Две точки зрения на устройство вселенной кратко астрономия

Обновлено: 30.06.2024

Вселенная (лат. universum) — весь мир который нас окружает, бесконечный во времени и пространстве и бесконечно различный по формам вечно движущейся материи. В современной астрономии наблюдаемая нами Вселенная называется Метагалактикой. Ее основными объектами являются звезды. Звездные скопления образуют галактики. Название нашей галактики — Млечный путь — содержит сотни миллиардов звезд, а в нашей Вселенной насчитывается сотни миллиардов галактик.

Галактики

Что такое галактика? – Основная структурная единица во Вселенной, галактика содержит — 150 — 200 миллиардов звезд; звездные системы разного вида, которые состоят из звезд, газовых и пылевых туманностей и межзвездного рассеянного вещества.

Есть одиночные галактики, но обычно они предпочитают располагаться группами. Как правило это 50 галактик, которые занимают в диаметре 6 миллионов световых лет. Группа Млечного Пути насчитывает больше 40 галактик.

Скопления – это область с 50-1000 галактиками, которые могут достигать размеров в 2-10 мегапарсек (диаметр). Интересно заметить, что их скорости невероятно большие, а значит, должны преодолевать гравитацию. Однако они все же держатся вместе.

Обсуждения темной материи появляется на этапе рассмотрения именно галактических скоплений.

Считается, что тмено она создает ту силу, которая не дает возможности галактикам разлететься в разные стороны.

Порой группы объединяются, тем самым формируя сверхскопление. Это одни из крупнейших вселенских структур. Наибольший представитель – Великая Стена Слоуна, которая растянулась на 500 миллионов световых лет в длину, 200 миллионов световых лет в ширину и 15 миллионов световых лет в толщину.

Вселенная-1

Черные дыры

Что такое Черные дыры? – Космические объекты, существование которых предсказано теорией тяготения Эйнштейна (общая теория относительности), как результат эволюционных изменений в крупных массивных звездах на последних стадиях их жизни, завершающихся неограниченным гравитационным сжатием (гравитационный коллапс).

По мнению американского физик Никодима Поплавского, они ведут в другие вселенные. Эйнштейн считал, что упавшее в черную дыру вещество сжимается в сингулярность. Согласно уравнениям ученого, с другой стороны черной дыры находится белая дыра — объект, из которого материя и свет только исторгаются. В паре они образуют кротовую нору, и все, что попадает туда с одной стороны и выходя с другой, образует новый мир. В начале 90-х годов XX века, физик Ли Смолин предложил похожую и в чем-то более странную гипотезу: он также верил во вселенные с той стороны черной дыры, но полагал, что они подчиняются закону наподобие естественного отбора: воспроизводятся и мутируют в ходе эволюции.

Вселенная-2

Размерность Вселенной

Плотность материального вещества в космическом пространстве в окрестностях Солнца составляет 0,88·10-22 кг/м3. Это больше чем в тысячу миллиардов миллиардов раз меньше плотности воды. Что же может удерживать в таком практически пустом пространстве структуры звезд и галактик на четко обозначенных траекториях?

Распределение материи во Вселенной

В 1970-е годы группа советских и американских ученых под началом академика Зельдовича предприняла попытку построить объемную модель распределения материи во Вселенной. Для этой цели в компьютер были введены данные расстояний до многих тысяч галактик. Результат получился ошеломляющим – галактики, объединенные в метагалактики, располагались в пространстве как бы на гранях некой ячеистой структуры с шагом порядка 100 млн. световых лет. Внутри этих ячеек наблюдалась относительная пустота. Говоря по другому, пространственно-временной континуум оказался структурированным! Это сильно ослабило авторитет теории Большого Взрыва и сторонников фридмановской модели Вселенной.

Еще гипотезы

1908 год – ученый Шарлье (Франция) выдвинул гипотезу, по которой Вселенная представляет из себя последовательность систем все больших размеров. Звезды образуют звездные скопления, объединяющиеся в галактики. В свою очередь галактики образуют скопления галактик, составляющих метагалактику. И таким образом размеры этих огромных звездных систем должны нарастать до бесконечности. Это так называемая дискретная самоподобная космологическая парадигма, подчеркивающая иерархическую организацию систем природы от наименьших наблюдаемых элементарных частиц до наибольших видимых кластеров галактик.

Гипотезы Шарлье в то время не имела особой популярности. Это объясняется тем, что одновременно появилась общая теория относительности, которая поразила умы своей необычной идеей о конечной, но неограниченной Вселенной. Но результаты наблюдений пока не дали убедительных доказательств в пользу выводов теории относительности и конечности Вселенной. Гипотеза бесконечной Вселенной кажется в большей степени правдоподобной. В такой ситуации модель Шарлье приобретает особый интерес.

Действительно, предложенный в монографии подход о пространстве, состоящем из взаимовложенных друг в друга сфер, совпадает как с гипотезой Шарлье, так и с дискретной самоподобной космологической парадигмой. Причем, как отмечает профессор Г. Альвен, гипотеза Шарлье объясняет парадокс Ольберса, по которой, если галактики равномерно распределены во Вселенной, то общая интенсивность их излучения будет необычайно велика, чего на самом деле не наблюдается. Кроме этого, гипотеза Шарлье позволяет избежать еще одной неприятности, связанной с тем, что при однородном распределении вещества во Вселенной необычно нарастает сила тяготения, обусловленная удаленными областями пространства.

Недавно этому появилось научное подтверждение.

Новые гипотезы строения Вселенной

Английский физик Роджер Пенроуз из Оксфорда и его коллега Ваган Гурзадян из Ереванского физического института после тщательного изучения т.н. реликтового излучения – микроволнового фона, который остался после Большого взрыва и сохраняющий информацию о зарождении Вселенной и ее развитии, обнаружили во Вселенной странные неоднородности в виде концентрических кругов.

Вселенная-11

По мнению ученых, Вселенные возникают чередой – одна за другой. И конец предыдущей становится началом последующей.

Все эти примеры убедительно показывают, что эволюция любой системы от микро- до мега размеров осуществляется развертыванием первичноцелостной монады на составляющие ее координаты материи. Указанное развертывание происходит путем последовательного усложнения системы с троичным переходом от более простой системы к более сложной с образованием трех взаимовложенных миров. Причем каждая следующая ось имеет свое пространство, в котором находится предшествующая ось со своим собственным пространством. К примеру, трехмерный объект, движущийся в пространстве оси у, в то же время совершает движение в пространстве собственной оси развития х.

Таким образом, теория связанных пространств лежит в основе строения человека, Земли и Вселенной. При этом выстраивается иерархическая структура всего пространства, состоящего из вложенных друг в друга иерархических сфер системы пространства. Отсюда становится понятной иерархическая система структур Вселенной.

Значит, в Природе существует подобие форм и свойств структур независимо от их пространственного масштаба, а Вселенная определяется как многомерная система в виде иерархии структур.

Имеет ли Вселенная границы

Новая научная парадигма уже возникает на основе тех знаний, которые накоплены человечеством. Многомерное строение Вселенной постепенно становится понятным и объяснимым фактором. Это дает основание утверждать, что найдены общие закономерности в иерархии систем.

Интересные факты о Вселенной

• Самым отдаленные звезды, которые нам видны, выглядят так-же, как выглядели 14 000 000 000 лет назад. Свет от этих звезд доходит до нас сквозь пространства через многие миллиарды лет, причем имеет скорость 300 000 км/сек.

• Таинственные Черные дыры – одни из самых любопытных и малоизученных объектов Вселенной. Они обладают до такой степени громадным притяжением, что выйти за пределы Черный дыры ничто не может, даже свет.

• Во Вселенной имеется гигантский пузырь, в составе которого имеется только газ. Появился он, по вселенским меркам, не так давно, только через два миллиарда лет после Большого Взрыва. Длинной пузырь – 200 миллионов космических лет, а расстояние от Земли до него – 12 миллиардов космических лет.

• Квазары – невероятно яркие объекты (намного ярче Солнца).

• В Солнечной Системе существует тело, похожее на Землю. Это спутник Сатурна, Титан. На его поверхности есть реки, вулканы, моря, а атмосфера имеет высокую плотность. Расстояние от Сатурна до его спутника приблизительно равно расстоянию от Земли до Солнца, соотношение массы тел примерно такое же. Однако разумной жизни на Титане, скорей всего не будет из-за водоемов – состоящих из метана и пропана.

• Невесомость в космосе, плохо влияет на здоровье человека. Одним из самых значительных изменений в организме человека в невесомости являются потеря кальция костями, перемещение жидкостей вверх и ухудшение работы кишечника.

От слонов и черепахи до теории относительности: эволюция взглядов на место, где мы живём, с древних времён до наших дней.

Как только человек обзавёлся разумом, он стал интересоваться тем, как всё устроено. Почему вода не переливается за край мира? Вращается ли Солнце вокруг Земли? Что находится внутри чёрных дыр?

Миф — первый способ, с помощью которого люди объясняли происхождение и устройство всего окружающего и своё собственное существование. Космогонические мифы рассказывают о том, как из хаоса или небытия появился мир. Сотворением вселенной в мифе занимаются божества. В зависимости от конкретной культуры получившаяся космология (представление об устройстве мира) различается. Например, небесная твердь могла казаться крышкой, скорлупой мирового яйца, створкой гигантской раковины или черепом великана.

Как правило, во всех этих историях присутствует разделение первоначального хаоса на небо и землю (верх и низ), создание оси (стержня мироздания), сотворение природных объектов и живых существ. Общие для разных народов базовые понятия называются архетипами.


Мир как тело

Это может быть интересно :

Древний человек познавал мир с помощью своего тела, измерял расстояния шагами и локтями, много работал руками. Это нашло отражение в олицетворении природы (гром — результат ударов божьего молота, ветер — божество дует). Мир тоже ассоциировался с большим телом.

Например, в скандинавской мифологии мир был создан из тела великана Имира, глаза которого стали водоёмами, а волосы — лесами. В индуистской мифологии эту функцию взял на себя Пуруша, в китайской — Паньгу. Во всех случаях устройство видимого мира связывается с телом антропоморфного существа, великого предка или божества, приносящего себя в жертву, чтобы мир появился. Сам человек при этом — микрокосм, вселенная в миниатюре.

Великое древо

Ещё один архетипический сюжет, который часто появляется у разных народов — ось мира, мировая гора или же мировое древо. Например, ясень Иггдрасиль у скандинавов. Изображения дерева, в центре которого находится фигурка человека, встречались также у майя и ацтеков. В индуистских Ведах священное древо называлось Ашваттха, в тюркской мифологии — Байтерек. Мировое древо связывает нижний, средний и верхний миры, его корни находятся в подземных областях, а крона уходит в небеса.


Покатай меня, большая черепаха!


Греческие философы заложили астрономические представления, которыми мы пользуемся и сегодня. Разные философы их школы имели свою точку зрения на модель мироздания. В большинстве своём они придерживались геоцентрической системы мира.

Геоцентризм — это убеждение, что неподвижная Земля находится в центре мироздания, а Солнце, Луна и звёзды вращаются вокруг неё.

Некоторые представители пифагорейской школы полагали, что и, Солнце, и Луна и планеты вращаются вокруг Центрального Огня, Гестии. Такую модель называют пироцентрической.

Аристарх Самосский предложил гелиоцентрическую систему мира, согласно которой Солнце — центральное небесное тело, а также предположил, что Земля меньше Солнца. Однако идея о том, что центр космоса — Земля, была популярна ещё долго.


В своих представлениях мыслители европейского средневековья опирались на работы античных философов, принимали системы Птолемея и Аристотеля. Главной концепцией мира оставался геоцентризм, средневековыми философами дополнялось и расширялось представление о небесных сферах. При этом античная мудрость дополнялась христианскими воззрениями.

Мир на средневековых изображениях — это мир глазами Бога. Все существующие вещи имеют глубокий духовный смысл. Большое развитие получает учение Платона о вещах и идеях, согласно которому все явления и объекты земного мира — это частные проявления божественных идей из горнего мира.

Для европейской средневековой миниатюры и скульптуры не важны пропорции и перспектива — важны символы и значения. Здесь могут одновременно происходить события из прошлого и будущего, а христианская символика пронизывает всё вокруг.


Евангелист Лука держит в руках одиннадцать небесных сфер с ангелами и святыми, а над ним находится Господь со свитком. Евангеларий Оттона III, ок. 1000 года.

На протяжении сотен лет средневековая живопись оставалась плоской. И вдруг за очень краткий период Ренессанса стала объёмной. Это тесно связано с мировоззренческим подходом: мир стали изображать так, как он видится человеку, появилось учение о перспективе. Методы наблюдения за природой развивались и создавали всё более полную картину мира.


Гелиоцентрический переворот Коперника

Ещё по этой теме :

На протяжении долгого времени в европейской астрономии не сдавал позиций геоцентризм. Однако в XVI веке Николай Коперник поместил в центр мира Солнце, вокруг которого вращались планеты, включая Землю, и указал на то, что Земля вращается вокруг своей оси.


Гео-гелиоцентрическая система

У Коперника появилось множество оппонентов. Датский астроном Тихо Браге, не соглашаясь поместить Солнце в центр Вселенной, предложил гео-гелиоцентрическую систему мира (впервые она была описана ещё Гераклидом Понтийским).


Иоганн Кеплер и орбиты небесных тел


Открытия Галилео Галилея

Галилей защищал коперниканство, придерживаясь гелиоцентрической системы мира, а также настаивал на том, что Земля обладает суточным вращением (крутится вокруг своей оси). Это привело его к знаменитым разногласиям с Римской церковью, которая теорию Коперника не поддерживала.

Галилей построил собственный телескоп, обнаружил спутники Юпитера и объяснил свечение Луны отражённым Землёй солнечным светом.


Исаак Ньютон открыл закон всемирного тяготения, разработал единую систему земной и небесной механики и сформулировал законы динамики — эти открытия легли в основу классической физики. Ньютон доказал законы Кеплера с позиции гравитации, заявил, что Вселенная бесконечна и сформулировал свои представления о материи и плотности.

Ещё по этой теме :

Качественным прорывом в представлении человека о мире в ХХ веке стали положения общей теории относительности (ОТО), которые вывел в 1916 году Альберт Эйнштейн. Согласно теории Эйнштейна, пространство не является чем-то неизменным, время имеет начало и конец и может течь по-разному в разных условиях.

ОТО до сих пор наиболее влиятельная теория пространства, времени, движения и гравитации — то есть, всего, что составляет физическую реальность и принципы мира. Теория относительности утверждает, что пространство должно либо расширяться, либо сужаться. Так оказалось, что Вселенная динамична, а не стационарна.

Американский астроном Эдвин Хаббл доказал, что наша галактика Млечный Путь, в которой находится Солнечная система — лишь одна из сотен миллиардов других галактик Вселенной. Исследуя дальние галактики, он сделал вывод о том, что они разбегаются, удаляясь друг от друга, и предположил, что Вселенная расширяется.

Если исходить из концепции постоянного расширения Вселенной, выходит, когда-то она находилась в сжатом состоянии. Событие, которое обусловило переход от очень плотного состояния материи к расширению, получило название Большого Взрыва.



Это может быть интересно :

Мы осознали свою неуникальность — ведь вокруг столько звёзд и планет. Поэтому вопрос возникновения жизни на Земле современными учёными рассматривается в контексте того, почему вообще возникла Вселенная, где такое стало возможным.

Галактики, звёзды и вращающиеся вокруг них планеты, да и сами атомы существуют только потому, что толчок тёмной энергии в момент Большого взрыва оказался достаточным, чтобы Вселенная не свернулась снова, и в то же время таким, чтобы пространство не разлеталось слишком сильно. Вероятность такого очень мала, поэтому некоторые современные физики-теоретики предполагают, что существует множество параллельных Вселенных.

Физики-теоретики верят, что одни вселенные могут иметь 17 измерений, в других могут быть звёзды и планеты, подобные нашим, а некоторые могут состоять всего лишь из аморфного поля.

Впрочем, опровергнуть это с помощью эксперимента невозможно, поэтому другие учёные полагают, что концепцию Мультивселенной следует считать скорее философской.


Сегодняшние представления о Вселенной во многом связаны с нерешёнными проблемами современной физики. Квантовая механика, построения которой существенно отличаются от того, что говорит классическая механика, физические парадоксы и новые теории уверяют нас, что мир куда многообразнее, чем кажется, а результаты наблюдений во многом зависят от наблюдающего.


Вселенная представляется человеку бесконечной, неизменной и вечной. Однако по современным представлениям это не так. Познакомимся с самыми важными фактами о строении Вселенной, кратко проследим ее эволюцию.

Строение Вселенной

Гипотезы о строении и эволюции Вселенной выдвигались еще в античности. Уже когда появилось учение Коперника многим интересующимся данной темой было ясно, что Земля — это лишь песчинка в огромном океане космоса. С развитием астрономии выяснили, что расстояние до максимально удаленных объектов Вселенной составляет приблизительно 45,7 млрд световых лет ($4.3×10^$м). И в таких масштабах Вселенная имеет однородную нитевидную структуру. Вещество во Вселенной распределено в нитевидных сверхскоплениях галактик, области между которыми составляют размеры порядка нескольких миллионов световых лет и не имеют светящегося вещества.

Сверхскопление — это группа скоплений галактик, содержащая от двух до двадцати скоплений. Каждое скопление — это гравитационно-связанная система нескольких галактик, имеющая диаметр порядка десятков миллионов световых лет и массу порядка $10^-10^$ солнечных масс.

Эволюция Вселенной

Изучение Вселенной показывает, что ее размер со временем увеличивается — Вселенная расширяется. Процесс расширения Вселенной начался 14 млрд лет назад из плотного компактного состояния в результате события, называемого Большим взрывом.

Планковская эпоха

Схема эволюции Вселенной такова. В самые ранние моменты жизни (от нуля до $ ^ $с, планковская эпоха) вещество имело плотность порядка $ ^ $ кг на м³ и температуру порядка $ ^ $К. Квантовые эффекты преобладали над остальными, а все фундаментальные взаимодействия существовали в виде одного общего взаимодействия.

Ранние этапы эволюции Вселенной

Эта эпоха началась с отделения гравитации от общего электроядерного взаимодействия. Плотность вещества в эту эпоху упала до уровня $10^$ кг на м³, а температура — до $10^$К. Отделение гравитации привело к нарушению симметрии в молодой Вселенной и заложило основу для неоднородности в ней. Сама Вселенная в этот момент представляла кварк-глюонную плазму.

Ко времени $10^$с температура во Вселенной упала настолько, что свободные кварки и глюоны начали объединяться в адроны, в том числе в протоны и нейтроны — основу вещества будущей Вселенной. Сильное взаимодействие отделилось от электрослабого. Адроны обрели стабильность, причем одновременно существовали как частицы, так и античастицы.

Лишь ко времени $10^$с плазма охлаждается настолько, что частицы и античастицы начинают аннигилировать с образованием большого числа фотонов. Небольшое нарушение симметрии обусловило избыток вещества над антивеществом.

Далее по мере уменьшения плотности и температуры возникает возможность нуклеосинтеза: протоны объединяются в ядра, электроны занимают места в электронных оболочках. Этот процесс начинается примерно через 300 тыс. лет после Большого взрыва.


Рис. 2. Эволюция Вселенной.

Современная эпоха

Нуклеосинтез завершается образованием во Вселенной 75 % водорода, 25 % гелия и следов других элементов. Ко времени 800 млн лет после Большого взрыва начинается эра вещества. Газ, заполняющий Вселенную, начинает образовывать неоднородности и сгустки. Средняя температура в это время во Вселенной опустилась до тысяч кельвинов, что недостаточно для ядерных реакций.

Что мы узнали?

Вселенная образовалась 14 млрд лет назад в результате Большого взрыва. По мере расширения плотность и температура падали, что привело к образованию вещества, облаков газа, а впоследствии и звезд. В самом крупном масштабе Вселенная имеет волокнистую структуру сверхскоплений и областей без излучающего вещества.

Основные понятия

Космология – учение о Вселенной в целом, основанное на результатах исследований, доступных для астрономических наблюдений.

Вселенная – весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.

Вселенная безгранична, но не бесконечна.

Вселенная существует около 15 млрд лет.

Существующие знания о Вселенной основаны на астрономических наблюдениях и на предположении о том, что законы природы, установленные на Земле, могут быть применены ко всей Вселенной.

Систематические целенаправленные наблюдения за Вселенной ведутся с момента появления первых телескопов (1609-1610 годы. Галилей).

Начиная с 1931 года, для изучения Вселенной используют также методы радиолокации – по отраженному радиосигналу определяют положение и скорость движения космического объекта.

Строение и масштабы Вселенной

Наиболее распространённым типом небесных тел являются звезды.

Невооружённым глазом в безлунную ночь можно видеть над горизонтом около 3 тыс. звёзд.

В настоящее время астрономы определили положения нескольких миллионов звезд и составили их каталоги.

Около 240 звезд имеют собственные имена (Вега, Альтаир, Сириус, Полярная и пр.)

Звезды распределены на небе не равномерно, а отдельными компактными группами – созвездиями. Под созвездиями понимают область неба в пределах некоторых установленных границ. Это сделано для удобства ориентировки на небесной сфере и обозначения звезд. Всё небо разделено на 88 созвездий.

Группы звёзд в созвездиях имеют устойчивую конфигурацию, т.е. взаимное расположение звезд в созвездии не изменяется с течением времени.

Есть три группы созвездий по происхождению их названий:

1. Связанные с древнегреческой мифологией

2. Связанные с предметами, на которые похожи фигуры, образуемые яркими звездами созвездий (Стрела, Треугольник, Весы, Лев, Рак, Скорпион, Большая медведица и др.)

Иногда в созвездии выделяют группу звезд с названием, отличным от названия созвездия – астеризм (например, Ковш в созвездии Малая Медведица).

Гигантские звёздные системы, состоящие из сотен миллиардов звёзд образуют галактику.

Солнечная система и окружающие её звезды составляют ничтожную часть нашей Галактики – Млечный Путь.

Ближайшие соседи нашей Галактики – Туманность Андромеды, Большие Магеллановы облака и Малые Магеллановы облака.

Кроме звёзд в состав галактик входят туманности – газопылевые скопления (межзвёздный газ, состоящий из атомарного водорода, и космическая пыль)

Американский астрофизик Э. Хаббл предложил следующую классификацию галактик:

Эллиптические галактики имеют форму сплюснутых сфероидов. Состоят в основном из старых звезд.

Спиральные галактики имеют форму спирали (Млечный Путь, Туманность Андромеды). В рукавах спиральных галактик находятся молодые звезды, идут процессы образования новых звезд.

Галактики неправильной формы (Магеллановы облака). Имеют разнообразную форму.


Пространство между галактиками и звездами внутри галактик заполнено очень разреженным веществом: межзвёздным газом, космической пылью, элементарными частицами, а также электромагнитным излучением.

В каждом кубическом сантиметре межзвездноо пространства в среднем находится один атом вещества. Для сравнения, в воздухе при нормальных условиях около 10 19 молекул в 1 см 3 .

При самом высоком вакууме, который может быть получен в лабораторных условиях (порядка 10 -12 мм. рт. ст.) в 1 см 3 содержится сто тысяч молекул.

Расстояния между звездами внутри галактик значительно больше размеров самих звезд.

Расстояния между галактиками сравнимы с размерами самих галактик.


Масштабы Вселенной столь велики, что использовать единицы длины, принятые в СИ, неудобно. Например, размеры нашей Галактики таковы, что луч света, распространяясь со скоростью 300000 км/с проходит расстояние от одного ее края до другого за сто тысяч лет.

В старой научной литературе:

Астрономическая единица (1 а.е.) – средний радиус орбиты Земли при её обращении вокруг Солнца.

1 а.е. = 150 млн км (расстояние от Солнца до Земли)

Наиболее удалённая от Солнца планета, Плутон, отстоит от него на расстоянии 40 а.е. Это размер Солнечной системы.

В популярной литературе:

Световой год – расстояние, которое свет проходит за одни земной год.

1 с.г. = 10000 млрд км = 10 трлн. км.

В современной научной литературе:

Парсек (пк) – параллакс-секунда.

Секунда – единица измерения угла.

Параллакс – видимое изменение положения предмета вследствие перемещения точки наблюдения.

В астрономии различают:

· Вековой параллакс (оборот Солнца относительно ядра галактики)

По параллаксу небесных светил методами тригонометрии определяют расстояние до этих светил.

Парсек – расстояние, с которого радиус земной орбиты виден под углом в одну угловую секунду.

1 пк = 206265 а.е. = 3,3 с.г. = 33 мрлн км.

Самая близкая к Солнцу звезда – Проксима Центавра удалена от него на 1,3 пк.

Солнце удалено от центра нашей Галактики на расстояние 8000 пк.

Диаметр Млечного Пути составляет 40000 пк.

Самая близкая звезда в созвездии Андромеды находится на удалении 720000 пк.

Типичная скорость относительного движения галактик – коло 1000 км/с

Оценочное время вероятного столкновения галактик составляет около 10 13 лет, что больше времени существования Вселенной в 1400 раз.

Пошаговое путешествие во Вселенной.

Следующий шаг больше предыдущего в 10000 раз. Сколько шагов до края Вселенной?

1й шаг – 4 м, потолок; 2й – 40 км, стратосфера; 3й – 400000 км, луна; 4й – 40 млрд км, граница Солнечной системы; 5й – 4,3 с.г., Альфа-Центавра; 6й – 40000 с.л., ядро Галактики; 7й – 400 млн с.л., центр космоса; 8й не получится – 40 млрд с.л. – но Вселенная родилась лишь 15 млрд лет назад.

Читайте также: