Экспозиционная доза излучения это кратко

Обновлено: 05.07.2024

Это вид излучения, который для человека не заметен, но постоянно присутствует в окружающей его среде в виде радиационного фона, в воздухе, строительных материалах, продуктах и т.д. или в виде излучения непосредственно от самих источников ионизирующего излучения (радиоактивные изотопы).

В настоящее время для контроля за радиационной обстановкой и воздействия радиации на биологическую среду выпускаются, как бытовые дозиметры, профессиональные дозиметры так и специальное дозиметрическое оборудование для фиксации малых доз радиации.

Гамма- или рентгеновское излучение образует в среде определенное количество ионов. Так как поглощенная энергия расходуется на ионизацию среды, то для измерения ее необходимо подсчитать число пар ионов, образующихся под действием излучения. Однако измерить число пар ионов непосредственно в глубине тканей живого организма сложно. В связи с этим для количественной характеристики рентгеновского и гамма-излучения, действующего на объект, определяют сначала экспозиционную дозу в воздухе, а затем расчетным путем определяют поглощенную дозу для тканей и органов организма.

Экспозиционную дозу определяют по ионизирующему действию излучения в определенной массе воздуха и только при значениях энергии рентгеновского и гамма-излучения в диапазоне от десятков килоэлектронвольт до трех мегаэлектронвольт.

Экспозиционная доза

Это количественная характеристика рентгеновского и гамма-излучения, основанная на их ионизирующем действии и выраженная суммарным электрическим зарядом ионов одного знака, образованных в элементарном объеме воздуха в условиях электронного равновесия.

Экспозиционная доза рассчитывается только для рентгеновского и гамма-излучения, ибо только кванты этих излучений достаточно долгопробежные и могут создавать равномерное наружное облучение.
Альфа- и бета-излучения короткопробежные, большая их часть поглощается одеждой и кожей, и не представляют большой опасности для внутренних органов.

За единицу экспозиционной дозы в Международной системе единиц (СИ) принят один кулон электрического заряда в одном килограмме облучаемого воздуха.
Кл/кг, это такая экспозиционная доза рентгеновских и гамма-лучей, под действием которой в 1 кг сухого воздуха образуется число пар ионов, суммарный заряд каждого знака которых равен одному кулону. Это число составляет 6,24х1018 пар ионов.

На практике до сих пор применяют внесистемную единицу экспозиционной дозы – рентген.

Рентген (Р), единица экспозиционной дозы, при которой в 1 см 3 воздуха (0,001293г) при нормальных условиях (00 С и 1013 ГПА) образуется 2,082 х 109 пар ионов. Обычно используют производные рентгена – дробные доли: миллирентген – мР (тысячные доли рентгена), микрорентген – мкР (миллионные доли рентгена (мкР = 10-6 Р, мР = 10-3 Р).

При определении действия радиации на какую-либо среду (особенно при облучении живого организма) необходимо учитывать не только общую дозу, но и время, за которое она получена. Поэтому вводится понятие мощность дозы.

Мощность экспозиционной дозы (уровень радиации)

Это доза, отнесенная к единице времени: Р/ч, мР/ч, мкР/ч.
В Международной системе единиц мощность экспозиционной дозы выражается в Кл/кг х с или А/кг (ампер на кг).

Взаимосвязь между единицами экспозиционной дозы следующая:

Эквивалентная доза

Поглощенная доза облучения, которая учитывает особенности действия любого вида ионизирующего излучения на биологическую ткань (или орган) человека.
Использовать само понятие эквивалентной дозы можно только для целей радиационной безопасности человека и в отношении низких доз облучения.
При более высоких дозах следует применять понятие поглощенной дозы.

Эффективная доза

Величина ионизирующего излучения, используемая, как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом возникновения в них отдаленных неблагоприятных эффектов излучения.

Единицы измерения эквивалентной и эффективной дозы:

  • Единица в системе СИ, Дж/кг, зиверт (Зв);
  • Внесистемная единица, бэр, рэм

Взаимосвязь между единицами эквивалентной и эффективной дозы следующая:

При радиационном контроле (оценке радиационной опасности обстановки), как правило используются понятия эффективной и эквивалентной дозы.

В оценке воздействия радиации на биологические объекты, как правило используется понятие поглощенной дозы.


При почти каждом разговоре о радиоактивности с неспециалистом оказывается, что собеседник имеет в той или иной степени смутное представление о единицах измерения. Вот и когда я опубликовал статью о радиохимической лаборатории, один из читателей пожаловался мне в личку, что у него от множества единиц, встречающихся в книгах и статьях о радиоактивности — рентгены, бэры, рэмы, рады, греи, зиверты, кюри, беккерели и даже грамм-эквиваленты радия — голова идет кругом и попросил об этом написать. Исполняю его просьбу.

Да, на КДПВ — супруги Мария Склодовская-Кюри и Пьер Кюри.

Немного истории

Первым измерительным прибором для определения интенсивности ионизирующей радиации стал обыкновенный электроскоп или электрометр, который разряжался под действием излучения, и скорость этого разряда была пропорциональна его интенсивности. А первым эталоном стала…

Ампула с миллиграммом радия, как мера радиоактивности

Эта ампула стала не только первым эталоном для градуировки электрометров и ионизационных камер — это была мера количества радиоактивности. Удивительным свойством радия оказалось исключительное постоянство его излучения: его интенсивность зависела только от количества радия. Поэтому, взяв однажды навеску в 1 мг радия и запаяв его в платиновую ампулу, стало возможным больше никогда радий не взвешивать. Сравнив интенсивность гамма-излучения от эталонной ампулы и образца, помещенного в ампулу с такой же толщиной стенки, можно было с высокой точностью определить количество радия в нем. Так что ампулы с радием заняли свое законное место в палатах мер и весов рядом с эталонами метра, килограмма и сферическими конями.

Строго говоря, источником гамма-излучения является не радий. И именно с этим связано то, что эталоном была именно запаянная ампула. Дело в том, что радий-226 не излучает гамма-лучи при распаде. Он испускает альфа-частицу, превращаясь в радон-222, который тогда называли эманацией радия. Последний, будучи также альфа-активным, затем претерпевает ряд распадов с испусканием альфа- и бета-частиц, некоторые из которых сопровождаются гамма-излучением. Из запаянной ампулы радону деваться некуда, и между радием и его радиоактивными продуктами распада устанавливается вековое равновесие: сколько радона (и каждого последующего члена радиоактивного ряда) образовалось, столько и распадается.

При сравнении радиоактивности других открытых впоследствии элементов с радием стали применять такую единицу, как миллиграмм-эквивалент радия, равный количеству радиоактивного вещества, который дает такую же интенсивность гамма-излучения, как и миллиграмм радия на том же расстоянии.

Миллиграмм-эквивалент радия, как единица радиоактивности, имеет тот очевидный недостаток, что гамма-излучение, вообще говоря, является своего рода побочным эффектом радиоактивного распада. Во-многих случаях оно либо отсутствует, либо возникает не в каждом акте распада. Поэтому от сравнения по интенсивности гамма-излучению перешли к понятию активности, как мере количества актов распада в препарате в единицу времени. Эталоном осталась все та же ампула с радием, и отсюда появилась единица кюри, определяемая, как активность радиоактивного вещества, в котором в единицу времени распадается столько же атомов (а именно, штук), сколько распадается атомов радия-226 в одном его грамме.

Единица кюри в настоящее время считается устаревшей, как и все внесистемные единицы. В системе СИ ее заменяет беккерель — это активность препарата, в котором в среднем происходит один распад в секунду. Таким образом, 1 Ки = Бк.

Электрометр и экспозиционная доза

Первым устройством для измерения интенсивности радиоактивного излучения, как я говорил, стал электрометр, который разряжался под действием лучей радия. Он стал предтечей ионизационной камеры — камеры с двумя противоположно заряженными электродами, которая позволяла определить количество ионов, образовавшихся в воздухе, заполнявшем камеру. Эти ионы в электрическом поле внутри ионизационной камеры начинают движение к электродам и, достигнув их, разряжают их. По величине уменьшения заряда электродов можно определить число пар ионов, которые образовались в воздухе под действием излучения. А измерив ток, протекающий через камеру в цепи внешнего источника напряжения, можно определить количество ионных пар, рождающихся в камере в единицу времени, пропорциональное интенсивности излучения.

Величина, которую таким образом измеряют, была названа экспозиционной дозой радиоактивного излучения. И единицей ее измерения стал рентген. При экспозиционной дозе в 1 рентген в одном кубическом сантиметре сухого воздуха образуется одна единица СГСЭ ( Кл) заряда каждого из ионов, что соответствует пар ионов. Кстати, наш эталонный 1 мг радия в платиновой ампуле на расстоянии 1 см в течение часа создает экспозиционную дозу в 8,4 рентгена (обычно в таком случае говорят о мощности экспозиционной дозы 8,4 Р/ч).

В системе СИ нет специальной единицы экспозиционной дозы и применяется единица кулон на килограмм. 1 Кл/кг = 3875.97 Р. Однако в настоящее время данная единица используется крайне редко из-за отказа от самого понятия экспозиционной дозы. Причина этого отказа в том, что эта достаточно легко измеряемая величина малопригодна для практического применения. Нас обычно интересует не то, сколько ионов образовалось в воздухе, а то действие, которое произвело облучение на вещество или живую ткань.

Поглощенная доза

Вполне очевидной является идея считать мерой воздействия радиоактивного излучения на вещество поглощенную в этом веществе энергию. Это и есть поглощенная доза, мерой которой является энергия излучения, поглощенная единицей массы вещества. Единицей измерения поглощенной дозы в СИ является грей: 1 Гр = 1 Дж/кг. Раньше применялась другая единица — рад. 1 рад = 100 эрг/г = 0,01 Гр. При экспозиционной дозе 1 Р поглощенная доза в воздухе равна 0,88 рад. В большинстве случаев эти 0,88 округляют до единицы, приравнивая рад к рентгену (хотя по сути это разные физические величины), а грей (и зиверт, о котором ниже) к 100 рентгенам.

А вот доза в различных веществах при одной и той же экспозиционной дозе будет различной в зависимости от вида и энергии излучения и свойств поглотителя. Именно по этой причине сейчас от понятия экспозиционной дозы отказались. На практике гораздо более корректным является измерение не экспозиционной дозы, а взять детектор, средний атомный номер которого равен среднему атомному номеру биологической ткани (в таком случае говорят о тканеэквивалентном детекторе) и измерять поглощенную дозу в нем. Тогда с определенной степенью точности можно полагать, что поглощенная доза в детекторе будет равна поглощенной дозе в биологической ткани.

Всякие разные дозы

Для того, чтобы перевести поглощенную дозу в эквивалентную, нужно поглощенную дозу умножить на так называемый коэффициент качества. Этот коэффициент для фотонов, электронов и мюонов равен единице, для альфа-частиц принят равным 20, для протонов по разным данным — от 2 до 5, а для нейтронов сильно зависит от энергии, достигая 20 в интервале энергий от 100 кэВ до 2 МэВ (см. рисунок).

Помимо эквивалентной, рассматривают еще и эффективную дозу. Она учитывает не только разную степень вредности излучения, но и разную степень вредности облучения той или иной части тела или органа при облучении не всего тела, а его части. Каждой ткани и органу приписывают взвешивающие коэффициенты таким образом, чтобы сумма равнялась единице. При равномерном облучении всего тела эффективная доза равна эквивалентной. Измеряется она в тех же единицах, что эквивалентная.

На этом я и остановлюсь: не буду запутывать вас и рассказывать, что такое керма, амбиентный эквивалент дозы и еще многие штуки.

А как это все измеряют?

А чтобы измерить поглощенную дозу, придется измерить количество энергии, выделившееся в веществе. И вот тут кроется главная сложность. Напрямую эту энергию измерить очень сложно, так как в большинстве случаев она очень мала. Один грей (а это серьезная доза, уже вызывающая лучевую болезнь) — это всего лишь джоуль на килограмм. Если мы попытаемся измерить эту дозу, например, калориметрически — по изменению температуры, то, например, алюминий нагреется всего лишь чуть больше, чем на тысячную градуса.

Люминесценция позволяет регистрировать даже акт поглощения единственной частицы или гамма-кванта, который приводит к возникновению в материале детектора короткой световой вспышки — сцинтилляции. На этом принципе основано действие сцинтилляционных детекторов, которые позволяют измерять даже очень слабые потоки радиации, в десятки и сотни раз более слабые, чем естественный радиационный фон. Сцинтилляционный датчик излучения в отличие от химических детекторов позволяет определять мощность поглощенной детектором дозы в реальном времени. Разумеется, для того, чтобы получить величину дозы, или мощности дозы, нужно не просто сосчитать число импульсов, а просуммировать, проинтегрировать испущенный сцинтиллятором свет.

А что же всем известный счетчик Гейгера? А он не измеряет дозу. Он может только среагировать импульсом на пролет через него частицы, не разбираясь ни в том, что в него влетело, ни какую энергию оно имело. То есть он может измерить такую характеристику потока частиц, как флюенс: сколько частиц пролетело через заданную площадь. Точно так же будет работать сцинтилляционный или полупроводниковый детектор, если мы будем только фиксировать факт появления импульса, игнорируя его амплитуду.

Доза в разных материалах и ход с жесткостью


Заключение

В заключение приведу небольшую табличку, где сведены основные рассмотренные в статье величины.


А для более полного ознакомления с темой рекомендую лекции профессора Игоря Николаевича Бекмана, МГУ


Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды — это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3880 Р

Поглощённая доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза. Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

В единицах системы СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название — Грэй (Гр). 1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Поглощённая доза — основополагающая дозиметрическая величина, не она отражает биологический эффект облучения.

Эквивалентная доза

Эквивалентная доза (E, HT,R) отражает биологический эффект облучения. Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества данного вида излучения (WR), отражающий его способность повреждать ткани организма.

При воздействии различных видов излучения с различными коэффициентами качества эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв) и измеряется в джоулях, деленных на килограмм (Дж/кг). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является Бэр (до 1963 года — биологический эквивалент рентгена, после 1963 года — биологический эквивалент рада). 1 Зв = 100 бэр.

Значения коэффициента качества ионизирующих излучений определены с учетом воздействия микрораспределения поглощенной энергии на неблагоприятные биологические последствия хронического облучения человека малыми дозами ионизирующих излучений. Для коэффициента качества существует ГОСТ 8.496-83. ГОСТ как стандарт применяют при контроле степени радиационной опасности для лиц, подвергающихся во время работы облучению ионизирующим излучением. Стандарт не применяют при острых облучениях и во время радиотерапии.

ОБЭ конкретного вида излучения — отношение поглощённой дозы рентгеновского (или гамма) излучения к поглощённой дозе излучения при одинаковой эквивалентной дозе.

Эффективная доза

Эффективная доза, (E, эффективная эквивалентная доза) — величина, используемая в радиационной защите как мера риска возникновения отдаленных последствий облучения (стохастических эффектов) всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности.

Разные части тела (органы, ткани) имеют различную чувствительность к радиационному воздействию: например, при одинаковой дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе. Эффективная эквивалентная доза рассчитывается как сумма эквивалентных доз по всем органам и тканям, умноженных на взвешивающие коэффициенты для этих органов, и отражает суммарный эффект облучения для организма.

Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в Зивертах или Бэрах.

Фиксированная эффективная эквивалентная доза (CEDE — the committed effective dose equivalent)- это оценка доз радиации на человека, в результате ингаляции или употребления некоторого количества радиоактивного вещества. СЕDЕ выражается в бэрах или зивертах (Зв) и учитывает радиочувствительность различных органов и время, в течение которого вещество остается в организме (вплоть до всей жизни). В зависимости от ситуации, СЕDЕ может также иметь отношение к дозе излучения определенного органа, а не всего тела.

Эффективная и эквивалентная дозы — это нормируемые величины, т.е.величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека и его потомков. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические велины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым. Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, т.е. амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение. Единица амбиентного эквивалента дозы — Зиверт (Зв).

Групповые дозы

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путем умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр).

Кроме того, выделяют следующие дозы:

  • коммитментная — ожидаемая доза, полувековая доза. Применяется в радиационной защите и гигиене при расчёте поглощённых, эквивалентных и эффективных доз от инкорпорированных радионуклидов; имеет размерность соответствующей дозы.
  • коллективная — расчётная величина, введенная для характеристики эффектов или ущерба для здоровья от облучения группы людей; единица — Зиверт (Зв). Коллективная доза определяется как сумма произведений средних доз на число людей в дозовых интервалах. Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.
  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предельно допустимые дозы (ПДД) — наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами (НРБ-99)
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску. Согласно имеющимся в настоящее время данным, величина удваивающей дозы для острого облучения составляет в среднем 2 Зв, а для хронического облучения — около 4 Зв.
  • биологическая доза гамма-нейтронного излучения — доза равноэффективного по поражению организма гамма-облучения, принятого за стандартное. Равна физической дозе данного излучения, умноженной на коэффициент качества.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облученных объектов.

Мощность дозы

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, мкР/час, Зв/час, бэр/мин, сЗв/год и др.).

Доза излучения — в физике и радиобиологии - величина, используемая для оценки воздействия ионизирующего излучения на любые вещества и живые организмы.

Содержание

Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р

Поглощенная доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза. Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Эквивалентная доза

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества.

Коэффициент относительной биологической эффективности для различных видов излучений
Вид излучения Коэффициент , Зв/Гр
Рентгеновское и γ-излучение 1
Электроны, позитроны, β-излучения 1
Нейтроны с энергией меньше 20 кэВ 3
Нейтроны с энергией 0,1-10 МэВ 10
Протоны с энергией меньше 10 МэВ 10
α-излучение с энергией меньше 10 МэВ 20
Тяжелые ядра отдачи 20

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр.

Эффективная доза

Эффективная доза (E) - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма.

Значение коэффициента радиационного риска для отдельных органов

Органы, ткани Коэффициент
Гонады (половые железы) 0,2
Красный костный мозг 0,12
Толстый кишечник 0,12
Желудок 0,12
Лёгкие 0,12
Мочевой пузырь 0,05
Печень 0,05
Пищевод 0,05
Щитовидная железа 0,05
Кожа 0,01
Клетки костных поверхностей 0,01
Головной мозг 0,025
Остальные ткани 0,05

Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.


Фиксированная эффективная эквивалентная доза (CEDE - the committed effective dose equivalent)- это оценка доз радиации на человека, в результате ингаляции или употребления некоторого количества радиоактивного вещества. СЕDЕ выражается в бэрах или зивертах (Зв) и учитывает радиочувствительность различных органов и время, в течение которого вещество остается в организме (вплоть до всей жизни). В зависимости от ситуации, СЕDЕ может также иметь отношение к дозе излучения определенного органа, а не всего тела.

Групповые дозы

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе – сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т.д. Её получают путем умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица – человеко-бэр (чел.-бэр).
Кроме того, выделяют следующие дозы:

  • коммитментная — ожидаемая доза, полувековая доза. Применяется в радиационной защите и гигиене при расчёте поглощённых, эквивалентных и эффективных доз от инкорпорированных радионуклидов; имеет размерность соответствующей дозы.
  • коллективная — расчётная величина, введенная для характеристики эффектов или ущерба для здоровья от облучения группы людей; единица — Зиверт (Зв). Коллективная доза определяется как сумма произведений средних доз на число людей в дозовых интервалах. Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.
  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предельно допустимые дозы (ПДД) — наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами (НРБ-99)
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску. Согласно имеющимся в настоящее время данным, величина удваивающей дозы для острого облучения составляет в среднем 2 Зв), а для хронического облучения — около 4 Зв.
  • биологическая доза гамма-нейтронного излучения — доза равноэффективного по поражению организма гамма-облучения, принятого за стандартное. Равна физической дозе данного излучения, умноженной на коэффициент качества.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облученных объектов.

Мощность дозы

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

Читайте также: