Деформация и разрушение металлов кратко

Обновлено: 04.07.2024

Деформацией называется изменение размеров и формы тела под воздействием приложенных сил. Деформация вызывается действием внешних сил, приложенных к телу, или различными физико-механическими процессами, происходящими в самом теле (например, изменением объема отдельных кристаллов при фазовых превращениях или вследствие температурного градиента). При этом напряжения в случае одноосного растяжения

Сила Р, приложенная к некоторой площадке обычно не перпендикулярна к ней, а направлена под некоторым углом, поэтому в теле возникают нормальные и касательные напряжения (рис. 48, а). Напряжения могут быть: истинными — когда силу относят к сечению, существующему в данный момент деформации;

Рис. 48. Образование нормальных и касательных напряжений в случае приложения силы Р к площадке и эпюры растягивающих напряжений при различных концентраторах напряжений — номинальное (среднее) напряжение (показано штриховой линией); — максимальные напряжения

условными — когда силу относят к исходной площади сечения. Истинные касательные напряжения обозначают и нормальные а условные соответственно и а. Нормальные напряжения подразделяют на растягивающие (положительные) и сжимающие (отрицательные).

Наличие в испытуемом образце (изделии) механических надрезов, трещин, внутренних дефектов металла (металлургического, технологического или эксплуатационного происхождения), сквозных отверстий, резких переходов от толстого к тонкому сечению приводит к неравномерному распределению напряжений, создавая у основания надреза пиковую концентрацию нормальных напряжений (рис. 48, б). В связи с этим такие источники концентрации напряжений называют концентраторами напряжений. Пик напряжений тем больше, чем меньше радиус концентратора напряжения и чем больше глубина надреза , где — номинальное (среднее) напряжение.

Так как напряжения вызываются разными причинами, то различают временные напряжения, обусловленные действием внешней нагрузки и исчезающие после ее снятия, и внутренние остаточные напряжения, возникающие и уравновешивающиеся в пределах тела без действия внешней нагрузки.

Внутренние остаточные напряжения возникают в процессе быстрого нагрева или охлаждения металла вследствие неоднородного расширения (сжатия) поверхностных и внутренних слоев. Эти напряжения называют тепловыми, или термическими. Кроме того, напряжения появляются в процессе кристаллизации, при неоднородной деформации, при термической обработке вследствие неоднородного протекания фазовых превращений по объему. Их называют фазовыми, или структурными.

Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.

Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.

При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.

Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.

Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.

Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.

Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.

Физическая природа деформации металлов

Под действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.

Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.

С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.

Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.

При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.

При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.

Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.

Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.

Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

БИЧ МЕТАЛЛОВ

БИЧ МЕТАЛЛОВ В мире нет ничего вечного — эту нехитрую истину все знают давно. То, что кажется навеки незыблемым — горы, гранитные глыбы, целые материки, — со временем разрушаются, рассыпаются в пыль, уходят под воду, проваливаются в глубины. Исчезают целые культуры, народы

Свойства металлов и сплавов

Свойства металлов и сплавов В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).Металл относится к

1. Строение металлов

1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот. Для того чтобы

1. Деформация и разрушение

1. Деформация и разрушение Приложение нагрузки вызывает деформацию. В начальный момент нагружение, если оно не сопровождается фазовыми (структурными) изменениями, вызывает только упругую (обратимую) деформацию. По достижении некоторого напряжения деформация (частично)

2. Механические свойства металлов

2. Механические свойства металлов Механические свойства металлов определяются следующими характеристиками: предел упругости ?Т, предел текучести ?Е, предел прочности относительное удлинение ?, относительное сужение ? и модуль упругости Е, ударная вязкость, предел

3. Способы упрочнения металлов и сплавов

3. Способы упрочнения металлов и сплавов Поверхностное упрочнение металлов и сплавов широко применяется во многих отраслях промышленности, в частности в современном машиностроении. Оно позволяет получить высокую твердость и износостойкость поверхностного слоя при

ЛЕКЦИЯ № 8. Способы обработки металлов

ЛЕКЦИЯ № 8. Способы обработки металлов 1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах,

ЛЕКЦИЯ № 11. Сплавы цветных металлов

ЛЕКЦИЯ № 11. Сплавы цветных металлов 1. Цветные металлы и сплавы, их свойства и назначение Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы

32. Деформация в движущейся вязкой жидкости

32. Деформация в движущейся вязкой жидкости В вязкой жидкости имеются силы трения, в силу этого при движении один слой тормозит другой. В итоге возникает сжатие, деформация жидкости. Из-за этого свойства жидкость и называют вязкой.Если вспомнить из механики закон Гука, то

§ 23. Коррозия и эрозия металлов

§ 23. Коррозия и эрозия металлов Коррозией металлов называется их разрушение вследствие химического или электрохимического взаимодействия с внешней средой.Химической коррозией называется процесс разрушения металлов без электрического тока, происходящий в среде сухих

4.16. Химическое окрашивание металлов

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ Электроосаждение металла на катоде лежит в основе электрохимического получения металлов из растворов (гидроэлектрометаллургия) или из расплавов, а также рафинирования (очистки) металлов.Металлы, имеющие

7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ

7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ Разработано и широко применяется несколько методов анодной обработки металлов: электрополирование, анодное оксидирование и размерная обработка.Электрохимическое полирование было открыто русским химиком Е.И. Шпитальским в 1910 г. Процесс

17. Теплоемкость и теплопроводность металлов и сплавов

17. Теплоемкость и теплопроводность металлов и сплавов Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины

Деформация – изменение формы и размеров тела под действием внешних воздействий.

Механическое напряжение – мера внутренних сил, возникающих в деформируемом теле и действующих на единицу площади поперечного сечения под влиянием внешних воздействий. Единица напряжения в системе СИ – паскаль (Па): 1Па=1 Н/м 2 , 1 кгс/мм 2 =10 МПа.

Напряжения и вызываемые ими деформации возникают при действии на тело внешних сил в результате фазовых и структурных превращений, связанных с изменением объема.

При упругой деформации (рис. 1.16,а) происходят небольшие смещения атомов из положения равновесия. Баланс кулоновских сил притяжения и отталкивания, которыми были связаны атомы, нарушается. При снятии нагрузкисмещенные атомы под действием кулоновских сил возвращаются в исходное положение, деформация исчезает. С ростом нагрузки начинается пластическая деформация, которая остается после снятия нагрузки. Пластическая деформация в кристаллах осуществляется скольжением и двойникованием (рис. 1.16,б,в). Скольжение (смещение) отдельных частей кристалла относительно друг друга происходит под действием напряжений больше критической величины. При двойниковании сдвиг происходит в ограниченном объеме на определенную величину, одна часть кристалла становится в положение, симметричное относительно другой.

Скольжение осуществляется в результате перемещения дислокаций по плоскостям и направлениям с наиболее плотной упаковкой атомов (рис. 1.17) и зависит от кристаллической структуры металла, скорости приложения нагрузки, температуры. При приложении касательного напряжения (t) краевая дислокация перемещается вследствие разрыва старых межатомных связей и установления новых (рис. 1.17,б,в). Затем разрываются новые межатомные связи и т. д. Дислокация выходит на край кристалла (рис. 1.17,д). За счет элементарного акта пластической деформации происходит сдвиг на величину межатомного расстояния. Дислокации не обрываются внутри кристалла, а прерываются на других дислокациях или на границах зерен.

Направления скольжения совпадают с направлениями наиболее плотного расположения атомов. Плоскости и направления скольжения в этой плоскости (рис. 1.18) образуют систему скольжения. Число систем скольжения в металлах с различным типом решетки неодинаково.

В металлах с ГЦК решеткой (Feg, Сu, Al, Ni, Ag) четыре плоскости скольжения (111) с тремя направлениями скольжения вдоль диагоналей граней [110] в каждой плоскости образуют 12 систем скольжения.

В металлах с ОЦК решеткой (Fea, W) плоскости скольжения (110), (112), (123) и направления скольжения вдоль пространственных диагоналей [111] образуют 48 систем скольжения. При пластической деформации металлы с ГЦК решеткой упрочняются сильнее, чем с ОЦК.

В металлах с ГПУ решеткой при c/a ³ 1,63 (Mg, Zn) скольжение происходит по плоскости базиса (рис. 1.18,в) и трем направлениям скольжения. Эти металлы менее пластичны и труднее, чем металлы с кубической решеткой, поддаются прокатке, штамповке.

В металлах с ГПУ решеткой при c/a £ 1,63 (Zr, Ti) скольжение происходит по плоскостям базиса, пирамидальным и призматическим плоскостям. Эти металлы более пластичные, чем магний и цинк.

Источник Франка-Рида. Дислокация расположена в плоскости скольжения (плоскости рисунка) и закреплена в точках А и А1другими дислокациями или примесными атомами (рис. 1.19). Под действием сдвигающего напряжения t дислокация выгибается и принимает форму полусферы. Далее распространение дислокации происходит самопроизвольно путем образования двух спиралей. В точке С спирали встречаются.Это приводит к образованию внешней замкнутой петли дислокации и новой дислокации, занимающей исходную позицию А и А1. Внешняя петля разрастается до поверхности кристалла (зерна), что приводит к элементарному сдвигу, новая дислокация начинает снова выгибаться. Из одного источника образуются сотни дислокаций.

При деформировании монокристалла дислокации перемещаются беспрепятственно на большие расстояния, если плоскость скольжения параллельна направлению напряжения. Монокристалл не упрочняется, пластическая деформация велика. Эта стадия легкого скольжения в кристаллах с ГПУ решеткой достигает 1000 %, с ГЦК и ОЦК – 10-15 %. С ростом деформации возникает множественное скольжение – дислокации перемещаются в пересекающихся плоскостях. Плотность дислокаций растет до 10 2 -10 4 см -2 , сопротивление деформации увеличивается.

При деформировании поликристалла стадия легкого скольжения отсутствует. Достигнув границы зерна, дислокации останавливаются. Напряжения при скоплении дислокаций упруго распространяются через границу и приводят в действие источник Франка-Рида в соседнем зерне. Плоскости и направления скольжения в каждом зерне различны. Зерна деформируются неодинаково, так как ориентированы произвольно по отношению к приложенной нагрузке(рис. 1.20).

С ростом нагрузки деформация зерен сопровождается изгибами и поворотами плоскостей скольжения. Зерна вытягиваются в направлении пластического течения. Концентрация дефектов (дислокаций, вакансий, междоузельных атомов) внутри зерен возрастает. Эти дефекты затрудняют движение дислокаций: сопротивление деформации растет, пластичность – уменьшается. Явление упрочнения металла при пластической деформации называют наклепом. При степенях деформации более 40 % появляется кристаллографическая ориентация зерен – текстура деформации (рис. 1.20,г). Внутри зерен дислокации сначала распределены равномерно. С ростом деформации появляется ячеистая структура. Ячейки с размером 0,2-3 мкм свободны от дислокаций; границы ячеек – сложно переплетенные стенки дислокаций.

Деформирование двухфазного сплава. Каждая фаза имеет свои плоскости скольжения и критические напряжения сдвига. Процесс деформирования зависит от количества и структуры второй фазы, характера ее распределения. Если хрупкая вторая фаза располагается в виде сетки по границам зерен пластичной матрицы, то сплав будет хрупким. Если хрупкая фаза присутствует в виде отдельных зерен, то сплав сохранит пластичность.

Когда дислокация наталкивается на когерентные частицы второй фазы, то она либо их перерезает, либо огибает (рис. 1.21,а), в зависимости от их размеров, прочности и расстояния между ними. Когда дислокация наталкивается на некогерентные частицы, то она их только огибает. На рис. 1.21,б показано сначала выгибание, а при больших напряжениях – огибание частиц дислокациями. Оставив вокруг частицы петлю, дислокация скользит в прежнем направлении. При возрастании напряжений число петель вокруг каждой частицы увеличивается, расстояние между ними уменьшается. Напряжение для движения дислокации между частицами возрастает, прочность металла увеличивается.

Разрушение металлов. Процесс деформации при достаточно высоких напряжениях заканчивается зарождением трещины и ее распространением через все сечение образца – разрушением. Если металл претерпевает перед разрушением упругую и значительную пластическую деформацию (более 30 %), то говорят о вязком разрушении. При отсутствии или незначительном развитии пластической деформации происходит хрупкое разрушение. Для хрупкого разрушения характерна острая, ветвящаяся трещина, для вязкого наоборот – тупая, раскрывающаяся трещина. Абсолютно вязкое разрушение характерно для такого материала, как сырая глина; абсолютно хрупкое разрушение свойственно алмазу. Большинству технических материалов присуще и вязкое, и хрупкое разрушение, разделение проводится условно по преобладанию того или иного вида. Механизм зарождения трещины при хрупком и вязком разрушении одинаков. Возникновение зародыша трещины происходит при скоплении дислокаций перед препятствием (границы зерен, межфазовые границы, включения), что приводит к возникновению концентратора напряжений, достаточных для образования микротрещины (рис. 1.22).

Влияние нагрева на структуру деформированного металла. До пластической деформации металл находится в равновесном состоянии 1 (рис. 1.23) с минимальным запасом свободной энергии. Большая часть работы (до 95 %), затрачиваемой на деформацию металла, превращается в теплоту – металл нагревается. Система переходит в неравновесное состояние 2. Часть энергии (5-10 %), затрачиваемой при деформации на образование большого числа дефектов кристаллического строения, накапливается в металле. Плотность дислокаций в зависимости от степени деформации увеличивается от 10 6 -10 8 до 10 10 -10 12 см -2 . Система переходит в метастабильное состояние 3, устойчивое при комнатной температуре. При нагреве преодолеваются барьеры DЕ для диффузии точечных дефектов и движения дислокаций. Система возвращается в равновесное состояние 1.

Процессы, происходящие при нагреве, подразделяют на возврат и рекристаллизацию, которые сопровождаются уменьшением свободной энергии. Возврат происходит при низких температурах, рекристаллизация – при более высоких.

Возврат. Форма зерен при возврате не изменяется. При низких температурах нагрева протекает первая стадия возвратаотдых.Уменьшается концентрация собственных точечных дефектов (сток к границам и взаимоуничтожение). Дислокации одинаковых знаков отталкиваются друг от друга, противоположных – притягиваются и аннигилируют (рис. 1.24), т. е. восстанавливаются атомные плоскости. Остаются хаотично расположенные дислокации преимущественно одного знака. Отдых металла снимает внутренние напряжения, уменьшает на 10-15 % твердость и прочность.

При более высоких температурах нагрева протекает вторая стадия возвратаполигонизация.В зернах образуются новые малоугловые границы в результате скольжения и переползания дислокаций. Зерно делится на субзерна – полигоны, свободные от дислокаций. Дислокации скапливаются на границах полигонов, образуя стенки (рис. 1.25). Полигонизация наблюдается не у всех металлов: редко развивается в меди и ее сплавах, хорошо выражена в сплавах алюминия и железа. При деформировании сплавов сложного состава полигонизация приводит к возникновению стабильной ячеистой структуры. Дислокации скапливаются на границах ячеек и вступают во взаимодействие с атомами и дисперсными частицами второй фазы. Ячеистая структура сохраняется при значительном нагреве. Сплавы не рекристаллизуются. При нагреве деформированных металлов процесс отдыха происходит всегда, полигонизация – при определенных условиях.

Первичная рекристаллизация – образование зародышей новых зерен и последующий рост. Зародыши возникают на участках с повышенной плотностью дислокаций, где сосредоточены наибольшие искажения решетки – у границ деформированных зерен, блоков (рис. 1.26). Чем больше степень пластической деформации, тем больше возникает зародышей. Зародыши растут путем диффузии к ним атомов от деформированных участков. Для начала рекристаллизации необходимы следующие условия.

1. Критическая степень деформации металла (например, для алюминия – 2 %, для железа и меди – 5 %). При меньшей степени деформации зарождения новых зерен при нагреве не происходит.

2. Температурный порог рекристаллизации – наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен:

Коэффициент a зависит от чистоты металла и степени деформации. Металл после холодной деформации со степенью e = 80 % рекристаллизуется при более низкой температуре, чем после деформирования со степенью e = 20 %. Для металлов технической чистоты a = 0,3-0,4, твердых растворов a= 0,5-0,6. Для алюминия, меди и железа технической чистоты Трек равна соответственно: 100, 270 и 450 °С.

Первичная рекристаллизация полностью снимает наклеп. После ее завершения происходит рост образовавшихся зерен – собирательная рекристаллизация. При высоких температурах зерна самопроизвольно укрупняются за счет слияния и объединения границ. Свободная энергия металла уменьшается вследствие уменьшения поверхностной энергии (чем крупнее кристаллы, тем меньше протяженность границ). Заключительный этап – вторичная рекристаллизация, сопровождается неравномерным ростом отдельных зерен по сравнению с другими. Формируются зерна-гиганты и зерна-карлики.

Деформацией называется изменение размеров и формы тела под воздействием приложенных сил. Деформация вызывается действием внешних сил, приложенных к телу, или различными физико-механическими процессами, происходящими в самом теле (например, изменением объема отдельных кристаллов при фазовых превращениях или вследствие температурного градиента). При этом напряжения в случае одноосного растяжения

Сила Р, приложенная к некоторой площадке обычно не перпендикулярна к ней, а направлена под некоторым углом, поэтому в теле возникают нормальные и касательные напряжения (рис. 48, а). Напряжения могут быть: истинными — когда силу относят к сечению, существующему в данный момент деформации;

Рис. 48. Образование нормальных и касательных напряжений в случае приложения силы Р к площадке и эпюры растягивающих напряжений при различных концентраторах напряжений — номинальное (среднее) напряжение (показано штриховой линией); — максимальные напряжения

условными — когда силу относят к исходной площади сечения. Истинные касательные напряжения обозначают и нормальные а условные соответственно и а. Нормальные напряжения подразделяют на растягивающие (положительные) и сжимающие (отрицательные).

Наличие в испытуемом образце (изделии) механических надрезов, трещин, внутренних дефектов металла (металлургического, технологического или эксплуатационного происхождения), сквозных отверстий, резких переходов от толстого к тонкому сечению приводит к неравномерному распределению напряжений, создавая у основания надреза пиковую концентрацию нормальных напряжений (рис. 48, б). В связи с этим такие источники концентрации напряжений называют концентраторами напряжений. Пик напряжений тем больше, чем меньше радиус концентратора напряжения и чем больше глубина надреза , где — номинальное (среднее) напряжение.

Так как напряжения вызываются разными причинами, то различают временные напряжения, обусловленные действием внешней нагрузки и исчезающие после ее снятия, и внутренние остаточные напряжения, возникающие и уравновешивающиеся в пределах тела без действия внешней нагрузки.

Внутренние остаточные напряжения возникают в процессе быстрого нагрева или охлаждения металла вследствие неоднородного расширения (сжатия) поверхностных и внутренних слоев. Эти напряжения называют тепловыми, или термическими. Кроме того, напряжения появляются в процессе кристаллизации, при неоднородной деформации, при термической обработке вследствие неоднородного протекания фазовых превращений по объему. Их называют фазовыми, или структурными.

Читайте также: