Днк маркеры в селекции кратко и понятно

Обновлено: 02.07.2024

В племенном свиноводстве в Европе и Америке начинают применять геномную селекцию. Ее технологии позволяют расшифровать генотип свиней уже при рождении и отбирать для разведения лучших животных. Эта новейшая технология призвана в дальнейшем увеличивать селекционную точность и надежность племенной ценности свиней.

Родоначальником геномной селекции является маркерная селекция.

Маркерная селекция – это использование маркеров для маркирования генов количественного признака, что дает возможность установить наличие или отсутствие в геноме определенных генов (аллелей генов).

Ген - это участок ДНК, определенная последовательность нуклеотидов, в которой закодирована информация о синтезе одной молекулы белка (или РНК), и как следствие, обеспечивающая формирование какого-либо признака и передачу его по наследству.

Гены, представленные в популяции несколькими формами – аллелями – это полиморфные гены. Аллели генов разделяются на доминантные и рецессивные. Полиморфизм генов обеспечивает разнообразие признаков внутри вида.

Однако лишь некоторые признаки находятся под контролем отдельных генов (например, цвет волос). Показатели продуктивности, как правило, являются количественными признаками, за развитие и проявление которых отвечают многие гены. Некоторые из этих генов могут иметь более выраженный эффект. Такие гены называются основными генами локусов количественных признаков (QTL). Локусы количественных признаков (QTL) - участки ДНК, содержащие гены либо сцепленные с генами, лежащими в основе количественного признака.

Первоначально в качестве генетических маркеров использовались морфологические (фенотипические) признаки. Однако очень часто количественные признаки имеют сложный характер наследования, их проявление детерминируется условиями среды и количество маркеров, в качестве которых используются фенотипические признаки, ограниченно. Затем в качестве маркеров использовались продукты генов (белки). Но наиболее эффективно тестировать генетический полиморфизм не на уровне продуктов генов, а непосредственно на уровне генов, то есть использовать в качестве маркеров полиморфные нуклеотидные последовательности ДНК.

Обычно фрагменты ДНК, которые лежат близко друг к другу на хромосоме, передаются по наследству вместе. Это свойство позволяет использовать маркер для определения точной картины наследования гена, который еще не был точно локализован.

Таким образом, маркеры – это полиморфные участки ДНК с известной позицией на хромосоме, но неизвестными функциями, по которым можно выявлять другие гены. Генетические маркеры должны быть легко идентифицируемы, связаны с конкретным локусом и очень полиморфны, потому что гомозиготы не дают никакой информации.

Широкое применение вариантов полиморфизма ДНК в качестве генетических маркеров началось с 1980 г. Молекулярно-генетические маркеры использовались для программ сохранения генофондов пород сельскохозяйственных животных, с их помощью решались задачи происхождения и распространения пород, установления родства, картирования основных локусов количественных признаков, изучения генетических причин наследственных заболеваний, ускорения селекции по отдельным признакам – устойчивости к определенным факторам, по продуктивным показателям. В Европе генетические маркеры начали применяться в селекции свиней еще с начала 1990 гг. для освобождения популяции от гена галотана, который вызывает синдром стресса у свиней.

Очень удобным видом генетических маркеров является SNP (Single Nucleotide Polymorphisms) — снип или однонуклеотидный полиморфизм — это отличия последовательности ДНК размером в один нуклеотид в геноме представителей одного вида или между гомологичными участками гомологичных хромосом индивида. SNP - это точечные мутации, которые могут происходить в результате спонтанных мутаций и действия мутагенов. Различие даже в одну пару оснований может быть причиной изменения признака. SNP широко распространены в геноме (у человека около 1 SNP на 1000 пар оснований). Геном свиньи имеет миллионы точечных мутаций. Никакой другой тип геномных различий не способен обеспечить такую плотность маркеров. Кроме того, SNP имеют низкий уровень мутаций на поколение (~10-8) в отличие от микросателлит, что делает их удобными маркерами для популяционно-генетического анализа. Основным достоинством SNP является возможность использования автоматических методов их детекции, например, использование ДНК-матриц.

Для увеличения количества SNP-маркеров в последнее время ряд зарубежных компаний объединяют свои усилия, создавая единую базу данных, чтобы иметь возможность, протестировав большое количество животных, проверенных по продуктивности на полиморфизм, выявить наличие связей между известными точечными мутациями и продуктивностью.

В настоящее время определено большое количество полиморфных вариантов генов и их взаимовлияние на продуктивные признаки свиней. Некоторые генетические тесты с использованием маркеров, определяющих продуктивные качества, публично доступны и используются в программах разведения. Используя такие маркеры, можно улучшить некоторые продуктивные показатели.

Примеры маркеров продуктивности:

  • маркеры плодовитости: ESR – ген эстрогенного рецептора, EPOR – ген рецептора эритропоэтина;
  • маркеры устойчивости к заболеваниям – ген рецептора ECR F18;
  • маркеры эффективности роста, мясной продуктивности - MC4R, HMGA1, CCKAR, POU1F1.

MC4R - ген рецептора меланокортина 4 у свиней локализован на хромосоме 1 (SSC1) q22-q27. Замена одного нуклеотида А на G приводит к изменению аминокислотного состава МС4-рецептора. В результате происходит нарушение регуляции секреции клеток жировой ткани, что приводит к нарушению липидного обмена и непосредственно влияет на процесс формирования признаков, характеризующих откормочные и мясные качества свиней. Аллель А определяет быстрый рост и большую толщину шпика, а аллель G отвечает за эффективность роста и большой процент постного мяса. Гомозиготные свиньи с генотипом AA достигают рыночного веса на три дня быстрее, чем свиньи гомозиготные по аллелю G (GG), зато у свиней с генотипом GG на 8% меньше сала и отличаются они более высокой конверсией корма.

Также на мясную и откормочную продуктивность влияют и другие гены, контролирующие комплекс сопряженных физиологических процессов. Ген POU1F1 - гипофизарный фактор транскрипции, является регулирующим транскрипционным фактором, детерминирующим экспрессию гормона роста и пролактина. У свиней локус POU1F1 картирован на хромосоме 13. Его полиморфизм обусловлен точечной мутацией, приводящей к образованию двух аллелей – С и D. Наличие в генотипе свиней аллеля С связывают с повышенными среднесуточными привесами и большей скороспелостью.

Также маркеры позволяют тестировать генотип хряков на признаки, ограниченные полом, проявляющиеся только у свиноматок. Это, к примеру, плодовитость (количество поросят на опорос), которые хряк передает потомству. Например, тестирование генотипа хряка по маркерам эстрогенового рецептора (ESR) позволит отбирать тех хряков для разведения, которые передадут дочерям более высокие воспроизводительные качества.

С помощью результатов маркерной селекции можно оценить частоту встречаемости желательных и нежелательных аллелей для породы или линии, проводить в дальнейшем селекцию, чтобы все животные в породе имели только предпочтительные аллели генов.

Перечень маркеров, рекомендованных к использованию, постоянно расширяется.

Рис. 1. Принцип действия олигонуклеотидного биочипа

ДНК-чип представляет собой подложку с нанеcенными на нее ячейками с веществом-реагентом. Исследуемый материал помечают различными метками (чаще флуоресцентными красителями) и наносят на биочип. Как показано на картинке, вещество-реагент - олигонуклеотид - связывает в исследуемом материале - флуоресцентно меченых фрагментах ДНК - только комплементарный фрагмент. В результате наблюдается свечение на этом элементе биочипа.

В 2009 году был расшифрован геном свиньи. Разработан SNP чип ( вариант ДНК-микрочипа ), содержащий 60 000 генетических маркеров генома. Для ускорения исследований были даже созданы специальные роботы для считывания снипов. Образец ДНК свиньи можно тестировать на наличие или отсутствие практически всех важных точечных мутаций, определяющих продуктивные признаки. Таким образом, отбор лучших животных может быть основан на генетических маркерах без измерения фенотипических показателей.

Эти достижения привели к внедрению новой технологии - геномной селекции. Геномная селекция - это тестирование генома сразу по большому количеству маркеров, покрывающих весь геном, так что локусы количественных признаков (QTL) находятся в неравновесном сцеплении хотя бы с одним маркером. В геномной селекции сканирование генома происходит с использованием чипов (матриц) с 50-60 тысячами SNP (которые маркируют основные гены количественных признаков) для выявления однонуклеотидных полиморфизмов вдоль генома животного, определения генотипов с желательным проявлением совокупности продуктивных признаков и оценки племенной ценности животного.

Впервые термин "геномная селекция" был введен Хейли и Вишером в 1998 году. Meuwissen с соавторами в 2001 году разработал и представил методологию аналитической оценки племенной ценности с помощью карты маркеров, охватывающих весь геном.

Практическое применение геномной селекции началось с 2009 года.

С 2009 года крупнейшие компании США (Cooperative Resources International), Нидерландов, Германии, Австралии начали внедрять геномную селекцию в программы разведения КРС. Быки разных пород были генотипированы по более 50 000 SNP.

Генетическая компания Hypor начала использовать геномную селекцию с 2010 года, действуя в тесном сотрудничестве с Центром научных исследований и новых технологий группы Hendrix Genetics (Хендрикс Дженетикс). Hendrix Genetics тестирует более 60 000 SNP маркеров и использует эту информацию для исследования ДНК. Геномный индекс генетического потенциала свиней рассчитывается после анализа 60 000 маркеров генов (снипов) по животному. В теории, если достаточно генетических маркеров, чтобы охватить все ДНК свиньи (ее генома), возможно описать все генетические вариации для всех измеряемых признаков. Готовится современное математико-генетическое программное обеспечение для обработки данных.

Геномная селекция – это мощный инструмент для использования в будущем. В настоящее время эффективность геномной селекции ограниченна различным характером взаимодействия между локусами количественных признаков, изменчивостью количественных признаков у разных пород, влиянием на проявление признака факторов внешней среды. Но результаты исследований во многих странах подтвердили, что использование статистических методов совместно с геномным сканированием увеличивает надежность прогноза племенной ценности.

Селекция свиней с помощью статистических методов по некоторым показателям (например сопротивляемости заболеваниям, качеству мяса, плодовитости) характеризуется низкой эффективностью. Это происходит вследствие следующих факторов:

  • низкой наследуемости признаков,
  • большого влияния на этот признак факторов внешней среды,
  • из-за проявления, ограниченного полом,
  • проявления признака только под действием определенных факторов,
  • когда проявление признака происходит относительно поздно,
  • вследствие того, что характеристики трудно измерить (например, особенности здоровья),
  • наличие скрытых носителей-признаков.

Например, такой порок свиней как стресс-чувствительность трудно поддается диагностике и проявляется в повышенной смертности поросят под воздействием стресса (перевозки и др.) и ухудшении качества мяса. ДНК-тестирование с использованием маркеров генов дает возможность выявить всех носителей этого порока, в том числе скрытых, и с учетом этого проводить селекцию.

Для оценки показателей продуктивности трудно поддающихся прогнозу статистическими методами для более достоверной их оценки нужен анализ потомства, то есть необходимо дождаться приплода и проанализировать его племенною ценность. А использование ДНК-маркеров дает возможность проанализировать генотип сразу при рождении, не дожидаясь проявления признака или появления потомства, что значительно ускоряет селекцию.

Индексная оценка животных осуществляется по экстерьеру и по продуктивным качествам (скороспелость поросят и т.д.). В обоих случаях пользуются фенотипическими показателями, поэтому для использования этих признаков в расчётах необходимо знать их коэффициент наследуемости. Однако даже в таком случае мы будем иметь дело с вероятностью генетического обоснования любого признака, усредненными показателями его предков и потомков (нет возможности определить, какие гены унаследовало молодое животное: лучшие или худшие этого среднего). С помощью анализа генотипа можно точно установить факт наследования определенных генов уже при рождении, оценивать генотипы напрямую, а не через фенотипические проявления.

Однако если отбор свиней идет по показателям, характеризующимся высокой наследуемостью, как например, легко исчисляемое количество сосков, геномная селекция не принесет существенной выгоды.

Маркерная селекция не отрицает традиционных подходов к определению племенной ценности. Статистический анализ и технологии геномной селекции взаимно дополняют друг друга. Использование генетических маркеров позволяет ускорить процесс отбора животных, а индексные методы - точнее оценить эффективность этого отбора.

Геномная селекция – это возможность сделать свиноводство точным производством. Использование технологий геномной селекции позволит производить разнообразные мясные продукты, соответствующие запросу потребителей.

Перепубликация материалов данного сайта разрешена только при указании гиперсcылки на источник информации!

Основы маркерной селекции. Важные ДНК-маркеры: полиморфные, полимеразные и мономорфные. Значение маркерной селекции в животноводстве. Влияние генов на свойства продукции. Повышение эффекта гетерозиса. Повышение эффективности оценки племенной ценности.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 15.12.2012
Размер файла 479,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Российский государственный аграрный университет

Московская сельскохозяйственная академия имени К. А. Тимирязева

Кафедра разведения и племенного дела

Курсовая работа

Выполнила: студентка 3го курса

Москва 2011 год

Содержание

1. Основы маркерной селекции

2. Наиболее важные ДНК-маркеры

3. Значение маркерной селекции в животноводстве

Список использованной литературы

Введение

Основной задачей современного животноводства является получение высокопродуктивных животных, дающих высококачественную продукцию. Большинство показателей продуктивности имеет полигенную природу и определяется многими генами при взаимодействии с окружающей средой. Повышение эффективности селекции будет зависеть от подбора генотипов к конкретным условиям среды.

С целью выявления наиболее успешных генотипов используют генетические маркеры. В конце 70-х появилась возможность идентифицировать большое количество маркеров. Они позволяют получать информацию о разных состояниях генов и исследовать, как их варианты имеют преимущественное распространение у животных с наиболее желательными комплексами признаков.

Использование большого количества генетических маркеров позволяет более достоверно оценить генетический потенциал пород, популяций и отдельно взятых особей, более точно контролировать селекционные процессы.

Особую актуальность, как считает Е.И. Кийко, имеет нахождение локализации гена на хромосоме количественных признаков (QTL) с целью оценки генетических параметров и аддитивного генетического влияния.

Для решения этой проблемы существует направление в племенном деле - селекция с помощью маркеров. Целью ее является замена селекции по фенотипу на селекцию на уровне ДНК.

Основой маркерной селекции является нахождение локусов количественных признаков, которые отвечают за экономически важные продуктивные признаки. Достаточно идентифицировать маркер с неизвестной функцией, связанный с QTL и определить сцепление между аллелями в маркерном локусе.

Одним из самых важных направлений является поиск маркеров, которые позволяют выявить генотипы животных, обладающих хозяйственно-полезными признаками. Еще одно направление - поиск новых систем генетического маркирования.

В основу берут ДНК-маркеры, так как они имеют ряд преимуществ:

? наследование происходит по законам Менделя, что делает возможным непосредственный анализ генотипа;

- путем подбора зондов может быть идентифицировано множество вариантов ДНК;

- информативные зонды распределяются по всему геному;

- возможность оценки генотипа не зависит от возраста и пола животного.

1. Основы маркерной селекции

Идея маркеров в том, считает Джулия ван де Веф, что существуют гены со значительным влиянием на признаки, информацию о которых можно использовать в селекции. За проявление экономически важных признаков отвечает довольно большое количество генов. Некоторые из этих генов имеют наиболее значимое влияние. Их называют основными, локализованными в QTL. Хоть QTL относят ко всем генам, отвечающим за признак, на практике получается так, что к QTL относят только основные, наиболее значимые гены.

На рисунке показано, что из QTL только некоторые гены влияют на фенотип животного. Остальные гены вместе с ними определяют полную наследственную изменчивость. Хоть QTL объясняет только часть генотипа животного, информация, которую можно почерпнуть, добавляет точность к оценке истинного генотипа животного.

На рисунке изображено три быка с различными фенотипами. Верхняя часть показывает истинные аллельные ценности генов, отвечающих за массу тела. Нижний рисунок показывает, что наблюдается, если бы QTL был бы распознан в дополнение к фенотипу. маркерный селекция ген гетерозис

На рисунке предполагается, что племенная ценность и аллельные формы QTL известны. Но на практике это встречается не всегда. Фактически нельзя наблюдать непосредственное наследование QTL, но наблюдается наследование маркеров, которые схожи с QTL. Генетические маркеры как ориентиры, которые выбираются на основе схожести с QTL.

Генетические маркеры дают возможность к наиболее быстрому и точному генетическому анализу. Маркеры не оказывают влияния на организм животного, но они могут быть легко идентифицированы в лабораториях, поэтом можно определить какую разновидность маркера несет животное. Как и гены, генетические маркеры расположены в хромосомах последовательно.

Экспериментально можно определить генетические маркеры, которые располагаются на хромосоме близко к интересующим нас генам.

Нужно вести родословную и делать специальные измерения для того чтобы работать с кроссоверными генами. Если маркер расположен в пределах гена, то кроссинговер не является проблемой.

При выборе маркера надо учитывать какую информацию можно от него получить. При использовании прямых маркеров не возникает никаких проблем с определение генов QTL. Проблемы начинаются при использовании косвенных маркеров.

Ценность генотипа маркера зависит от трех вещей: влияния QTL, частота аллели и вероятность того, что животное унаследовало эту аллель.

Маркерные гены используются для выявления важных для животноводства генов. Маркерные гены особенно важны, дли признаков, которые фенотипически проявляются относительно поздно или только у одного пола, а также для признаков, на проявление которых оказывают влияние негенетические факторы (факторы окружающей среды). Примерами такого рода признаков являются резистентность к болезням, предрасположенность к болезням, плодовитость, молочная продуктивность. Целью маркирования является установление сцепления между основным геном и маркерным геном у животного. Так, к примеру, длина хромосомы крупного рогатого скота в среднем составляет 100 сМ, достаточно иметь три удачно расположенных маркера на хромосому: два маркера, удаленных на расстояние около 20 сМ от центромеры или теломеры, и один -- в центре. Следовательно, 90 расположенных данным образом маркерных локусов достаточно для полного картирования генома крупного рогатого скота.

В генетике животноводства большое значение для дальнейших разработок имеет тщательный выбор генотипов и структуры семьи, а также наличие банков ДНК и банков данных.

Среди множества генов, контролирующих продуктивность, можно выделить группу мажорных генов, вносящих наибольший вклад в формирование и функционирование данного количественного признака. К таким генам, например, относятся гены, кодирующие белки молока. Интерес исследователей к изучению генетического полиморфизма белков молока связан с тем, что их генетически детерминированные варианты оказывают значительное влияние на конкретные черты молочной продуктивности и, соответственно, могут быть использованы в качестве прямых генетических маркеров хозяйственно-полезных признаков. Внедрение генетических маркеров в качестве дополнительных критериев при отборе сельскохозяйственных животных ускоряет селекционный процесс и повышает его эффективность.

2. Наиболее важные ДНК-маркеры

Ценность информации о генотипе зависит от способности маркера предсказывать генотип животного.

- Возможность тестирования любых последовательностей генома.

- Возможность анализа материнского типа наследования (митохондриальная ДНК).

- Возможность анализа отцовского типа наследования (Y-хромосома).

- Отсутствие плейотропного эффекта.

- Информативность о природе генетических изменений. - Возможность проведения ретроспективных исследований.

- Возможность определения в любых тканях.

- Возможность определения на любых стадиях развития.

- Длительность хранения образцов ДНК.

- Возможность использования гербарного материала, ископаемых остатков и т.п.

Полиморфные ДНК-маркеры

Открытие и выделение рестрицирующих эндонуклеаз , расщепляющих ДНК в участках со строго определенной последовательностью, позволило разработать маркеры на основе анализа рестрикционного полиморфизма ДНК (ПДРФ, англ. RFLP - Restriction Fragment Length Polymorphism). Впервые ПДРФ был использован как генетический маркер в 1974 г. при идентификации термочувствительной мутации в геноме аденовируса. Однако широкое применение вариантов полиморфизма ДНК в качестве генетических маркеров началось с 1980 г. после выхода работы Ботштейна, в которой изучены свойства ПДРФ как генетического маркера, дано теоретическое обоснование его использования и предложен метод оценки уровня информативности. ПДРФ используют для анализа полиморфизма конкретных локусов (генов). С использованием ПДРФ-маркеров были получены первые успешные результаты по построению молекулярно-генетических карт многих видов растений и животных, накоплены обширные сведения о генетическом полиморфизме различных организмов, выявлены ассоциации с хозяйственно-полезными признаками. Важным достоинством данного типа маркеров является высокая воспроизводимость результатов, а также кодоминантный тип наследования. ПДРФ-локусы могут обладать множественными аллелями, что повышает их информативность.

Полимеразные ДНК-маркеры

Были изобретены в 1983 году, основаны на методе увеличения числа копий определенных участков ДНК. в процессе повторяющихся температурных циклов полимеразной реакции (ПЦР - полимеразная цепная реакция, англ. PCR - Polymerase Chain Reaction).

Метод ПЦР позволяет быстро и с небольшими затратами материальных ресурсов и времени получить более 10 миллионов копий определенной последовательности ДНК, первоначально представленной одной или несколькими молекулами. Различные модификации метода ПЦР легли в основу создания разнообразных типов ДНК-маркеров, широко используемых в настоящее время в различных областях биологии и медицины.

Мономорфные ДНК-маркеры

STSs-маркеры - в 1989 году Ольсоном с соавторами была сформулирована идея создания системы STS-маркеров, которая была призвана стандартизовать все обозначения маркированных последовательностей ДНК в геноме и включить в себя все типы картированных последовательностей.

3. Значение маркерной селекции в животноводстве

-Использование в возвратном скрещивании

Маркерная селекция после каждого возвратного скрещивания позволяет вести наблюдение за дальнейшим распространением желательного генотипа и на основании этого вести селекцию. Посредством маркерной селекции может быть значительно сокращено число необходимых возвратных скрещиваний, не препятствуя при этом симультативной селекции по признакам продуктивности в исходной популяции.

- Нахождение влияния генов на свойства продукции

Путем генной диагностики можно выяснить влияние генов на животноводческую продукцию. Например, влияние казеиновых генов на качество молока.

- Повышение эффективности оценки племенной ценности

При маркерной селекции можно не дожидаться фенотипического проявления, селекция может проводиться уже на эмбриональных стадиях, а для признаков, ограниченных полом, выполняться у обоих полов. Маркерная селекция делает возможным предселекцию индивидуумов, при которой, исходя из продуктивности родоначальниц и продуктивности сибсов, теоретически рассчитывается племенная ценность, и способствует усилению интенсивности селекции и к избеганию нежелательных эффектов селекции.

-Повышение эффекта гетерозиса

Эффект гетерозиса взаимосвязан с долей гетерозиготных генотипов в скрещиваемой популяции. Если известно достаточно полиморфных маркерных генов, то возможна относительно надежная оценка различных скрещиваний по ожидаемой степени гетерозиготности. Эти данные могут быть использованы для отбора пород или линий в программы по скрещиванию. Благоприятные комбинации аллелей могут быть достигнуты посредством соответствующих спариваний. Таким путем впервые удалось предсказать специфическую комбинативную изменчивость. При разведении популяций может использоваться прогнозирование средней степени гетерозиготности потомства от запланированных спариваний.

Маркерная селекция - перспективная отрасль в разведении, позволяющая более достоверно определить генотип интересующих нас животных.

Это позволяет улучшить и ускорить племенную работу, направленную на улучшение хозяйственно-полезных признаков.

Маркерная селекция включает в себя экономические соображения, основы фенотипической селекции, текущее состояние маркеров, состояние генетических карт, методы обнаружения QTL.

Список использованной литературы

1.Кийко Е.И. Принципы маркерной селекции в молочном скотоводств // Вестник ТГУ, т.15, вып. 1, 2010

2. Julius van der Werf. Identifying and incorporating genetic marker and major genes in animal breeding programs. Belo Horizonte - Brasil: 2000

3. Зиновьева Н.А. Молекулярно-генетичсекие методы и их использование в свиноводстве// Достижения науки и техники АПК, № 10, 2008

4. Шендаков А.И, Т.А. Шендакова Генетические аспекты модернизации молочного скотоводства// Вестник ОрегГАУ, №2, 2009

5. Храброва Л.А. Маркер-вспомогательная селекция в коневодстве // Loshadi Creative Team, 2002

7. Аржанкова Ю.В. Использование ДНК-маркеров и дерматологлифического полиморфизма носогубного зеркала в селекции молочных пород скота// диссертация на соискание ученой степени, 2010

8. Elcio P. Guimaraes, John Ruane, Beate D. Scherf, Andrea Sonnino, James D. Dargie Marker-assisted selection, food and agriculture organization of the united nations Rome: 2007

9. Брем Г., Кройслих Х., Штранцингер Г., Экспериментальная генетика в животноводстве. М.:1995.

Подобные документы

Создание Н.И. Вавиловым коллекции семян различных растений. Массовый и индивидуальный отбор растений, явление гетерозиса. Изменение свойств гемозиготных линий. Управление доминированием признаков у гибридов. Значение племенной книги в животноводстве.

презентация [1,8 M], добавлен 27.03.2012

Виды селекции и ее значение. Методы селекции микроорганизмов и животных. Биотехнология, генетическая и клеточная инженерия. Цели и задачи селекции как науки. Процесс одомашнивания новых видов растений и животных для удовлетворения потребностей человека.

курсовая работа [389,3 K], добавлен 10.09.2010

Создания и совершенствования сортов культурных растений и пород домашних животных, применение этих методов в растениеводстве (селекция растений) и животноводстве (селекция животных). Сорта растений и породы животных с нужными биологическими свойствами.

презентация [598,9 K], добавлен 25.10.2011

Задачи современной селекции, породы животных и сорта растений. Центры многообразия и происхождения культурных растений. Основные методы селекции растений: гибридизация и отбор. Самоопыление перекрестноопылителей (инбридинг), сущность явления гетерозиса.

реферат [17,6 K], добавлен 13.10.2009

Отличия животных от растений. Особенности отбора животных для селекции. Что такое гибридизация, ее классификация. Современные разновидности селекции животных. Сферы использования микроорганизмов, их полезные свойства, методы и особенности селекции.

презентация [1022,0 K], добавлен 26.05.2010

Селекция как наука об улучшении уже существующих и о выведении новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами, ее цели и задачи, направления развития на сегодня. Сферы использования методов селекции.

презентация [2,4 M], добавлен 18.04.2013

Создание устойчивых к болезням сортов пшеницы, обеспечение длительного сохранения их свойств как актуальная задача селекции. Изучение биохимических механизмов, ответственных за устойчивость; генно-молекулярные технологии, ускоряющие процесс селекции.


Молекулярно-генетические маркеры (ДНК-маркеры) - это полиморфный признак, выявляемый методами молекулярной биологии на уровне нуклеотидной последовательности ДНК, для определенного гена или для любого другого участка хромосомы при сравнении различных генотипов, особей, пород, сортов, линий.

За последние годы накопился большой массив данных об эффективности использования молекулярно-генетических маркеров, как на уровне белков, так и ДНК, РНК, для решения многих задач генетики, селекции, сохранения биоразнообразия, изучения механизмов эволюции, картирования хромосом, а также для семеноводства и племенного дела.

Наиболее широко используемые молекулярно-генетические маркеры условно можно подразделить на следующие типы — маркеры участков структурных генов, кодирующих аминокислотные последовательности белков (электрофоретические варианты белков), маркеры некодирующих участков структурных генов и маркеры различных последовательностей ДНК, отношение которых к структурным генам, как правило, неизвестно — распределение коротких повторов по геному (RAPD — случайно амплифицируемая полиморфная ДНК; ISSR — инвертированные повторы; AFLP — полиморфизм в сайтах рестрикции) и микросателлитные локусы (тандемные повторы с длиной элементарной единицы в 2-6 нуклеотидов).

Имеется целый набор современных технологий выявления полиморфизма на уровне ДНК, среди которых можно выделить следующие:

анализ полиморфизма длин рестриктных фрагментов ДНК (RFLP);

анализ полиморфизма с помощью полимеразной цепной реакции (ПЦР) и другие методы на основе амплификации ДНК между повторяющимися последовательностями в геномной ДНК.

Маркеры на основе ДНК-зондов

К маркерам на основе ДНК-зондов относят:

1. RFLP (ПДРФ-маркеры) — Полиморфизм длин рестрикционных фрагментов.

ПДРФ эффективен при картировании генома, маркировании генов многих биологических и экономически важных признаков.

2. VNTR — (англ. Variable Number Tandem Repeat). Этот метод получил название ДНК фингерпринта (отпечатки пальцев). Тандемные повторы широко распространены в разных геномах и высокополиморфны. В результате высокой вариабельности этих участков ДНК ПДРФ-анализ с зондами к микро- и минисателитным последовательностям позволяет получать мультилокусные спектры с высоким разрешением на популяционном уровне. Благодаря очень высокому уровню полиморфизма этот подход в настоящее время является хорошим инструментом для анализа внутри- и межпопуляционной изменчивости и определения генетических расстояний между группами организмов.

VNTR-аллельные варианты имеют кодоминантный характер наследования.

Маркеры полимеразной цепной реакции

Метод полимеразной цепной реакции (ПЦР) предполагает использование специфических праймеров и получение дискретных ДНК-продуктов амплификации отдельных участков геномной ДНК. Большое количество родственных технологий построено на этом принципе. Наиболее широко используемая RAPD технология основана на анализе амплифицированных полиморфных фрагментов ДНК с помощью единичных праймеров с произвольной нуклеотидной последовательностью.

SSR — (англ. Simple Sequence Repeats), ПЦР с флангирующими праймерами к короткому мини или микросателитному повтору позволяет выявлять маркеры с кодоминантным наследованием и, соответственно, удобен для выявления гетерозигот по данному локусу. Однако, одна пара праймеров для флангов в ПЦР позволяет рассматривать полиморфизм только одного локуса. Для многих микросателлитных локусов не удается выявить полиморфизм. Как правило, фланкирующие последовательности для данного микросателлитного локуса оказываются видоспецифичными.

RAPD — англ. Random Amplified Polymorphic DNA), полимеразная цепная реакция с использованием единичного короткого, обычно, 10-членным праймеров, с произвольной нуклеотидной последовательностью. Последовательность праймеров не абсолютно любая, а ограничена в пределах 40-70 % GC-состав и 50-100 % лингвистической сложности нуклеотидной последовательности. В RAPD можно использовать как одиночный праймер, так и несколько RAPD праймеров. Продукт RAPD образуется в результате амплификации фрагмента геномной ДНК, фланкированной инвертированной последовательностью используемого праймера. Метод универсален для исследований разных видов, при использовании одних и те же праймеров. Как правило, праймер выявляющий высокий полиморфизм для одного вида, будет также эффективен и для других видов.

ISSR — (англ. Inter Simple Sequence Repeats), специализированный вариант RAPD метода, в котором праймер состоит из микросателлитной последовательности. В этом методе, также как и в RAPD, используется один или несколько праймеров, длиной в 15-24 нуклеотида. Но в данном случае, праймеры состоят из тандемных коротких 2-4 нуклеотидных повторов, например: 5’-CA CA CA CA CA CA CA CA CA G и одним или двумя селективными нуклеотидами на 3’-конце праймера. Продукты ISSR амплификации содержат на флангах инвертированную микросателлитную последовательность праймера. Так как в данном методе последовательность праймеров специфична и подбирается более строго, чем в RAPD, поэтому, температуру отжига в ПЦР можно проводить выше (55-60°С), чем для RAPD метода, а поэтому фингерпринт, обычно, лучше воспроизводим.

SSAP — (англ. Sequence Specific Amplification Polymorphism) явился модификацией метода AFLP, для выявления полиморфизма как по сайту рестрикции, так и по вставки в геномную ДНК транспозона или ретротранспозона. Геномная ДНК исследуемых образцов расщепляется рестриктазами PstI и MseI, получаются фрагменты с выступающими 3’-концами. Затем рестрицированная ДНК лигируется с PstI и MseI адапторами. Первая полимеразная цепная реакция (преамплификация) проводится с праймерами от PstI и МseI адапторов, то есть амплифицируются все возможные комбинации сочетания этих адапторов в рестрицированной геномной ДНК. После первой ПЦР образуется большое количество продуктов амплификации фрагментов ДНК, локализованных между праймерами и адапторами. ПЦР продукты разбавляются и используются для второй, селективной ПЦР. Вторая ПЦР проводится с меченным праймером к LTR и любым праймером адапторов, либо с PstI или MseI. Во второй ПЦР можно использовать праймеры к адаптору с дополнительными нуклеотидами на 3'-конце, например, один, два или три нуклеотида, не комплементарные адаптору. Электрофорез после второй ПЦР проводят в полиакриламидном геле или в секвенаторе, если использовалась флюоресцентная метка. Продукты амплификации после второй ПЦР образуются в результате амплификации фрагмента ДНК между последовательностью LTR ретротранспозона и адаптором. Получение продуктов амплификации между только LTR последовательностями принципиально возможен, но, как правило, расстояние между двумя ретротранпозонами длиннее обычно получаемых размеров ПЦР продуктов (2500 — 3000 пар оснований). А продукты амплификации между адапторами не будут выявляться, поскольку используется метка только для LTR праймера.

IRAP — (англ. Inter Retrotransposone Amplified Polymorphism), полимеразная цепная реакция между праймерами, комплементарными последовательностям двух рядом расположенных LTR ретротранспозона. Метод имеет несколько вариантов. В первом варианте IRAP используется единичный праймер из LTR. Продукты амплификации образуются между двумя инвертированными LTR с одинаковой последовательностью, то есть в одной цепи 5’-конец одного LTR ориентирован к 3’-концу другого LTR. Если центральная часть ретротрапозона длинее обычного размера ПЦР продуктов (около 3000 пар оснований), то ПЦР будет проходить только между двумя LTR из разных ретротранспозиций. В этом случае соседние LTR должны располагаться в инвертирванном положении. В другом варианте IRAP используются два разных праймера к ивертированным LTR: один праймер с 5’-конца, а другой с 3’-конца LTR, ориентированые в разные стороны от ретротранспозона. В данном случае соседние LTR располагаются как прямые длинные повторы. И, наконец, в третьем варианте IRAP используются праймеры к LTR из разных ретротрапозонов в различной ориентации. Можно комбинировать праймеры из LTR с другими праймерами из повторяющейся ДНК.

RBIP — (англ. Retrotransposon-Based Insertion Polymorphisms), метод, основанный на использовании праймеров к последовательностям ретротранспозонов и выявляющий кодоминантные аллельные варианты. Его принцип основан на мультилокусной ПЦР, в которой используются пара праймеров, фланкирующих участок ДНК до ретротранспозиции и праймер к LTR ретротранспозона, который встроен в данный участок между первыми двумя праймерами. В результате ПЦР будет амлифицироваться один из вариантов фрагментов, фланкированных парой праймеров, поскольку последовательность между LTR слишком длинная для ПЦР между сайтами геномной ДНК с ретротранспозоном внутри. Этот метод выявляет полиморфизм только для данного полиморфного локуса. К его достоинствам относят кодоминантность полиморфных вариантов, возможность использования для дот-блот анализа большого количества сортов.

iPBS — (англ. inter PBS amplification), метод, основанный на использовании праймеров к PBS (англ. Primer Binding Site, участок связывания тРНК) последовательностям ретротранспозонов.

Читайте также: