по двум кабельным линиям, проложенным по разным трассам. ТЭЦ можно принять за несколько источников питания, если при выходе из строя генератора или при аварии на секции остальные секции ( генераторы) продолжают работать.

Схема понизительной подстанции.

Подстанция глубокого ввода, сокращенно ПГВ

Это подстанция, на которую подается напряжение от 35 до 220 кВ, обычно она выполнена с применением упрощенных схем коммутации на стороне первичного напряжения, и получает питание или от энергетической системы напрямую, или от центрального распределительного пункта на самом предприятии. Предназначение ПГВ — питание группы установок конкретного предприятия или какого-то отдельного объекта на этом предприятии. Схемами с глубоким вводом называют схемы электроснабжения с подстанциями глубокого ввода.

Что такое трансформаторная подстанция

Подстанции глубоких вводов располагаются вблизи наиболее крупных энергоемких производств и корпусов с концентрированной нагрузкой, например: прокатные и электросталеплавильные цехи; сталепроволочные и крепежно-калибровочные блоки метизных заводов; обогатительные фабрики и ряд других производств.

Трансформаторный пункт, сокращенно ТП

Подстанция с первичным напряжением, равным 35 кВ, 10 кВ или 6 кВ, которая питает напряжением 230 и 400 В непосредственно приемники электроэнергии. Иначе эти подстанции, в электрических сетях промышленных объектов, именуют цеховыми подстанциями.

Трансформаторный пункт

Комплектные трансформаторные подстанции

Трансформаторные пункты часто выполняют сегодня из комплектных трансформаторных подстанций. Число трансформаторов может здесь варьироваться. Когда питаются потребители 3 категории, то, как правило, устанавливается один трансформатор. Когда в районе сконцентрирована значительная мощность нагрузки на 380 / 220 вольт, или когда питаются потребители 2 и 1 категорий, то трансформаторов ставится два.

Способы присоединения трансформаторных подстанций к питающим линиям различны, и подразделяются подстанции по этому признаку на:

  • Тупиковые трансформаторные подстанции;
  • Проходные трансформаторные подстанции;
  • Ответвительные трансформаторные подстанции.

На тупиковую подстанцию питание подается отдельной линией. Для питания тупиковых подстанций используются радиальные схемы питания, либо такая подстанция является последней в магистральной схеме с питанием односторонним. Для проходных подстанций характерно включение в рассечку (в проход) магистральной линии питания, когда имеют место как вход, так и выход линии. Ответвительные подстанции подключаются через ответвления от питающих линий.

Трансформаторные подстанции бывают сборными или комплектными. Комплектные трансформаторные подстанции, сокращенно КТП, состоят полностью из комплектных узлов. Их изготавливают на заводах, затем доставляют этими узлами на место установки, то есть демонтаж оборудования здесь не требуется. На месте уже блоки, узлы и присоединения монтируют, подключают к питающим сетям.

КТП широко применяются на производственных предприятиях, где их устанавливают внутри или снаружи (КТПН). Сборные подстанции изготавливают на заводах отдельными элементами, затем на месте элементы собирают и монтируют. Любая трансформаторная подстанция включает в себя три главных блока:

  • Распределительное устройство низшего напряжения;
  • Трансформатор;
  • Распределительное устройство высшего напряжения.

Зачастую для приема электроэнергии служат распределительные устройства высокого напряжения (РУВН), которые подают ее к трансформаторам. В некоторых случаях РУВН выполняют функции как приема, так и распределения электрической энергии. Распределительные же устройства низкого напряжения (РУНН) всегда и везде осуществляют только прием и распределение электроэнергии.

Трансформаторная подстанция.

Являясь одним из главных составляющих звеньев в системе электрификации любого крупного производственного предприятия, трансформаторная подстанция требует особо тщательного подхода к формированию наиболее рациональным способом схемы распределения электроэнергии.
Место установки подстанции подбирается так, чтобы распределительная и трансформаторная подстанции всех необходимых параметров были бы расположены как можно ближе к центру обеспечиваемых ими групп нагрузок. Если от этой стратегии отступить, то возрастут потери, увеличится расход кабелей, проводов и т. д.

Подстанции классифицируются по месту их базирования на территории того или иного объекта на четыре типа:

  • Отдельно стоящие подстанции, располагающиеся на каком-то расстоянии от зданий;
  • Пристроенные подстанции, примыкающие непосредственно к стенам снаружи здания;
  • Встроенные подстанции, располагающиеся в специализированных отдельных помещениях внутри строения или примыкающие изнутри сооружения к его стенам;
  • Внутрицеховые подстанции, находящиеся внутри цехов, то есть электрооборудование размещается непосредственно в рабочем помещении, либо в закрытом помещении с выкаткой оборудования подстанции в цеха.

Промышленные сети с напряжением от 6 кВ до 10 кВ, с целью их сближения с электроприемниками, рекомендуется оснащать внутренними, интегрированными в здания или пристроенными к ним подстанциями. Для очень крупных многопролетных цехов значительной ширины наиболее подходящими являются внутрицеховые трансформаторные подстанции, к примеру для производств, связанных с деревообработкой, с металлообработкой, и для иных производств, для установки в котельных, в насосных, в компрессорных станциях.

Трансформаторная подстанция закрытого типа.

Монтаж таких подстанций осуществляют чаще всего возле колонн или возле закрытых помещений внутри цеха, за пределами зоны работы кранов. Эти подстанции подходят только для зданий второй и первой степени по огнестойкости, с производствами категорий Д и Г в соответствии с противопожарными нормами.

Читайте также: