Цикл стирлинга кратко и понятно

Обновлено: 05.07.2024

Двигатель Стирлинга – газовый двигатель поршневого типа с внешним подводом теплоты, которая получается в результате сгорания твердых, жидких, газообразных топлив. Внешний подвод теплоты осуществляется через теплопроводящую стенку. Рабочее тело (водород, гелий, аргон, углекислый газ) находится в замкнутом пространстве и во время работы не заменяется.

Одна из возможных конструктивных схем двигателя Стирлинга, когда рабочий 5 (рис. 9.29) и вытеснительный 1 поршни находятся в одном цилиндре.

В процессе перекачки в горячую полость (над рабочим поршнем) рабочее тело в регенераторе 3 и нагревателе 4 получает теплоту, а в процессе перекачки в холодную полость (под рабочим поршнем) отдает теплоту в регенераторе 3 и охладителе 2. Для осуществления этих процессов движение вытеснительного поршня 1 сдвинуто по фазе по отношению к движению рабочего поршня 5.

Рис. 9.29. Конструктивная схема двигателя Стирлинга

Идеальный цикл Стирлинга состоит из четырех процессов (рис. 9.30). В процессе а–с холодное рабочее тело сжимается в изотермическом процессе Та = Тс = Т2 при интенсивном отводе теплоты q2". В процессе c–z поршень-вытеснитель перемещает рабочее тело из холодной полости в горячую, так что vc = vz (изохорный процесс), а температура увеличивается от ТС = Т2 до Tz = T1 при подводе теплоты q1‘.

В изотермическом процессе расширения Tz = Te = T1 к рабочему телу подводится теплота q1". Затем поршень-вытеснитель, перемещаясь в обратном направлении, выталкивает рабочее тело из горячей полости в холодную (ve = va = const) с отводом теплоты q2‘. Отличительной особенностью цикла Стирлинга является то, что рабочее

тело, перемещаясь из холодной полости в горячую и обратно через регенератор, то воспринимает теплоту от рабочего тела, то, охлаждаясь, отдает теплоту рабочему телу.


Рис. 9.30. Диаграмма работы идеального цикла Стирлинга

Работа в цикле Стирлинга представляет собой разность работы, полученной в процессе изотермического расширения (подвод теплоты q1"), и работы, затраченной в процессе изотермического сжатия с отводом теплоты (q2"):

При полной регенерации , так как

Термический КПД цикла при идеальном регенераторе равен:

Подставив выражения для q1" и q2" в уравнение (9.14), получим:

Так как изохоры идеального газа на TS-диаграмме эквидистантны, то

Таким образом, термический КПД цикла Стирлинга с полной регенерацией теплоты равен термическому КПД цикла Карно.

Если ввести параметры цикла: = va/vc степень сжатия и – степень повышения температуры, то термический КПД цикла может быть преобразован к виду:

Среднее давление цикла равно:

Двигатели Стирлинга завоевали право на широкое применение. Они достигли уровня современных дизелей, а по некоторым показателям превзошли их:

· меньше уровень шума;

· могут работать с практически любыми источниками теплоты.

Так, был создан и испытан в космическом пространстве для привода регенератора двигатель Стирлинга, в котором в качестве источника теплоты использовалась энергия солнечных лучей.

Двигатель Стирлинга

Поиск перспективных энергосберегающих технологий, в частности использующих альтернативные и возобновляемые виды топлива – одно из основных направлений научно-технического прогресса XXI века. Однако в поисках нового не стоит забывать прежние выдающиеся достижения инженерной мысли, обретающие в нашу цифровую эпоху второе дыхание. Яркое тому подтверждение двигатель Стирлинга.

Дитя эпохи пара

Роберт Стирлинг и его двигатель

Роберт Стирлинг и его двигатель

Были очевидны и недостатки – низкий КПД (не более 10%) и наличие громоздкого кривошипно-шатунного механизма (КШМ). Нередко паровые котлы взрывались, не выдерживая чрезмерного давления пара, что приводило к разрушениям и человеческим жертвам.

Паровоз на базе двигателя Стирлинга

Паровоз на базе двигателя Стирлинга

Как работает двигатель Стирлинга

Первое, что бросается в глаза – простота конструкции. В состав двигателя Стирлинга (β-типа) входят два поршня – вытеснительный и рабочий, маховик, рубашка (ребра) охлаждения и теплообменный цилиндр. Чтобы ДС работал, необходим источник тепла.

Рабочий цикл протекает в четыре этапа

Первый этап. Происходит нагрев воздуха (или другого газа) в основании цилиндра. Разогретый внутри его воздух создает давление, которое заставляет рабочий поршень двигаться вверх. Вытеснительный поршень имеет одну важную особенность – неплотное прилегание к стенкам цилиндра.

Третий этап. В камере воздух остывает и сжимается, давая возможность рабочему поршню опуститься вниз.

Четвертый этап. Вытеснительный поршень движется вверх, одновременно вытесняя охлажденный воздух в основание цилиндра, после чего цикл возобновляется.

Плюсы и минусы

Первые промышленные ДС использовались в качестве водяных насосов и машин, обеспечивающих литейное производство. К началу ХХ века на предприятиях Европы работало уже более 250 тыс. вентиляторов, приводимых в действие ДС. Их КПД достигал 18%, что почти на 10 % выше КПД паровых двигателей.


Конструкция ДС чрезвычайно проста. Ей не требуются дополнительных систем и не нужен стартер, поскольку двигатель запускается самостоятельно. Как следствие этого – значительный рабочий ресурс, измеряемый иногда сотнями тысяч часов непрерывной работы.

Двигатели Стирлинга очень экономичны и малошумны, что в последствии было использовано при создании двигателей для подводных лодок.

Определенные сложности возникают при регулировке оборотов. В частности, чтобы регулировать частоту вращения коленчатого вала, потребуется изменять показатели температуры.

Виды двигателей

Семейство двигателей Стирлинга представлено четырьмя видами – Альфа, Бета (принцип его работы описан выше), Гамма и роторным. У каждого из них свои конструкционные особенности.

У Альфа два цилиндра, один из которых оснащен охлаждающим радиатором, а в нижней его части осуществляется нагрев. В рабочих камерах обоих цилиндров установлены поршни. Усилия от поршневой группы передаются на коленчатый вал, соединенный шарниром с поршнем и вытеснителем.

У роторного ДС отсутствует КШМ, что уменьшает габариты силового агрегата. Благодаря такой конструкции значительно улучшается герметичность рабочей камеры.

Современные области применения двигателей Стирлинга

В наши дни ДС переживают второе рождение во много благодаря их уникальным экологическим характеристикам. Напомним, концентрация вредных веществ в продуктах сгорания ДС на несколько порядков ниже, чем у поршневых и газотурбинных двигателей и, что не менее важно, минимальные шумы у них не превышают 60-65 дБ. Они незаменимы там, где необходимо преобразовывать тепловую энергию в механическую.

Одно из перспективных направлений современной энергетики – децентрализация энергоснабжения, которое реализуется путем строительства когенерационных установок, производящих из первичного источника топлива два или несколько видов полезной энергии.

Когенерационная установка

Когенерационная установка

Использование ДС в когенерационных установках позволяет одновременно обеспечивать электроэнергией и теплом небольшие районы. КПД некоторых современных стирлинг-генераторов доходит до 95 %.

Тепловые насосы на базе ДС работают подобно кондиционерам. Правда, они используются не для охлаждения помещений или воды, а для нагрева.

Тепловой насос на базе ДС

Тепловой насос на базе ТС

ДС могут работать, как холодильные установки. Некоторые компании-производители холодильников уже готовы устанавливать на свои изделия ДС, что сделает их более экономичными, а рабочим телом станет обычный воздух.

Подводная лодка класса Никкен

Подводная лодка класса Никкен

Солнечная электростанция с ДС

Солнечная электростанция с ДС

Цикл Сти́рлинга — термодинамический цикл, описывающий рабочий процесс машины Стирлинга, запатентованной в 1816 г. шотландским изобретателем Робертом Стирлингом, приходским священником по профессии.

Помимо рабочего тела, нагревателя и холодильника абстрактная машина Стирлинга содержит ещё регенератор — устройство, отводящее тепло от рабочего тела на некоторых этапах цикла, и отдающее это тепло рабочему телу на других этапах. Идеальный цикл Стирлинга состоит из процессов:

  • 1—2 изотермическое расширение рабочего тела с подводом тепла от нагревателя;
  • 2—3 изохорный отвод тепла от рабочего тела к регенератору;
  • 3—4 изотермическое сжатие рабочего тела с отводом тепла к холодильнику;
  • 4—1 изохорный нагрев рабочего тела с подводом тепла от регенератора.

В расчёте на один моль рабочего тела тепло, подведённое за цикл от нагревателя (см. изотермический процесс) определяется выражением: Q 1 − 2 = R T 1 ln ⁡ ( V 2 / V 1 ) =R\,T_\,\ln(V_/V_)> (здесь R — универсальная газовая постоянная).

Тепло, отведённое за цикл к холодильнику: Q 3 − 4 = R T 4 ln ⁡ ( V 2 / V 1 ) =R\,T_\,\ln(V_/V_)> .

Тепло, отдаваемое в процессе 2—3 регенератору и возвращаемое от него в процессе 4—1 равно: Q 2 − 3 = Q 4 − 1 = C V ( T 1 − T 4 ) =Q_=C_\,(T_-T_)> . (здесь C V <\displaystyle C_> — молярная теплоёмкость идеального газа при постоянном объёме) Это тепло сохраняется в системе, являясь частью её внутренней энергии, которая за цикл не изменяется. Регенератор, таким образом, позволяет экономить тепло, расходуемое нагревателем за счёт уменьшения тепла, отводимого к холодильнику, и, тем самым, повысить термодинамическую эффективность двигателя Стирлинга.

Цикл, подобный циклу Стирлинга, но без регенератора, осуществим, хотя и менее эффективен. В изохорном процессе 2—3 такого цикла тепло отводится от рабочего тела непосредственно к холодильнику, а в процессе 4—1 — подводится от нагревателя. КПД такого цикла будет определяться выражением: η = Q 1 − 2 − Q 3 − 4 Q 1 − 2 + Q 4 − 1 -Q_>+Q_>>> . Нетрудно видеть, что это выражение при ненулевом Q 4 − 1 <\displaystyle Q_> и при тех же значениях Q 1 − 2 > и Q 3 − 4 <\displaystyle Q_> , что и в цикле с регенератором, имеет меньшую величину.

Пройденный в обратном направлении (4—3—2—1—4), цикл Стирлинга описывает холодильную машину. При этом направления передачи тепла Q 4 − 3 > , Q 3 − 2 > , Q 2 − 1 > и Q 1 − 4 > меняются на противоположные. Наличие регенератора является необходимым условием осуществимости холодильного цикла Стирлинга, поскольку согласно второму началу термодинамики в изохорном процессе (3—2) невозможно нагреть рабочее тело от холодильника, имеющего более низкую температуру, или передать тепло в процессе (1—4) от рабочего тела нагревателю, имеющему более высокую температуру.

Цикл Сти́рлинга — термодинамический цикл, описывающий рабочий процесс машины Стирлинга, запатентованной в 1816 г. шотландским изобретателем Робертом Стирлингом, приходским священником по профессии.

Помимо рабочего тела, нагревателя и холодильника абстрактная машина Стирлинга содержит ещё регенератор — устройство, отводящее тепло от рабочего тела на некоторых этапах цикла, и отдающее это тепло рабочему телу на других этапах. Идеальный цикл Стирлинга состоит из процессов:


T—V диаграмма идеального цикла Стирлинга с регенератором.

  • 1—2 изотермическое расширение рабочего тела с подводом тепла от нагревателя;
  • 2—3 изохорный отвод тепла от рабочего тела к регенератору;
  • 3—4 изотермическое сжатие рабочего тела с отводом тепла к холодильнику;
  • 4—1 изохорический нагрев рабочего тела с подводом тепла от регенератора.

В расчёте на один моль рабочего тела тепло, подведённое за цикл от нагревателя (см. изотермический процесс) определяется выражением: =R\,T_1\,ln(V_2/V_1)" width="" height="" />
(здесь — универсальная газовая постоянная).

\,Q_<3-4></p>
<p>Тепло, отведённое за цикл к холодильнику: =R\,T_4\,ln(V_2/V_1)
.

Тепло, отдаваемое в процессе 2—3 регенератору и возвращаемое от него в процессе 4—1 равно: =Q_=C_V\,(T_1-T_4)" width="" height="" />
. (здесь — молярная теплоёмкость идеального газа при постоянном объёме) Это тепло сохраняется в системе, являясь частью её внутренней энергии, которая за цикл не изменяется. Регенератор, таким образом, позволяет экономить тепло, расходуемое нагревателем за счёт уменьшения тепла, отводимого к холодильнику, и, тем самым, повысить термодинамическую эффективность двигателя Стирлинга.

\eta=\frac </p>
<p>Термический коэффициент полезного действия идеального цикла Стирлинга равен: -Q_> >=\frac
. Таким же выражением определяется термический КПД цикла Карно.

Цикл, подобный циклу Стирлинга, но без регенератора, осуществим, хотя и менее эффективен. В изохорном процессе 2—3 такого цикла тепло отводится от рабочего тела непосредственно к холодильнику, а в процессе 4—1 — подводится от нагревателя. КПД такого цикла будет определяться выражением: -Q_> +Q_>" width="" height="" />
. Нетрудно видеть, что это выражение при ненулевом " width="" height="" />
и при тех же значениях " width="" height="" />
и " width="" height="" />
, что и в цикле с регенератором, имеет меньшую величину.

Пройденный в обратном направлении (4—3—2—1—4), цикл Стирлинга описывает холодильную машину. При этом направления передачи тепла " width="" height="" />
," width="" height="" />
," width="" height="" />
и " width="" height="" />
меняются на противоположные. Наличие регенератора является необходимым условием осуществимости холодильного цикла Стирлинга, поскольку согласно второму началу термодинамики в изохорном процессе (3—2) невозможно нагреть рабочее тело от холодильника, имеющего более низкую температуру, или передать тепло в процессе (1—4) от рабочего тела нагревателю, имеющему более высокую температуру.

Читайте также: