Декодирующее устройство это в информатике кратко

Обновлено: 06.07.2024

Линейные корректирующие коды наиболее часто используются для исправления и обнаружения ошибок в цифровых устройствах обработки и хранения информации, где надежность кодирующих и декодирующих устройств соизмерима с надежностью самого вычислительного канала. В связи с этим кодирующее и декодирующее устройства здесь должны:

– иметь минимальную сложность;

– иметь минимальные задержки.

В наиболее полной степени эти требования выполняются при параллельной передаче информации, что в таких системах является приемлемым вследствие сравнительно малых расстояний между взаимодействующими блоками. Именно на этот способ передачи информации и ориентированы рассматриваемые ниже устройства. Схемы построены для контрольной матрицы (2.19).

Кодирующее устройство (кодер).

Кодирующее устройство реализует следующие уравнения для выполнения проверочных символов:

Рис. 2.2. Функциональная схема кодера

На вход кодера подается безизбыточная -значная ( ) комбинация. В кодере с помощью сумматоров по модулю 2 ( ) в соответствии с (2.19) вычисляются контрольные символы , , и присоединяются к информационным. В результате на выходе появляется n-значная ( ) комбинация линейного кода. Задержка между моментом появления входной комбинации и окончанием формирования выходной определяется только временем распространения сигнала в одном сумматоре (сумматоры работают параллельно).

Декодирующее устройство (декодер).

Декодер выполняет следующие функции:

– вычисляет синдром ошибки в принятом КВ;

– дешифрирует синдром ошибки;

– инвертирует ошибочный разряд.

Функциональная схема декодера представлена на рис. 2.3.

Рис. 2.3. Функциональная схема декодера

На вход декодера подается подлежащий декодированию КВ.

Схема вычисления синдрома собрана на сумматорах по модулю 2 и реализует следующие уравнения:

Если ошибка отсутствует, вектор синдрома состоит из одних нулей. На всех выходах дешифратора ДШ при этом будут нули.

При наличии ошибки вектор синдрома будет совпадать с одним из столбцов контрольной матрицы (2.19) и 1 появится только на выходе ДШ, соответствующем ошибочному разряду. В целом состояния выходов ДШ определяются следующей таблицей:

Исправление (инвертирование) искаженного информационного разряда осуществляется с помощью сумматоров по модулю 2 , выполняющих функции управляемых инверторов. Возможность такого использования сумматоров видна из таблицы его состояний:

Если рассматривать вход в качестве управляющего, а – информационного, то из таблицы видно, что при информационный сигнал передается на выход без инверсии, а при – инвертируется. В рассматриваемой схеме декодера роль управляющих сигналов выполняют сигналы, поступающие с выходов ДШ.

Минимальная задержка между моментом появления КВ на входе декодера и моментом, когда исправленная информационная часть КВ может быть передана на обработку, определяется выражением: , где – время распространения сигнала в 4-хвходовом сумматоре ( ); – время распространения сигнала в ДШ; – время распространения сигнала в 2-хвходовом сумматоре ( ).

Линейные корректирующие коды наиболее часто используются для исправления и обнаружения ошибок в цифровых устройствах обработки и хранения информации, где надежность кодирующих и декодирующих устройств соизмерима с надежностью самого вычислительного канала. В связи с этим кодирующее и декодирующее устройства здесь должны:

– иметь минимальную сложность;

– иметь минимальные задержки.

В наиболее полной степени эти требования выполняются при параллельной передаче информации, что в таких системах является приемлемым вследствие сравнительно малых расстояний между взаимодействующими блоками. Именно на этот способ передачи информации и ориентированы рассматриваемые ниже устройства. Схемы построены для контрольной матрицы (2.19).

Кодирующее устройство (кодер).

Кодирующее устройство реализует следующие уравнения для выполнения проверочных символов:




Рис. 2.2. Функциональная схема кодера

На вход кодера подается безизбыточная -значная ( ) комбинация. В кодере с помощью сумматоров по модулю 2 ( ) в соответствии с (2.19) вычисляются контрольные символы , , и присоединяются к информационным. В результате на выходе появляется n-значная ( ) комбинация линейного кода. Задержка между моментом появления входной комбинации и окончанием формирования выходной определяется только временем распространения сигнала в одном сумматоре (сумматоры работают параллельно).

Декодирующее устройство (декодер).

Декодер выполняет следующие функции:

– вычисляет синдром ошибки в принятом КВ;

– дешифрирует синдром ошибки;

– инвертирует ошибочный разряд.

Функциональная схема декодера представлена на рис. 2.3.

Рис. 2.3. Функциональная схема декодера

На вход декодера подается подлежащий декодированию КВ.

Схема вычисления синдрома собрана на сумматорах по модулю 2 и реализует следующие уравнения:

Если ошибка отсутствует, вектор синдрома состоит из одних нулей. На всех выходах дешифратора ДШ при этом будут нули.

При наличии ошибки вектор синдрома будет совпадать с одним из столбцов контрольной матрицы (2.19) и 1 появится только на выходе ДШ, соответствующем ошибочному разряду. В целом состояния выходов ДШ определяются следующей таблицей:

Исправление (инвертирование) искаженного информационного разряда осуществляется с помощью сумматоров по модулю 2 , выполняющих функции управляемых инверторов. Возможность такого использования сумматоров видна из таблицы его состояний:

Если рассматривать вход в качестве управляющего, а – информационного, то из таблицы видно, что при информационный сигнал передается на выход без инверсии, а при – инвертируется. В рассматриваемой схеме декодера роль управляющих сигналов выполняют сигналы, поступающие с выходов ДШ.

Минимальная задержка между моментом появления КВ на входе декодера и моментом, когда исправленная информационная часть КВ может быть передана на обработку, определяется выражением: , где – время распространения сигнала в 4-хвходовом сумматоре ( ); – время распространения сигнала в ДШ; – время распространения сигнала в 2-хвходовом сумматоре ( ).

Код ОГЭ: 1.2.2 Кодирование и декодирование информации.

Кодирование информации

■ Кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки.

В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит кодирование информации. В этом случае информация, представленная в одной знаковой системе, преобразуется в другую. Каждый символ исходного алфавита представляется конечной последовательностью символов кодового алфавита. Эта результирующая последовательность называется информационным кодом (кодовым словом, или просто кодом).

Примерами кодов являются последовательность букв в тексте, цифр в числе, двоичный компьютерный код и др.

Преобразование знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы называется перекодированием.

Кодирование может быть равномерным и неравномерным. При равномерном кодировании все символы заменяются кодами равной длины; при неравномерном кодировании разные символы могут кодироваться кодами разной длины (это затрудняет декодирование). Неравномерный код называют еще кодом переменной длины.

Вначале код Морзе был создан для букв английского алфавита, цифр и знаков препинания. Принцип этого кода заключался в том, что часто встречающиеся буквы кодировались более простыми сочетаниями точек и тире. Это делало код компактным. Позже код был разработан и для символов других алфавитов, включая русский.

Коды Морзе для некоторых букв.

Чтобы избежать неоднозначности, код Морзе включает также паузы между кодами разных символов.

Декодирование информации

В зависимости от системы кодирования информационный код может или не может быть декодирован однозначно. Равномерные коды всегда могут быть декодированы однозначно.

Для однозначного декодирования неравномерного кода важно, имеются ли в нем кодовые слова, которые являются одновременно началом других, более длинных кодовых слов.

Неравномерные коды, для которых выполняется условие Фано, называются префиксными. Префиксный код — такой неравномерный код, в котором ни одно кодовое слово не является началом другого, более длинного слова. В таком случае кодовые слова можно записывать друг за другом без разделительного символа между ними.

Например, код Морзе не является префиксным — для него не выполняется условие Фано. Поэтому в кодовый алфавит Морзе, кроме точки и тире, входит также символ–разделитель — пауза длиной в тире. Без разделителя однозначно декодировать код Морзе в общем случае нельзя.

Кодирование — это преобразование информации из одной ее формы представления в другую, наиболее удобную для её хранения, передачи или обработки.

Способы кодирования информации бывают различные и зависят они, в первую очередь, от целей кодирования.

Наиболее распространенными из которых являются:

  1. экономность (достигается сокращением записи);
  2. надежность (информацию необходимо засекретить таким образом, чтобы она была недоступна третьим лицам);
  3. удобство обработки или восприятия.

Чаще всего кодированию подвергаются тексты на естественных языках (русском, английском и пр.).

Готовые работы на аналогичную тему

Декодирование информации

а) процесс придания определенного смысла полученным сигналам;

Модель кодирования/декодирования С. Холла

Теория Холла содержит ряд принципиальных положений, это:

Таким образом, мы пришли к определению того, кто такой получатель.

Однако эти два процесса широко используются во всех сферах жизнедеятельности человека: медицине, технике, образовании и т.д. И каждый из нас ежедневно с ними сталкивается независимо от того, что происходит в окружающей нас жизни.

Лит.: Гольденберг Л. М., Теория и расчет импульсных устройств на полупроводниковых приборах, М., 1969.

ДЕКОДИРУЮЩЕЕ УСТРОЙСТВО в вычислительной технике, узел вычислительной машины, в котором входная кодовая комбинация преобразуется в сигнал на одном из его выходов. Наиболее распространены двоичные Д. у. для дешифрации кодов операций, признаков команд, адресов и т. д. (см. Дешифратор). В ЦВМ Д. у. выполнено т. о., что при поступлении на его вход числа, представляющего собой многоразрядный двоичный код, на соответствующем выходе появляется сигнал "I", а на остальных выходах сигнал "О". Двоичные Д. у. строятся на основе ло-гич. схем совпадения. Различают матричные, пирамидальные и ступенчатые структуры Д. у. В матричных Д. у. используют многовходовые схемы совпадения, в пирамидальных - на два входа, в ступенчатых - определ. совокупность многовхо-довых и двухвходовых схем совпадения. Д. у. выполняются на диодах, транзисторах, магнитных элементах, а также на основе их комбинаций. Распространены Д. у., построенные на диодных схемах совпадения.

Лит.: Гольденберг Л. М., Теория и расчет импульсных устройств на полупроводниковых приборах, М., 1969.

логическое устройство для преобразования кодированных сигналов (кодов) в однозначно соответствующие им сигналы, доступные воспринимающей системе (напр., для преобразования помехоустойчивого цифрового кода к непрерывный сигнал). Применяются в ЭВМ, системах передачи данных, лнформационно-измерит. и телемеханич. системах и др.

Читайте также: