Эквипотенциальные поверхности это кратко

Обновлено: 04.07.2024

Эквипотенциальная поверхность — понятие, применимое к любому потенциальному векторному полю, например, к статическому электрическому полю или к ньютонову гравитационному полю. Эквипотенциальная поверхность — это поверхность, на которой скалярный потенциал данного потенциального поля принимает постоянное значение. Другое, эквивалентное, определение — поверхность, в любой своей точке ортогональная силовым линиям поля.

Поверхность проводника в электростатике является эквипотенциальной поверхностью. Кроме того, помещение проводника на эквипотенциальную поверхность не вызывает изменения конфигурации электростатического поля. Этот факт используется в методе изображений, который позволяет рассчитывать электростатическое поле для сложных конфигураций.

В гравитационном поле уровень неподвижной жидкости устанавливается по эквипотенциальной поверхности. В частности, по эквипотенциальной поверхности гравитационного поля Земли проходит уровень океанов. Эквипотенциальная поверхность уровня океанов, продолженная на поверхность Земли, называется геоидом и играет важную роль в геодезии.

Ссылки

Советский Энциклопедический Словарь, 4 изд, 1989

Wikimedia Foundation . 2010 .

Смотреть что такое "Эквипотенциальные поверхности" в других словарях:

ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ — геометрическое место точек в электрическом поле (см. (14, а)), которым соответствуют одинаковые значения электрического потенциала (см. (2, д)). Э. п. поля точечного электрического заряда является сфера, в центре которой расположен заряд (см. (3) … Большая политехническая энциклопедия

ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ — См. Поверхности равных напоров … Словарь по гидрогеологии и инженерной геологии

ПОВЕРХНОСТИ РАВНЫХ НАПОРОВ — (эквипотенциальные поверхности) поверхности поперечных сечений потока, нормальных к линиям токов. Эти поверхности являются геометрическим местом точек, имеющих одинаковые величины пьезометрического напора … Словарь по гидрогеологии и инженерной геологии

Эквипотенциальная поверхность — Эквипотенциальные поверхности электрического диполя (изображены тёмным их сечения плоскостью рисунка; цветом условно передано значение потенциала в разных точках наиболее высокие значения пурпурным и красным, н … Википедия

ПОЛОСТЬ РОША — пространственная область определяющая макс. размеры стационарной вращающейся звезды (одиночной или в двойной системе). Границей П … Физическая энциклопедия

эквипотенциальная поверхность — поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная поверхность ортогональна силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью. * * * ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ… … Энциклопедический словарь

ЭЛЕКТРОННЫЕ ЛИНЗЫ — устройства, предназначенные для формирования пучков эл нов, их фокусировки и создания электронно оптич. изображений объектов (см. ЭЛЕКТРОННАЯ И ИОННАЯ ОПТИКА, ЭЛЕКТРОННЫЙ МИКРОСКОП). Аналогичные устройства, в к рых используются пучки ионов, наз.… … Физическая энциклопедия

Электронография — (от Электрон и . графия метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах.… … Большая советская энциклопедия

Напряженность электрического поля — Напряжённость электрического поля векторная характеристика электрического поля в данной точке, равная отношению силы , действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q: . По сути, задает само векторное поле … Википедия

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью.


Между двумя любыми точками на эквипотзенциальной поверхности разность потенциалов равна нулю, поэтому работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности.

Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд (рис. 112).


Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности (рис. 113).

Графическое изображение полей, может быть составлено как с линиями напряженности, так и при помощи разности потенциалов.

Если точки с равными потенциалами будут соединены в электрическом поле, то сформируются поверхности равного потенциала или же эквипотенциальные поверхности.

В месте пересечения с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изобразив соответствующие разным значениям потенциала эквипотенциальные линии, мы получаем наглядную картину, отражающую изменение потенциала конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда не требует выполнения работы, по той причине, что все точки поля на такой поверхности обладают эквивалентными потенциалами, а сила, которая воздействует на заряд, в любой момент времени ортогональна перемещению. Соответственно, линии напряженности всегда направлены под прямым углом поверхностям с одинаковыми потенциалами. Максимально наглядное изображение поля будет представлено, если отмечать эквипотенциальные линии с равными изменениями потенциала, к примеру, в 10 В , 20 B , 30 B и так далее. В подобном случае скорость изменения потенциала обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. Что это значит?

Густота эквипотенциальных линий пропорциональна напряженности поля.

С повышением напряженности поля линии изображаются все более тесно. Обладая знанием эквипотенциальных линий, можно построить линии напряженности рассматриваемого поля и наоборот. Таким образом, изображения полей с использованием эквипотенциальных линий и линий напряженности - равноправны.

Нумерация эквипотенциальных линий на чертеже

В большей части случаев изображенные на чертеже эквипотенциальные линии нумеруют. Для того чтобы обозначить разность потенциалов на изображении, одну из линий обозначают цифрой 0 , возле всех оставшихся линий расставляют цифры 1 , 2 , 3 и так далее. Данные цифры в вольтах указывают разность потенциалов избранной эквипотенциальной линии и случайно выбранной нулевой линии. Стоит обратить внимание на то, что в качестве нулевой может выступать любая линия, ведь физический смысл заключается лишь в разности потенциалов двух поверхностей и зависимостью от выбранной линии не обладает.

Поле точечного заряда с положительным зарядом

В качестве примера рассмотрим поле обладающего положительным значением точечного заряда. Линиями поля точечного заряда являются радиальные прямые, соответственно, эквипотенциальные поверхности представляют собой систему концентрических сфер. Линии поля под прямым углом направлены к поверхностям сфер в любой точке поля. Роль же эквипотенциальных линий же играют концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Поле точечного заряда с положительным зарядом

Из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность φ ∞ = 0 , очевидно, что:

φ = 1 4 π ε ε 0 q r .

Совокупность параллельных плоскостей, которые располагаются я на одинаковых расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.


Одним из способов описания электрического поля являются эквипотенциальные поверхности. Рассмотрим подробнее смысл и метод построения таких поверхностей.

Потенциал электрического поля

Поскольку со стороны электрического поля на заряд действует сила, при перемещении заряда полем совершается некоторая работа (положительная, если заряд перемещается по направлению вектора силы, и отрицательная в противоположном случае). Следовательно, электрическое поле обладает некоторой потенциальной энергией.

Сила, действующая на заряд, пропорциональна этому заряду. А значит, потенциальная энергия поля также будет пропорциональна ему. Коэффициент пропорциональности, равный отношению потенциальной энергии поля к величине заряда, является энергетической характеристикой данного поля, и называется потенциалом:

Отметим, что потенциал пропорционален напряженности электрического поля, и численно равен работе, которая совершается, при удалении единичного заряда из этого поля (перемещения на бесконечное расстояние).

Эквипотенциальная поверхность

Если рассмотреть поле, создаваемое точечным зарядом, то его напряженность падает по мере удаления от заряда в любом направлении. Следовательно, по мере удаления происходит и уменьшение потенциала поля. При этом в пространстве вокруг заряда можно указать ряд точек, обладающих одинаковым потенциалом.

Напомним, что точки, равноудаленные от некоторой заданной, образуют сферу. А значит, точки вокруг точечного заряда, обладающие одним и тем же потенциалом, также будут образовывать сферу с центром, лежащим в точечном заряде. Важное свойство этой сферы – при перемещении заряда по ней работа поля равна нулю, поскольку потенциальная энергия во всех точках этой поверхности одинакова. Нулевая работа перемещения также следует из того факта, что вектор напряженности перпендикулярен этой сфере (а значит, и направлению перемещения).

Поверхность, образованная точками с одним потенциалом, называется эквипотенциальной. Силовые линии и эквипотенциальные поверхности всегда взаимно перпендикулярны, а значит, работа поля по перемещению заряда по эквипотенциальной поверхности равна нулю. Плотность расположения эквипотенциальных поверхностей характеризует скорость изменения потенциала в данной области. Чем гуще расположены эквипотенциальные поверхности, тем быстрее меняется потенциал при движении перпендикулярно им.

Эквипотенциальные поверхности точечного заряда

Рис. 1. Эквипотенциальные поверхности точечного заряда.

Для однородного поля, например, созданного двумя заряженными пластинами, эквипотенциальные поверхности представляют собой плоскости, параллельные пластинам. И в этом случае также перемещение заряда по любой поверхности равного потенциала происходит перпендикулярно вектору напряженности, а значит работа поля по перемещению равна нулю.


Рис. 2. Эквипотенциальные поверхности однородного поля.

Для поля, образованного несколькими зарядами, эквипотенциальные поверхности имеют более сложную конфигурацию, однако, и в этом случае линии напряженности перпендикулярны этим поверхностям. Например, эквипотенциальные поверхности диполя выглядят следующим образом:

Эквипотенциальные поверхности диполя

Рис. 3. Эквипотенциальные поверхности диполя.

Отметим еще одно интересное свойство эквипотенциальных поверхностей – они могут располагаться плотнее и реже, но никогда не пересекаются.

Что мы узнали?

Потенциал электрического поля пропорционален его напряженности, и численно равен работе, которая совершается, при удалении единичного заряда из этого поля. Точки, в которых потенциал одинаков, образуют поверхность, называемую эквипотенциальной. При перемещении заряда вдоль этой поверхности работа поля равна нулю.

В мире нет ничего особенного. Никакого волшебства. Только физика.

Чак Паланик

Вопросы к экзамену

Для всех групп технического профиля

Учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 25-2. (дополнительный материал) Эквипотенциальные поверхности

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:


Потенциал φ является энергетической характеристикой электростатического поля .

Во многих задачах электростатики при вычислении потенциалов за начальную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:

Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.


Потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:


Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов: φ = φ1 + φ2 + φ3 + .

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности.

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала.

Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы. На рисунке представлены картины силовых линий и эквипотенциальных поверхностей некоторых простых электростатических полей.


Эквипотенциальные поверхности (синие линии) и силовые линии (красные линии) простых электрических полей

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей.

Читайте также: