Ду высших порядков кратко

Обновлено: 28.06.2024

Ниже разберем способы, как решить линейные однородные и неоднородные дифференциальные уравнения порядка выше второго, имеющих постоянные коэффициенты. Подобные уравнения представлены записями y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = 0 и y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = f ( x ) , в которых f 0 , f 1 , . . . , f n - 1 - являются действительными числами, а функция f ( x ) является непрерывной на интервале интегрирования X .

Оговоримся, что аналитическое решение подобных уравнений иногда неосуществимо, тогда используются приближенные методы. Но, конечно, некоторые случаи дают возможность определить общее решение.

Общее решение ЛОДУ и ЛДНУ

Мы зададим формулировку двух теорем, показывающих, какого вида общих решений ЛОДУ и ЛНДУ n -ого порядка следует искать.

Общим решением y 0 ЛОДУ y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = 0 на интервале
X (коэффициенты f 0 ( x ) , f 1 ( x ) , . . . , f n - 1 ( x ) непрерывны на X ) будет линейная комбинация
n линейно независимых частных решений ЛОДУ y j , j = 1 , 2 , . . . , n , содержащая произвольные постоянные коэффициенты C j , j = 1 , 2 , . . . , n , то есть y 0 = ∑ j = 1 n C j · y j .

Общим решением y ЛНДУ y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = f ( x ) на интервале X (коэффициенты f 0 ( x ) , f 1 ( x ) , . . . , f n - 1 ( x ) непрерывны на X ) и функцией f ( x ) будет являться сумма y = y 0 + y ~ , где y 0 - общее решение соответствующего ЛОДУ y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = 0 , а y ~ - некоторое частное решение исходного ЛНДУ.

Итак, общее решение линейного неоднородного дифференциального уравнения, содержащего постоянные коэффициенты y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = f ( x ) , нужно искать, как y = y 0 + y ~ , где y ~ - некоторое его частное решение, а y 0 = ∑ j = 1 n C j · y j – общее решение соответствующего однородного дифференциального уравнения y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = 0 .

В первую очередь рассмотрим, как осуществлять нахождение y 0 = ∑ j = 1 n C j · y j - общее решение ЛОДУ n -ого порядка с постоянными коэффициентами, а потом научимся определять частное решение y ~ линейного неоднородного дифференциального уравнения n -ого порядка при постоянных коэффициентах.

Алгебраическое уравнение n -ого порядка k n + f n - 1 · k n - 1 + . . . + f 1 · k + f 0 = 0 носит название характеристического уравнения линейного однородного дифференциального уравнения n -ого порядка, содержащего постоянные коэффициенты, записи y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = 0 .

Возможно определить n частных линейно независимых решений y 1 , y 2 , . . . , y n исходного ЛОДУ, исходя из значений найденных n корней характеристического уравнения k 1 , k 2 , . . . , k n .

Методы решения ЛОДУ и ЛНДУ

Укажем все существующие варианты и приведем примеры на каждый.

  1. Когда все решения k 1 , k 2 , . . . , k n характеристического уравнения k n + f n - 1 · k n - 1 + . . . + f 1 · k + f 0 = 0 действительны и различны, линейно независимые частные решения будут выглядеть так:
    y 1 = e k 1 · x , y 2 = e k 2 · x , . . . , y n = e k n · x . Общее же решение ЛОДУ n -ого порядка при постоянных коэффициентах запишем как: y 0 = C 1 · e k 1 · x + C 2 · e k 2 · x + . . . + C n · e k n · x .

Задано ЛОДУ третьего порядка, содержащее постоянные коэффициенты y ' ' ' - 3 y '' - y ' + 3 y = 0 . Определите его общее решение.

Решение

Cоставим характеристическое уравнение и найдем его корни, разложив предварительно многочлен из левой части равенства на множители, используя метод группировки:
k 3 - 3 k 2 - k + 3 = 0 k 2 ( k - 3 ) - ( k - 3 ) = 0 ( k 2 - 1 ) ( k - 3 ) = 0 k 1 = - 1 , k 2 = 1 , k 3 = 3

Ответ: найденные корни являются действительными и различными, значит общее решение ЛОДУ третьего порядка с постоянными коэффициентами запишем как: y 0 = C 1 · e - x + C 2 e x + C 3 · e 3 x .

  1. Когда решения характеристического уравнения являются действительными и одинаковыми ( k 1 = k 2 = . . . = k n = k 0 ) , линейно независимые частные решения линейного однородного дифференциального уравнения n -ого порядка с постоянными коэффициентами буду иметь вид: y 1 = e k 0 · x , y 2 = x · e k 0 · x , . . . , y n = x n - 1 · e k 0 · x .

Общее же решение ЛОДУ будет выглядеть так:
y 0 = C 1 · e k 0 · x + C 2 · e k 0 · x + . . . + C n · x n - 1 · e k 0 · x = = e k 0 · x · C 1 + C 2 · x + . . . + C n · x n - 1

Задано дифференциальное уравнение: y ( 4 ) - 8 k ( 3 ) + 24 y '' - 32 y ' + 16 y = 0 . Необходимо определить его общее решение.

Решение

Составим характеристическое уравнение заданного ЛОДУ: k 4 - 8 k 3 + 24 k 2 - 32 k + 16 = 0 .

Преобразуем данное характеристическое уравнение, используя формулу бинома Ньютона, оно примет вид: k - 2 4 = 0 . Отсюда мы выделим его четырехкратный корень k 0 = 2 .

Ответ: общим решением заданного ЛОДУ станет: y 0 = e 2 x · C 1 + C 2 · x + C 3 · x 2 + C 4 · x 3

  1. Когда решения характеристического уравнения линейного однородного дифференциального уравнения n -ого порядка при постоянных коэффициентах - различные комплексно сопряженные пары α 1 ± i · β 1 , α 2 ± i · β 2 , . . . , α m ± i · β m , n = 2 m , линейно независимые частные решения такого ЛОДУ будут иметь вид:
    y 1 = e α 1 x · cos β 1 x , y 2 = e α 1 x · sin β 1 x , y 3 = e α 2 x · cos β 2 x , y 4 = e α 2 x · sin β 2 x , … y n - 1 = e α m x · cos β m x , y n = e α m x · sin β m x

Общее же решение запишем так:

y 0 = e α 1 x · C 1 · cos β 1 x + C 2 · sin β 1 x + + e α 2 x · C 3 · cos β 2 x + C 4 · sin β 2 x + . . . + + e α m x · C n - 1 · cos β m x + C n · sin β m x

Задано ЛОДУ четвертого порядка при постоянных коэффициентах y ( 4 ) - 6 y ( 3 ) + 14 y '' - 6 y ' + 13 y = 0 . Необходимо его проинтегрировать.

Решение

Составим характеристическое уравнение заданного ЛОДУ: k 4 - 6 k 3 + 14 k 2 - 6 k + 13 = 0 . Осуществим преобразования и группировки:

k 4 - 6 k 3 + 14 k 2 - 6 k + 13 = 0 k 4 + k 2 - 6 k 3 + k + 13 k 2 + 1 = 0 k 2 + 1 k 2 - 6 k + 13 = 0

Из полученного результата несложно записать две пары комплексно сопряженных корней k 1 , 2 = ± i и k 3 , 4 = 3 ± 2 · i .

Ответ: общее решение заданного линейного однородного дифференциального уравнения n -ого порядка с постоянными коэффициентами запишется как:
y 0 = e 0 · C 1 · cos x + C 2 · sin x + e 3 x · C 3 · cos 2 x + C 4 · sin 2 x = = C 1 · cos x + C 2 · sin x + e 3 x · C 3 · cos 2 x + C 4 · sin 2 x

  1. Когда решения характеристического уравнения - это совпадающие комплексно сопряженные пары α ± i · β , линейно независимыми частными решениями линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами будут записи:
    y 1 = e α · x · cos β x , y 2 = e α · x · sin β x , y 3 = e α · x · x · cos β x , y 4 = e α · x · x · sin β x , … y n - 1 = e α · x · x m - 1 · cos β x , y n = e α · x · x m - 1 · sin β x

Общим решением ЛОДУ будет:

y 0 = e α · x · C 1 · cos β x + C 2 · sin β x + + e α · x · x · C 4 · cos β x + C 3 · sin β x + . . . + + e α · x · x m - 1 · C n - 1 · cos β x + C n · sin β x = = e α · x · cos β x · C 1 + C 3 · x + . . . + C n - 1 · x m - 1 + + e α · x · sin β x · C 2 + C 4 · x + . . . + C n · x m - 1

Задано линейное однородное дифференциальное уравнение с постоянными коэффициентами y ( 4 ) - 4 y ( 3 ) + 14 y '' - 20 y ' + 25 y = 0 . Необходимо определить его общее решение.

Решение

Составим запись характеристического уравнения, заданного ЛОДУ, и определим его корни:

k 4 - 4 k 3 + 14 k 2 - 20 k + 25 = 0 k 4 - 4 k 3 + 4 k 2 + 10 k 2 - 20 k + 25 = 0 ( k 2 - 2 k ) 2 + 10 ( k 2 - 2 k ) + 25 = 0 ( k 2 - 2 k + 5 ) 2 = 0 D = - 2 2 - 4 · 1 · 5 = - 16 k 1 , 2 = k 3 , 4 = 2 ± - 16 2 = 1 ± 2 · i

Таким образом, решением характеристического уравнения будет двукратная комплексно сопряженная пара α ± β · i = 1 ± 2 · i .

Ответ: общее решение заданного ЛОДУ: y 0 = e x · cos 2 x · ( C 1 + C 3 · x ) + e x · sin 2 x · ( C 2 + C 4 · x )

  1. Встречаются различные комбинации указанных случаев: некоторые корни характеристического уравнения ЛОДУ n -ого порядка с постоянными коэффициентами являются действительными и различными, некоторые - действительными и совпадающими, а какие-то - комплексно сопряженными парами или совпадающими комплексно сопряженными парами.

Задано дифференциальное уравнение y ( 5 ) - 9 y ( 4 ) + 41 ( 3 ) + 35 y '' - 424 y ' + 492 y = 0 . Необходимо определить его общее решение.

Решение

Составим характеристическое уравнение заданного ЛОДУ: k 5 - 9 k 4 + 41 k 3 + 35 k 2 - 424 k + 492 = 0 .

Левая часть содержит многочлен, который возможно разложить на множители. В числе делителей свободного члена определяем двукратный корень k 1 = k 2 = 2 и корень k 3 = - 3 .

На основе схемы Горнера получим разложение: k 5 - 9 k 4 + 41 k 3 + 35 k 2 - 424 k + 492 = k + 3 k - 2 2 k 2 - 8 k + 41 .

Квадратное уравнение k 2 - 8 k + 41 = 0 дает нам оставшиеся корни k 4 , 5 = 4 ± 5 · i .

Ответ: общим решением заданного ЛОДУ с постоянными коэффициентами будет: y 0 = e 2 x · C 1 + C 2 x + C 3 · e - 3 x + e 4 x · C 4 · cos 5 x + C 5 · sin 5 x

Таким образом, мы рассмотрели основные случаи, когда возможно определить y 0 - общее решение ЛОДУ n -ого порядка с постоянными коэффициентами.

Следующее, что мы разберем – это ответ на вопрос, как решить линейное неоднородное дифференциальное уравнение n -ого порядка с постоянными коэффициентами записи y ( n ) + f n - 1 · y ( n - 1 ) + . . . + f 1 · y ' + f 0 · y = f ( x ) .

Общее решение в таком случае составляется как сумма общего решения соответствующего ЛОДУ и частного решения исходного ЛНДУ: y = y 0 + y ~ . Поскольку мы уже умеем определять y 0 , остается разобраться с нахождением y ~ , т.е. частного решения ЛНДУ порядка n с постоянными коэффициентами.

Приведем все способы нахождения y ~ согласно тому, какой вид имеет функция f ( x ) , находящаяся в правой части рассматриваемого ЛНДУ.

  1. Когда f ( x ) представлена в виде многочлена n -ой степени f ( x ) = P n ( x ) , частным решением ЛНДУ станет: y ~ = Q n ( x ) · x γ . Здесь Q n ( x ) является многочленом степени n , а r – указывает, сколько корней характеристического уравнения равно нулю.
  2. Когда функция f ( x ) представлена в виде произведения многочлена степени n и экспоненты f ( x ) = P n ( x ) · e α · x , частным решением ЛНДУ второго порядка станет: y ~ = e α · x · Q n ( x ) · x γ . Здесь Q n ( x ) является многочленом n -ой степени, r указывает, сколько корней характеристического уравнения равно α .
  3. Когда функция f ( x ) записана как f ( x ) = A 1 cos ( β x ) + B 1 sin ( β x ) , где А 1 и В 1 – числа, частным решением ЛНДУ станет запись y ~ = A cos β x + B sin β x · x γ . Здесь где А и В являются неопределенными коэффициентами, r – указывает, сколько комплексно сопряженных пар корней характеристического уравнения равно ± i β .
  4. Когда f ( x ) = e α x · P n ( x ) sin β x + Q k x cos β x , то y ~ = e α x · L m x sin β x + N m x cos β x · x γ , где r – указывает, сколько комплексно сопряженных пар корней характеристического уравнения равно α ± i β , P n ( x ) , Q k ( x ) , L m ( x ) и N m ( x ) являются многочленами степени n , k , m и m соответственно, m = m a x ( n , k ) .

Коэффициенты, которые неизвестны, определяются из равенства y ~ ( n ) + f n - 1 · y ~ ( n - 1 ) + . . . + f 1 y ~ ' + f 0 · y ~ = f ( x )

Подробности нахождения решений уравнений в каждом из указанных случаев можно изучить в статье линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами, поскольку схемы решения ЛНДУ степени выше второй полностью совпадают.

Когда функция f ( x ) имеет любой иной вид, общее решение ЛНДУ возможно определить, используя метод вариации произвольных постоянных. Его разберем подробнее.

Пусть нам заданы y j , j = 1 , 2 , . . . , n - n линейно независимые частные решения соответствующего ЛОДУ, тогда, используя различные вариации произвольных постоянных, общим решением ЛНДУ
n -ого порядка с постоянными коэффициентами будет запись: н = ∑ j = 1 n C j ( x ) · y j . В нахождении производных функций C j ( x ) , j = 1 , 2 , . . . , n поможет система уравнений:

∑ j = 1 n C j ' ( x ) · y j = 0 ∑ j = 1 n C j ' ( x ) · y ' j = 0 ∑ j = 1 n C j ' ( x ) · y '' j = 0 … ∑ j = 1 n C j ' ( x ) · y j ( n - 2 ) = 0 ∑ j = 1 n C j ' ( x ) · y j ( n - 1 ) = 0

а собственно функции C j ( x ) , j = 1 , 2 , . . . , n найдем при последующем интегрировании.

Задано ЛНДУ с постоянными коэффициентами: y ' ' ' - 5 y '' + 6 y ' = 2 x . Необходимо найти его общее решение.

Решение

Составим характеристическое уравнение: k 3 - 5 k 2 + 6 k = 0 . Корни данного уравнения: k 1 = 0 , k 2 = 2 и k 3 = 3 . Таким образом, общим решением ЛОДУ будет запись: y 0 = C 1 + C 2 · e 2 x + C 3 · e 3 x , а частные линейно независимые решения это: y 1 = 1 , y 2 = e 2 x , y 3 = e 3 x .

Варьируем произвольные постоянные: y = C 1 ( x ) + C 2 ( x ) · e 2 x + C 3 ( x ) · e 3 x .

Чтобы определить C 1 ( x ) , C 2 ( x ) и C 3 ( x ) , составим систему уравнений:

C ' 1 ( x ) · y 1 + C ' 2 ( x ) · y 2 + C ' 3 ( x ) · y 3 = 0 C ' 1 ( x ) · y ' 1 + C ' 2 ( x ) · y ' 2 + C ' 3 ( x ) · y ' 3 = 0 C ' 1 ( x ) · y '' 1 + C ' 2 ( x ) · y '' 2 + C ' 3 ( x ) · y '' 3 = 2 x ⇔ C ' 1 ( x ) · 1 + C ' 2 x · e 2 x ' + C ' 3 ( x ) · y 3 = 0 C ' 1 ( x ) · 1 ' + C ' 2 x · e 2 x ' + C ' 3 ( x ) · e 3 x ' = 0 C ' 1 ( x ) · 1 ' ' + C ' 2 x · e 2 x ' ' + C ' 3 ( x ) · e 3 x ' ' = 2 x ⇔ C ' 1 ( x ) · 1 + C ' 2 x · e 2 x + C ' 3 ( x ) · e 3 x = 0 C ' 1 ( x ) · 0 + C ' 2 ( x ) · 2 e 2 x + C ' 3 ( x ) · 3 e 3 x = 0 C ' 1 ( x ) · 0 + C ' 2 ( x ) · 4 e 2 x + C ' 3 ( x ) · 9 e 3 x = 2 x

Решаем, используя метод Крамера:

∆ = 1 e 2 x e 3 x 0 2 e 2 x 3 e 3 x 0 4 e 2 x 9 e 3 x = 18 e 2 x · e 3 x - 12 e 2 x · e 3 x = 6 e 5 x ∆ C 1 ' ( x ) = 0 e 2 x e 3 x 0 2 e 2 x 3 e 3 x 2 x 4 e 2 x 9 e 3 x = e 5 x · 2 x ⇒ C ' 1 ( x ) = ∆ C 1 ' ( x ) ∆ = e 5 x · 2 x 6 e 5 x = 1 6 · 2 x ∆ C 2 ' ( x ) = 1 0 e 3 x 0 0 3 e 3 x 0 2 x 9 e 3 x = - 3 e x · 2 x ⇒ C ' 2 ( x ) = ∆ C 2 ' ( x ) ∆ = - 3 e 3 x · 2 x 6 e 5 x = - 1 2 · e - 2 x · 2 x ∆ C 3 ' ( x ) = 1 e 2 x 0 0 2 e 2 x 0 0 4 e 2 x 2 x = 2 e 2 x · 2 x ⇒ C ' 3 ( x ) = ∆ C 3 ' ( x ) ∆ = 2 e 2 x · 2 x 6 e 5 x = 1 3 · e - 3 x · 2 x

Интегрируем C ' 1 ( x ) = 1 6 · 2 x с помощью таблицы первообразных, а
C ' 2 ( x ) = - 1 2 · e - 2 x · 2 x и C ' 3 ( x ) = 1 3 · e - 3 x · 2 x при помощи метода интегрирования по частям, получим:
C 1 ( x ) = 1 6 · ∫ 2 x d x = 1 6 · 2 x ln 2 + C 4 C 2 ( x ) = - 1 2 · ∫ e - 2 x · 2 x d x = - 1 2 · e - 2 x · 2 x ln 2 - 2 + C 5 C 3 ( x ) = 1 3 · ∫ e - 3 x · 2 x d x = 1 3 · e - 3 x · 2 x ln 2 - 3 + C 6

Ответ: искомым общим решением заданного ЛОДУ с постоянными коэффициентами будет:

y = C 1 ( x ) + C 2 ( x ) · e 2 x + C 3 ( x ) · e 3 x = = 1 6 · 2 x ln 2 + C 4 + - 1 2 · e - 2 x · 2 x ln 2 - 2 + C 5 · e 2 x + + 1 3 · e - 3 x · 2 x ln 2 - 3 + C 6 · e 3 x

Дифференциальные уравнения высших порядков

Перечислены основные типы обыкновенных дифференциальных уравнений (ДУ) высших порядков, допускающие решение. Кратко изложены методы их решения. Указаны ссылки на страницы, с подробным описанием методов решения и примерами.

Дифференциальные уравнения высших порядков, решаемые в квадратурах

Уравнения, содержащие переменную и старшую производную

Разрешенные относительно старшей производной

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием

Разрешенные относительно переменной

Рассмотрим дифференциальное уравнение, в котором независимая переменная x является функцией от старшей производной:
.
Это уравнение можно решить параметрическим методом. Для этого вводим параметр . В результате получаем:
;
.
Из последнего уравнения . Интегрируя, получаем зависимость производной от x в параметрическом виде:
.
Продолжая интегрирование аналогичным образом, получим зависимость y от x в параметрическом виде.

Общий случай

Рассмотрим дифференциальное уравнение, содержащее только независимую переменную и старшую производную общего вида:
.
Его можно решить в квадратурах в параметрическом виде, если удастся подобрать такие функции и , для которых .

Если такие функции найдены, то положим . Тогда исходное уравнение выполняется автоматически. Дифференцируя первую функцию, находим связь между дифференциалами переменных x и t : . Тогда
.
Интегрируя последнее соотношение, получаем решение для производной более низкого порядка в параметрическом виде. Продолжая действовать подобным способом, получим общее решение в квадратурах.

Уравнения, содержащие только производные порядков n и n-1

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-1-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Тогда положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению .

Тогда
;
.
Интегрируя эти уравнения, получим параметрическое представление производной порядка n – 2 . Продолжая подобным образом, получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Уравнения, содержащие только производные порядков n и n-2

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-2-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению.

Тогда
;
;
;
;
.
Интегрируя, получим параметрическое представление производных порядка n, n – 1 и n – 2 . Далее интегрируем как в предыдущем случае ⇑. В результате получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Уравнения, не содержащие зависимую переменную y в явном виде


Подстановка приводит к понижению порядка уравнения на единицу. Здесь – функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде

Уравнения, не содержащие независимую переменную x в явном виде


Для решения этого уравнения, делаем подстановку
.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде

Однородные дифференциальные уравнения высших порядков

Уравнения, однородные относительно функции и ее производных

Дифференциальное уравнение

является однородным относительно функции и ее производных, если оно обладает свойством:
.
Здесь t – число или любая функция; число p называют показателем однородности.

Чтобы распознать такое уравнение, нужно сделать замену
.
Если после преобразований t сократится, то это однородное уравнение.

Для его решения делаем подстановку
,
где – функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков

Обобщенно однородные уравнения относительно переменных

Теперь рассмотрим дифференциальные уравнения, которые не меняют вида, если сделать замену переменных: , где c – постоянная; s – измерение однородности для переменной y. При такой замене производная порядка m умножается на :
.
Если записать исходное уравнение в общем виде:
,
то оно является обобщенно однородным относительно переменных, если обладает свойством:
,
где t – число или любая функция; p – показатель однородности.

При подобные уравнения можно назвать однородными дифференциальными уравнениями относительно переменных.

Порядок такого уравнения можно понизить на единицу, если искать решение в параметрическом виде, и перейти от зависимой переменной (функции) y к новой зависимой переменной (новой функции) с помощью подстановок:
, где t – параметр.
В результате для функции получим дифференциальное уравнение n - го порядка, которое не содержит переменную t в явном виде. Далее понижаем порядок изложенным выше методом ⇑.
См. Обобщенно однородные дифференциальные уравнения относительно переменных высших порядков

Дифференциальные уравнения с полной производной

Это уравнения, которые можно привести к полной производной:
.
Отсюда сразу получаем первый интеграл:
.
Он представляет собой дифференциальное уравнение, на единицу меньшего порядка по сравнению с исходным уравнением .

В качестве примера рассмотрим дифференциальное уравнение второго порядка:
.
Разделим его на . Тогда
.
Отсюда получаем первый интеграл, который является дифференциальным уравнением первого порядка:
.
См. Дифференциальные уравнения высших порядков с полной производной.

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка:
(1) ,
где – функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где – произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка – это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка:
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где – общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь – действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение:
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где – многочлены степеней s 1 и s 2 ; – постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s – наибольшее из s 1 и s 2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами


Здесь возможны три способа решения.

1) Метод Бернулли.
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где – функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n – 1 - го порядка.

2) Метод линейной подстановки.
Сделаем подстановку
,
где – один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа.
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где – неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера


Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений. Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка.

Наиболее популярны дифференциальные уравнения второго порядка. В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят производные более высоких порядков:

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка. Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами. Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение.

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!

Кроме того, чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:

Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:

– это обычное квадратное уравнение, которое предстоит решить.

Существуют три варианта развития событий. Они доказаны в курсе математического анализа, и на практике мы будем использовать готовые формулы.

Характеристическое уравнение имеет два различных действительных корня

Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
, где – константы.

В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня (от греха подальше лучше сразу же выполнить проверку, подставив корни в уравнение).
Всё, что осталось сделать – записать ответ, руководствуясь формулой

Ответ: общее решение:

Не будет ошибкой, если записать общее решение наоборот: , но хорошим стилем считается располагать коэффициенты по возрастанию, сначала –2, потом 1.

Придавая константам различные значения, можно получить бесконечно много частных решений.

Теперь неплохо бы освежить базовые понятия урока Дифференциальные уравнения. Примеры решений. А что значит вообще решить дифференциальное уравнение? Решить дифференциальное уравнение – это значит найти множество решений, которое удовлетворяет данному уравнению. Такое множество решений, напоминаю, называется общим интегралом или общим решением дифференциального уравнения.

Таким образом, в рассмотренном примере найденное общее решение должно удовлетворять исходному уравнению . Точно так же, как и у диффуров 1-го порядка, в большинстве случаев легко выполнить проверку:

Берем наш ответ и находим производную:

Находим вторую производную:

Подставляем , и в левую часть уравнения :

Получена правая часть исходного уравнения (ноль), значит, общее решение найдено правильно (оно, как проверено, удовлетворяет уравнению ).

Найти общее решение дифференциального уравнения, выполнить проверку

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

На самом деле проверка таких простейших примеров практически никогда не выполняется, но, дело в том, что навык и сама техника проверки очень пригодятся, когда вы будете решать более сложные неоднородные уравнения второго порядка. Поэтому было целесообразно сразу же ознакомить вас с алгоритмом.

Характеристическое уравнение имеет два кратных действительных корня

Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.

Если оба корня равны нулю , то общее решение опять же упрощается: . Кстати, является общим решением того самого примитивного уравнения , о котором я упоминал в начале урока. Почему? Составим характеристическое уравнение: – действительно, данное уравнение как раз и имеет совпавшие нулевые корни .

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

Здесь можно вычислить дискриминант, получить ноль и найти кратные корни. Но можно невозбранно применить известную школьную формулу сокращенного умножения:

(конечно, формулу нужно увидеть, это приходит с опытом решения)

Получены два кратных действительных корня

Ответ: общее решение:

Найти общее решение дифференциального уравнения

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Желающие могут потренироваться и выполнить проверку, но она здесь будет труднее.

Характеристическое уравнение имеет сопряженные комплексные корни

Для понимания третьего случая требуются элементарные знания про комплексные числа. Если материал позабылся, прочитайте урок Комплексные числа для чайников, в частности, параграф Извлечение корней из комплексных чисел.

Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.

Косинус с синусом можно поменять местами, это не принципиально, но обычно первым записывают косинус.

Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:

Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:

Решить однородное дифференциальное уравнение второго порядка

Решение: Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни

Ответ: общее решение:

Решить однородное дифференциальное уравнение второго порядка

Полное решение и ответ в конце урока.

Иногда в заданиях требуется найти частное решение однородного ДУ второго порядка, удовлетворяющее заданным начальным условиям, то есть, решить задачу Коши. Алгоритм решения полностью сохраняется, но в конце задачи добавляется один пункт.

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям ,

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня, поэтому общее решение:

Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти ТАКИЕ значения констант , чтобы выполнялись ОБА условия.

Алгоритм нахождения частного решения следующий:

Сначала используем начальное условие :

Согласно начальному условию, получаем первое уравнение: или просто

Далее берём наше общее решение и находим производную:

Используем второе начальное условие :

Согласно второму начальному условию, получаем второе уравнение: или просто

Составим и решим систему из двух найденных уравнений:

В составленной системе удобно разделить второе уравнение на 2 и почленно сложить уравнения:

Всё, что осталось сделать – подставить найденные значения констант в общее решение :

Ответ: частное решение:

Проверка осуществляется по следующей схеме:
Сначала проверим, выполняется ли начальное условие :
– начальное условие выполнено.

Находим первую производную от ответа:

– второе начальное условие тоже выполнено.

Находим вторую производную:

Подставим и в левую часть исходного дифференциального уравнения :
, что и требовалось проверить.

Таким образом, частное решение найдено верно.

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям , . Выполнить проверку.

Это пример для самостоятельного решения, ответ в конце урока. Если возникли затруднения с нахождение корней характеристического уравнения, прочитайте параграф Извлечение корней из комплексных чисел урока Комплексные числа для чайников. Если не помните значения тригонометрических функций, используйте Тригонометрические таблицы.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение.

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

То есть, общее решение в любом случае существует. Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.
Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Решить однородное дифференциальное уравнение третьего порядка

Решение: Составим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.

Соответствующее характеристическое уравнение всегда имеет ровно четыре корня.

Общее решение записывается точно по таким же принципам, как и для однородных диффуров младших порядков. Единственное, хотелось прокомментировать тот случай, когда все 4 корня являются кратными. Пусть, например, характеристическое уравнение имеет четыре одинаковых корня . Тогда общее решение записывается так:
.

Тривиальное уравнение имеет общее решение:

Решить однородное дифференциальное уравнение четвертого порядка

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

На посошок предлагаю решить однородный диффур как раз для закрепления вашего понимания. Да чего мелочиться:

Решить однородное дифференциальное уравнение шестого порядка

Полное решение и ответ ближе к подвалу. Караул устал – караул упал.

После такой основательной подготовки можно смело переходить к освоению линейных неоднородных уравнений 2-го, а затем и высших порядков.

Решения и ответы:

Пример 2: Решение: Составим и решим характеристическое уравнение:

, – различные действительные корни
Ответ: общее решение:
Проверка: Найдем производную:

Найдем вторую производную:

Подставим и в левую часть исходного уравнения :
, таким образом, общее решение найдено правильно.

Пример 4: Решение: составим и решим характеристическое уравнение:


Получены два кратных действительных корня
Ответ: общее решение:

Пример 6: Решение: Составим и решим характеристическое уравнение:


– сопряженные комплексные корни
Ответ: общее решение:

Пример 8: Решение: Составим и решим характеристическое уравнение:

– получены сопряженные комплексные корни, поэтому общее решение:
(так получилось, что сначала я записал синус)
Найдем частное решение, удовлетворяющее заданным начальным условиям:
, то есть , (значение константы получилось сразу же).

.
То есть .
Составим и решим систему:

Ответ: частное решение:
Проверка: – начальное условие выполнено.

– второе начальное условие выполнено.

Подставим и в левую часть исходного уравнения:

Получена правая часть исходного уравнения (ноль).
Такие образом, здание выполнено верно.

Пример 10: Решение: Составим и решим характеристическое уравнение:

, – получены два различных действительных корня и два сопряженных комплексных корня.
Ответ: общее решение

Пример 11: Решение: Составим и решим характеристическое уравнение:

, – получены пять кратных нулевых корней и действительный корень
Ответ: общее решение

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Определение и формулы дифференциальных уравнений высших порядков


Дифференциальным уравнением n-го порядка называется уравнение вида:

\[f\left(x;\; y;\; y

Здесь x – независимая переменная, – искомая функция, определенная и n раз дифференцируемая на промежутке .

Решение дифференциальных уравнений высших порядков

Функция называется решением дифференциального уравнения (1), если она обращает это уравнение в тождество.

Решение включает в себя n произвольных постоянных и имеет следующий вид:

\[F\left(x;\; C_<1></p>
<p> ;. ;\; C_ \right)=0\]

x=x_<0></p>
<p>Задача Коши для дифференциального уравнения (1) заключается в следующем: найти такое решение (функцию)  дифференциального уравнения (1),чтобы эта функция и ее производные до порядка  включительно при заданном значении аргумента
принимали бы заданные значения. То есть указанное решение должно удовлетворять условиям

\[y\left(x_</p>
<p> \right)=y_ ,\; y

x=x_<0></p>
<p>Значение искомой функции и вех ее производных до порядка  включительно задаются при одном и том же значении
независимой переменной.

Задача интегрирования дифференциального уравнения (1) называется краевой, если значения искомого решения – функции и, возможно, ее производных задаются при различных значениях независимой переменной, на концах некоторого фиксированного интервала.

Понижение порядка в ДУ высших порядков

Некоторые уравнения высших порядков допускают понижение порядка.

1) Уравнения, содержащие только производную порядка n и независимую переменную:

\[F\left(x;\; y^<\left(n\right)></p>
<p> \right)=0 \qquad (2)\]

y^<\left(n\right)></p>
<p>Если это уравнение удается разрешить относительно производной
, то оно принимает вид:

\[y^<\left(n\right)></p>
<p> =f\left(x\right)\]

Общее решение этого уравнения

\[y\left(x\right)=\underbrace<\smallint dx\smallint dx. \smallint f\left(x\right)dx></p>
<p>_ +C_ +C_ x+C_ x^ +. +C_ x^ \]

то есть для нахождения искомого решения функцию необходимо n раз проинтегрировать.

Задание Найти решение дифференциального уравнения
Решение Для нахождения решения трижды проинтегрируем функцию f\left(x\right)=\frac<1>
:

\[y

\[y

Первый из интегралов найдем методом интегрирования по частям:

\[\int \ln xdx \; \left\| \begin</p>
<p>  <u=\ln x>\qquad \\  > \qquad \end\right\| =\ln x\cdot x-\int x\cdot \frac =x\ln x-\int dx =x\ln x-x+\tilde_ \]

\[C_</p>
<p> \int dx =C_ x+C

\[y

И, наконец, окончательно получаем, что

\[y=\int \left(x\ln x-x+C_<1></p>
<p> x+C_ \right)dx =\]

\[=\int x\ln xdx -\int xdx +C_<1></p>
<p> \int xdx +C_ \int dx \; \left\| \begin  <u=\ln x>\qquad \\  > \qquad <v=\frac<x^> > \end\right\| =\]

\[=\frac<x^</p>
<p> \ln x> -\int \frac <x^> \cdot \frac -\frac <x^> +C_ \cdot \frac <x^> +C_ x=\frac <x^\ln x> -\int \frac -\frac <x^> +\frac <C_x^ > +C_ x=\]

\[=\frac<x^</p>
<p> \ln x> -\frac <x^> -\frac <x^> +\frac x^ > +C_ x+C_ =\frac <x^\ln x> -\frac <3x^> +\frac x^ > +C_ x+C_ \]

2) Уравнения, не содержащие искомой функции . Уравнения такого типа имеют вид:

\[f\left(x;\; y

Порядок такого уравнения можно понизить на единицу заменой

где – новая неизвестная функция. Тогда

\[y

В результате получим уравнение

\[f\left(x;\; z;\; z

Если уравнение (3) не содержит ни искомой функции , ни ее производных до порядка включительно:

\[f\left(x;\; y^<\left(k\right)></p>
<p> ;\; y^ <\left(k+1\right)>. ;\; y^ <\left(n\right)>\right)=0 \qquad (4)\]

то его порядок можно понизить на k единиц, сделав подстановку

\[y^<\left(k\right)></p>
<p> =z\left(x\right)\]

После нахождения неизвестной функции уравнение (4) будет сведено к уравнению вида (2).

Задание Проинтегрировать уравнение \left(1-x^<2>\right)y
Решение Поскольку заданное уравнение явно не содержит искомую функцию , то введем в рассмотрение новую функцию

а уравнение принимает вид:

\[\left(1-x^<2></p>
<p> \right)z

Его решение ищем в виде:

\[z\left(x\right)=u\left(x\right)v\left(x\right)\Rightarrow z

\[u

\[u

Функции и подбираются таким образом, чтобы выражение , стоящее в скобках, равнялось нулю. Итак, полученное уравнение распадается на два:

\[v

\[\frac</p>
<p> =\frac > v\Rightarrow \frac =\frac > dx\]

\[\int \frac<dv></p>
<p> =\int \frac > dx \Rightarrow \ln \left|v\right|=-\frac \int \frac <d\left(1-x^\right)> > =-\frac \ln \left|1-x^ \right|=\ln \frac <\sqrt> > \Rightarrow \]

\[ \Rightarrow v\left(x\right)=\frac<1></p>
<p> > > \]

После нахождения функции v дифференциальное уравнение (6) принимает вид:

\[u

\[z\left(x\right)=u\left(x\right)v\left(x\right)=\left(2\arcsin x+C\right)\cdot \frac<1></p>
<p> > > =\frac > > +\frac > > \]

Делаем обратную замену:

\[z\left(x\right)=y

\[=2\int \frac<\arcsin xdx></p>
<p> > > +C\int \frac > > =2\int \arcsin xd\left(\arcsin x\right) +C\arcsin x=\]

\[=2\cdot \frac<\arcsin ^</p>
<p> x> +C\arcsin x+C_ =\arcsin ^ x+C\arcsin x+C_ \]

3) Уравнения, не содержащие независимой переменной x. Подобные уравнения в общем случае имеют следующий вид:

\[f\left(y;\; y

Порядок такого дифференциального уравнения можно понизить на единицу заменой

где – новая искомая функция, при этом в качестве независимой переменной понимается переменная y, а не x. Тогда

\[y

\[y

Итак, после замены уравнение (7) принимает вид:

\[f\left(y;\; p;\; p

После решения последнего уравнения относительно неизвестной функции , делаем обратную замену

Записанное уравнение является дифференциальным уравнением первого порядка, из которого определяется искомая функция .

Задание Решить дифференциальное уравнение
Решение Поскольку данное уравнение не содержит независимой переменной x, то его порядок можно понизить на единицу. Для этого делаем замену

Итак, заданное уравнение относительно новой неизвестной функции принимает вид:

Получили дифференциальное уравнение с разделяющимися переменными, разделим их:

\[\frac<dp></p>
<p> p=e^ \Rightarrow pdp=e^ dy\]

Общий интеграл уравнения:

\[\int pdp =\int e^<y></p>
<p> dy \]

После интегрирования получаем:

\[\frac<p^</p>
<p> > =e^ +C\]

\[p^<2></p>
<p> =2e^ +2C\Rightarrow p=\pm \sqrt <2e^+2C> \]

2C=C_<1></p>
<p>Сделав замену
, будем иметь:

\[p=\pm \sqrt<2e^<y></p>
<p> +C_ > \]

Разделяя переменные, получим:

\[\frac<dy></p>
<p> +C_ > > =\pm dx\]

Общий интеграл этого уравнения

\[\int \frac<dy></p>
<p> +C_ > > =\pm \int dx \]

Найдем интеграл, стоящий в левой части последнего равенства:

\[\int \frac<dy></p>
<p> +C_ > > \; \left\| \begin  +C_ =t^ > \\ dy=2tdt> \\  > > \\ =\frac <t^-C_ > > \\  <t^-C_ > > \end\right\| =\int \frac <t^-C_ > > <\sqrt<t^> > =\int \frac <t^-C_ > =2\cdot \frac <2\sqrt<C_> > \ln \left|\frac <t-C_> <t+C_> \right|+\tilde_ =\]

\[=\frac</p>
<p> > > \ln \left|\frac +C_ > -C_ > +C_ > +C_ > \right|+\tilde_ \]

Тогда искомое решение

\[\frac</p>
<p> > > \ln \left|\frac +C_ > -C_ > +C_ > +C_ > \right|=\pm x+C_ \]

Читайте также: