Дробно рациональные уравнения кратко

Обновлено: 03.07.2024

Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.

Пример не дробно-рациональных уравнений:

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

Алгоритм решения дробно-рационального уравнения:

Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

Запишите уравнение, не раскрывая скобок.

Решите полученное уравнение.

Проверьте найденные корни с ОДЗ.

Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

Пример. Решите дробно-рациональное уравнение \(\frac - \frac=\frac\)

Сначала записываем и "решаем" ОДЗ.

По формуле сокращенного умножения : \(x^2-4=(x-2)(x+2)\). Значит, общий знаменатель дробей будет \((x-2)(x+2)\). Умножаем каждый член уравнения на \((x-2)(x+2)\).

Сокращаем то, что можно и записываем получившееся уравнение.

Приводим подобные слагаемые

Согласуем корни с ОДЗ. Замечаем, что по ОДЗ \(x≠2\). Значит первый корень - посторонний. В ответ записываем только второй.

Пример. Найдите корни дробно-рационального уравнения \(\frac + \frac-\frac\) \(=0\)

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

Приводим подобные слагаемые

Находим корни уравнения

Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Рациональные уравнения – это уравнения, в которых и левая, и правая части – рациональные выражения.

Что же получается?

Рациональные уравнения — коротко о главном

Определение рационального уравнения:

Рациональное уравнение – это равенство двух рациональных (без знака корня) выражений.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

Алгоритм решения рациональных уравнений:

  • Понять, точно ли это рациональное уравнение (убедись, что в нем нет корней);
  • Определить ОДЗ;
  • Найти общий знаменатель дробей и умножить на него обе части уравнения;
  • Решить получившееся целое уравнение;
  • Исключить из его корней те, которые обращают в ноль знаменатель дробей.

Система для решения дробно рациональных уравнений:


Что такое рациональные уравнения?

Давай научимся отличать рациональные уравнения от иррациональных! Зачем? Рациональные уравнения решать проще.

А зачем работать больше, если можно работать меньше?

  • \( \displaystyle 3\cdot (x+1)=x\) как думаешь, какое это? Тут сложение, умножение, нет корней, и степеней никаких – рациональное;
  • \( \displaystyle 3\cdot (x+1)=\sqrt\) – вот тебе и корень из переменной, значит уравнение НЕ рациональное (иррациональное);
  • \( \displaystyle 3\cdot (x+1)=\frac\) а это – рациональное;
  • \( \displaystyle 3\cdot (x+1)=<^>\) тут вот степень, но она с целым показателем степени (\( \displaystyle 2\)– целое число) – значит это тоже рациональное уравнение;
  • \( \displaystyle 3\cdot (x+1)=<^>\) даже уравнение с отрицательным показателем степени тоже является рациональным, ведь по сути \( \displaystyle <^>\), это \( \displaystyle \frac\);
  • \( \displaystyle 3\cdot (x+1)=<^>\) – тоже рациональное, т.к. \( \displaystyle <^>=1\);
  • \( \displaystyle 3\cdot (x+1)=<^<\frac>>\) – а с ним поосторожнее, степень-то дробная, а по свойству корней \( \displaystyle <^<\frac>>=\sqrt\), как ты помнишь, корня в рациональных уравнениях не бывает.

Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение. (И не поедешь из Москвы в Петербург через Магадан, решая рациональные уравнения как нерациональные).

Целые рациональные уравнения

Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.

Если в дроби нет деления на переменную (то есть на \( \displaystyle x\), \( \displaystyle y\) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:

Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.

Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:

Какой наименьший общий знаменатель будет?

Правильно \( \displaystyle 6\)!

Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на \( \displaystyle 2\), а второго на \( \displaystyle 3\), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.

А \( \displaystyle 13\) не трогаем, оно нам не мешает, имеем:

А теперь делим обе части на \( \displaystyle 13\):

Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, \( \displaystyle 6\), так \( \displaystyle 6\), ну можно для верности подставить этот ответ в исходное уравнение, получим \( \displaystyle 0=0\), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).

Дробно-рациональные уравнения

А вот еще одно уравнение \( \displaystyle \frac+\frac-6>=3\).

Это уравнение целое? НЕТ. Тут есть деление на переменную \( \displaystyle x\), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.

Для начала найдем наименьший общий знаменатель, это будет \( \displaystyle (x+1)\cdot (x+3)\).

Важный момент!

В предыдущем примере, где было целое уравнение мы не стали свободный член \( \displaystyle 13\) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель \( \displaystyle (x+1)\cdot (x+3)\).

А это тебе не шутки, переменная в знаменателе!

Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!

Это надеюсь, ты запомнишь, но давай посмотрим что вышло:

Что-то оно огромное получилось, надо все посокращать:

\( \displaystyle 5(x+3)+(4-6)=3\cdot (x+1)\cdot (x+3)\).

Раскроем скобки и приведем подобные члены:

Ну как, это уже попроще выглядит, чем в начале было?

Выносим за скобку общий множитель: \( \displaystyle 3x\cdot (x+1)=0\)

У этого уравнения два решения, его левая сторона принимает нулевое значение при \( \displaystyle x=0\) и \( \displaystyle x=-1\).

Вроде бы все, ну ладно давайте напоследок подставим корни \( \displaystyle x=0\) и \( \displaystyle x=-1\) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим \( \displaystyle 0\), получается \( \displaystyle 3=3\) –нет претензий?

С ним все нормально. А теперь \( \displaystyle -1\), и тут же видим в знаменателе первого члена \( \displaystyle -1+1\)!

Но ведь это же будет ноль!

На ноль делить нельзя, это все знают, в чем же дело.

Дело в ОДЗ — Области Допустимых Значений!

Всякий раз когда ты видишь уравнение, где есть переменные (\( \displaystyle x,y\) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.

Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.

Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:

ОДЗ: \( \displaystyle x+1\ne 0\) и \( \displaystyle x+3\ne 0\) \( \displaystyle \Rightarrow x\ne -1\) и \( \displaystyle x\ne -3\).

Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами \( \displaystyle x=0\) и \( \displaystyle x=-1\) мы смело исключаем \( \displaystyle x=-1\), т.к. он противоречит ОДЗ.

Значит, какой ответ будет у решенного уравнения?

В ответ стоит написать только один корень, \( \displaystyle x=0\).

Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.

Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,

ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!

Алгоритм решения рационального уравнения

  • Понять, точно ли перед тобой рациональное уравнение (убедись, что в нем нет корней);
  • Определить ОДЗ;
  • Найти общий знаменатель дробей и умножить на него обе части уравнения;
  • Решить получившееся целое уравнение;
  • Исключить из его корней те, которые обращают в ноль знаменатель дробей.

Усвоил, говоришь? А ты докажи! 🙂 Вот тебе примеры на закрепление. Попробуй решить сам, а потом сверься с ответом.

Три примера на закрепление

  • \( \displaystyle \frac+\frac=\frac;\)
  • \( \displaystyle \frac+\frac=\frac;\)
  • \( \displaystyle \frac<33+<^>><9-<^>>+\frac=-2+\frac.\)

Справился? Давай проверим:

Читать далее…

Мы хотим постоянно улучшать этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)

Рациональные выражения, уравнения и дробно-рациональные уравнения

Повторим еще раз то, что прошил в предыдущих разделах, больше используя язык математики.

Рациональное выражение – это алгебраическое выражение, составленное из чисел и переменной \( \displaystyle x\) с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Ну а рациональное уравнение – это равенство двух рациональных выражений.

Дробно-рациональные уравнения – рациональные (без знака корня) уравнения, в которых левая или правая части являются дробными выражениями.

Например:

\( \displaystyle \frac^>-2-3><-1>-\frac<-3>=<^>-1\) (чаще всего мы встречаем именно дробно рациональные уравнения).

Тогда мы сможем сказать, что любой из множителей числителя может быть равен нулю, но знаменатель при этом нулю не равен.

Затем мы обычно приводим все к общему знаменателю, и пишем систему:

\( \displaystyle \left\< \beginЧислитель=0,\\Знаменатель\ne 0.\end \right.\)

Например:

\( \displaystyle \begin\frac-2><^>+2-3>-\frac<^>+5x+6>=\frac\Leftrightarrow \\\Leftrightarrow \frac-2><\left( -1 \right)\left( x+3 \right)>-\frac<\left( x+2 \right)\left( x+3 \right)>-\frac=0\Leftrightarrow \end\) \( \displaystyle \Leftrightarrow \frac<^>-4-\left( ^>-1 \right)-3\left( ^>+-2 \right)><\left( -1 \right)\left( x+2 \right)\left( x+3 \right)>=0\Leftrightarrow \frac<-3^>-3x+3><\left( -1 \right)\left( x+2 \right)\left( x+3 \right)>=0\Leftrightarrow \) \( \displaystyle \Leftrightarrow \left\< \begin^>+-1=0\\\left( -1 \right)\left( x+2 \right)\left( x+3 \right)\ne 0\end \right.\Leftrightarrow \left\< \begin\left[ \beginx=\frac>\\x=\frac>\end \right.\\x\ne 1\\x\ne -2\\x\ne -3\end \right.\Leftrightarrow \left[ \beginx=\frac>\\x=\frac>.\end \right.\)

Если знаменателя нет, или он является числом, – тем лучше, не придется решать неравенство.

Преобразование рационального выражения в более простое

Перегруппировка и замена переменных

\( \displaystyle \left( -1 \right)\left( -7 \right)\left( -4 \right)\left( x+2 \right)=40.\)

Перегруппируем: \( \displaystyle \left( -1 \right)\left( -4 \right)\cdot \left( -7 \right)\left( x+2 \right)=40;\)

Раскроем скобки в каждой группе: \( \displaystyle \left( ^>-5+4 \right)\left( ^>-5-14 \right)=40;\)

Сделаем замену: \( \displaystyle t=^>-5x.\)

Читать далее…

Мы хотим постоянно улучшать этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)

Таким образом, нам пришлось решить три квадратных уравнения вместо одного уравнения 4-й степени.

Примеры дробно-рациональных уравнений

Попробуй сначала решить их самостоятельно, а потом посмотри решения.

  • \( \displaystyle \frac-3>-7>=1\);
  • \( \displaystyle \frac-3>=\frac<^>-5x+6>\);
  • \( \displaystyle \frac>>=\frac-7>\).

Читать далее…

Мы хотим постоянно улучшать этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике (практика решения задач)

ЕГЭ 15 Рациональные и иррациональные уравнения и неравенства. Метод интервалов

В этом видео ты узнаешь (вспомнишь) метод интервалов, поймёшь как и почему он работает.

Вспомнишь, как решать не только рациональные уравнения, но и квадратные, рациональные неравенства, а также неравенства с модулем и иррациональные.

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

Курсы для тех, кому нужно получить 90+ и поступить в топовый ВУЗ страны.

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 \ 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Задания для самостоятельного решения

№1. Решите уравнение: 3 x − 19 = 19 x − 3 .

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

3 x − 19 = 19 x − 3

[ x − 19 ≠ 0 x − 3 ≠ 0 ⇒ [ x ≠ 19 x ≠ 3

Приводим обе дроби к общему знаменателю, записываем дополнительные множители к числителям:

3 \ ( x − 3 ) x − 19 − 19 \ ( x − 19 ) x − 3 = 0

3 ( x − 3 ) − 19 ( x − 19 ) ( x − 19 ) ( x − 3 ) = 0

В соответствии с алгоритмом, приравниваем числитель к нулю:

3 x − 9 − 19 x + 361 = 0

x = − 352 − 16 = − 352 16 = 22

Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.

№2. Решите уравнение x − 4 x − 6 = 2.

Решение:

Можно решать эту задачу способом, который использовался при решении задачи №8. Но сейчас мы используем еще один способ решения таких уравнений.

Представим число 2 в виде дроби со знаменателем 1 .

Воспользуемся основным свойством пропорции :

a b = c d ⇒ a ⋅ d = b ⋅ c

x − 4 x − 6 = 2 1 ⇒ ( x − 4 ) ⋅ 1 = ( x − 6 ) ⋅ 2

Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным .

3 x − 1 + 2 \ x − 1 1 = 4 − x x − 1 ; 3 + 2 ( x − 1 ) x − 1 = 4 − x x − 1 | ⋅ x − 1 .

В первом пункте получилось, что при \(x = 1\) уравнение не имеет смысла, поэтому число \(1\) не может являться корнем данного дробного уравнения. Следовательно, у данного уравнения вообще нет корней.

1 6 x − 12 = 1 9 x + 18 ; 6 x − 12 ≠ 0 ; 9 x + 18 ≠ 0 ; x ≠ 2 ; x ≠ − 2 . 1 6 x − 12 = 1 9 x + 18 ; 1 ⋅ 9 x + 18 = 1 ⋅ 6 x − 12 ; 9 x + 18 = 6 x − 12 ; 3 x = − 30 ; x = − 10 ; − 10 ≠ 2 ; − 10 ≠ − 2 . Корень x = − 10 . Проверка : 1 6 ⋅ − 10 − 12 = ? 1 9 ⋅ − 10 + 18 ; 1 − 60 − 12 = ? 1 − 90 + 18 ; 1 − 72 = ? 1 − 72 .

Читайте также: