Цикл карно кратко и понятно в холодильной камере

Обновлено: 03.05.2024

Физика:

Контакты

Содержание

В современной технике механическую энергию получают главным образом за счёт внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями.

Примеры тепловых двигателей

КПД тепловой машины

Работа, совершаемая тепловой машиной, не может быть больше: $A = Q_ - |Q_|$, т.к. рабочее тело, получая некоторое количество теплоты ($Q_$) от нагревателя , часть этого количества теплоты (по модулю равную $|Q_|$) отдаёт холодильнику . Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия $\eta$ тепловой машины.

Коэффициент полезного действия любой тепловой машины считается по формуле: $$\eta = \frac>=\frac-|Q_|>> = 1 - \frac<|Q_|>>$$

Для увеличения КПД, при расширении или сжатии газа должны быть использованы процессы, позволяющие исключить уменьшение энергии горячего тела, которое происходило бы без совершения работы. Такие процессы существуют — это изотермический и адиабатный процесс.

Цикл Карно

Сади Карно искал пути решения актуальной для его времени задачи — установить причину несовершенства тепловых машин, найти пути наиболее эффективного их использования. Именно он, впервые предложил наиболее совершенный технический процесс, состоящий из изотерм и адиабат.

Схема цикла Карно

Схема цикла Карно

Прямой цикл Карно. Исходным состоянием рабочего тела двигателя является состояние точки 4 . На участке 4—1 цикла рабочее тело сжимается адиабатически, т. е. без потерь теплоты. В точке 1 к нему начинают изотермически подводить теплоту $Q_$ от высокотемпературного источника, в результате чего рабочее тело расширяется по линии 1—2 . На участке 2—3 расширение рабочего тела продолжается уже без подвода теплоты, т. е. адиабатически. На участке 3—4 от рабочего тела с помощью источника низкой температуры отбирается теплота $Q_$. В двигателях, работающих по разомкнутому циклу, когда теплоноситель в каждом цикле работы обновляется, процесс охлаждения заменяется процессом обновления теплоносителя.

Линия Состояние Описание
1-2 Изотерма
$T=T_$
$dQ_$
(нагревание)
$V\Uparrow$
От нагревателя поступает теплота $dQ_$ (или $Q_$), газ под поршнем изотермически расширяется.В начале процесса рабочее тело ( газ ) имеет температуру температуру нагревателя ($T_$ или $T_$). Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты $Q_$ (или $Q_$).
При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.
2-3 Адиабата

Иллюстрации цикла Карно

Цикл Карно

Максимальный КПД тепловой машины

Коэффициент полезного действия идеального цикла, как показал С.Карно, может быть выражен через температуру нагревателя ($T_$) и холодильника ($T_$). В реальных двигателях не удаётся осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД их цикла всегда меньше, чем КПД цикла Карно (при прочих равных условиях). $$\eta_ 3 . Адиабатически сжатое компрессором по линии 3—2 рабочее тело охлаждается изотермически по линии 2—1 и далее продолжает расширяться адиабатически по линии 1—4 . На изотерме 4—3 к рабочему телу подводится теплота камеры охлаждения и оно возвращается к исходному состоянию точки 3 .

При этом чем меньше разность температур между холодильной камерой и окружающей средой, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент.

Анализ обратного цикла Карно показывает, что передача теплоты от тела менее нагретого телу более нагретому возможна, но этот процесс требует соответствующей энергетической компенсации в системе, в виде затраченной работы или теплоты более высокого потенциала, способного совершить работу при переходе на более низкий потенциал.

Энтропия — часть внутренней энергии замкнутой системы или энергетической совокупности Вселенной, которая не может быть использована, в частности не может перейти или быть преобразована в механическую работу. Существует мнение, что мы можем смотреть на энтропию и как на меру беспорядка в системе.

Для работы любой тепловой машины по замкнутому циклу необходима внешняя среда, которую условно можно представить себе как два тела — нагреватель, находящийся при температуре Тmах, и холодильник, находящийся при температуре Tmin (Tmin (2.13) находим

Адиабата 2-3. Здесь система отсоединяется от нагревателя и не обменивается теплом с внешней средой: Q23 = 0. Газ продолжает расширяться, но уже адиабатно. Работа совершается за счет внутренней энергии газа, и его температура падает до значения Т2. На этом участке цикла нам нужна информация, доставляемая уравнением адиабаты:

Изотерма 3-4. Система подключается к холодильнику, и газ начинает сжиматься. Внутренняя энергия остается неизменной, над газом совершается работа (А34 < 0), а выделяющееся

передается холодильнику. Имеем аналогично (5.6)

Адиабата 4-1. Система отключена от внешней среды и продолжает сжиматься изотермически, что приводит к повышению ее температуры до Т1. В конечном итоге система возвращается в первоначальное состояние. Поскольку точки 4 и 1 лежат на адиабате, получаем связь объемов и температур, аналогичную (5.7):

Из уравнений (5.7) и (5.9) находим отношения объемов

откуда следует, что

Поэтому отдаваемую холодильнику теплоту Q2 (см. уравнение (5.8)) можно записать как

Используя выражение (5.6) для теплоты, полученной системой, находим совершенную в ходе цикла работу

Из проведенного анализа следует также, что максимальная температура в цикле равна Тmах = Т1, а минимальная — Тmin = Т2. Если разделить (5.12) на (5.6), то немедленно получим выражение (5.5) для КПД цикла Карно, из которого выпадают все параметры, кроме температур холодильника и нагревателя.

Пример 1. Котел тепловой станции работает при температуре около t1 = 550 °С. Отработанное тепло отводится к реке при температуре около t2 = 20 °С. Найдем максимально возможный КПД этой станции (рис. 5.4).


Рис. 5.4. Схема работы тепловой машины Карно

Поскольку в формуле для КПД цикла Карно используются абсолютные температуры, надо перейти от шкалы Цельсия к шкале Кельвина: Т1 = 550 + 273 = 823 К, Т2 = 20 + 273 = 293 К. Теперь находим КПД тепловой станции:

Конечно, реальный КПД станции заметно ниже.

Если цикл Карно осуществить в обратном направлении, то есть против часовой стрелки на рис. 5.2, то для определения эффективности холодильной установки надо использовать формулы (5.3), (5.4) и выражения (5.6), (5.11). Получаем тогда

Печально, но чем ниже температура внешней среды Т1, тем меньше мы нуждаемся в холодильнике, и тем эффективнее он работает.


Рис. 5.5. Схема работы холодильной установки

Приведем численный пример. Если кондиционер поддерживает в комнате температуру t2 = 20 °С, а температура наружного воздуха равна t1 = 30 °С, то для холодильного коэффициента имеем

а для КПД холодильника

Конечно, на самом деле температура тепловыделяющего элемента больше наружной температуры на 20–30 градусов, так что разность температур может достигать 30–40 градусов, что приводит к значениям

Напомним, что речь идет об идеальных установках, работающих по циклу Карно. Реальный типичный кондиционер потребляет мощность 750 Вт, перекачивая за час около 5 МДж тепловой энергии. Это значит, что за секунду кондиционер совершает работу А = 750 Дж и отнимает у воздуха в комнате теплоту

Мы видим, что реальный кондиционер гораздо менее эффективен, нежели идеальный холодильник Карно.

Пример 2. Пусть в домашнем холодильнике поддерживается температура t2 = –3 °С (Т2 = 270 К), а температура в кухне равна t1 = 27 °С (T1 = 300 К). Пусть далее мотор холодильника потребляет мощность N = 200 Вт. Предполагая, что холодильник работает по циклу Карно и что тепловыделяющий элемент имеет температуру окружающего воздуха, определим мощность потока тепловой энергии, перекачиваемой из камеры холодильника в кухню.

За время t мотор совершит работу

КПД холодильника равен

откуда находим количество теплоты, поступающее в кухню в единицу времени:

Обратите внимание, что холодильник работает как весьма эффективный обогреватель помещения. Надо только оплачивать потребляемую мотором мощность 200 Вт, а в кухню поступит в 10 раз большая энергия, 90 % которой перекачивается из камеры холодильника (90 % — КПД холодильника в этом примере). Любопытно, что если бы вместо холодильника был включен обогреватель той же мощности, то он нагревал бы помещение в 10 раз слабее.

Наши численные оценки можно рассматривать как пример теплового загрязнения окружающей среды, свойственного технической цивилизации.

Ранее отмечалось, что тепловая машина может работать и по обратному циклу Карно (рис. 8.17). Результатом такого цикла является то, что ра­бочее тело получает энергию в тепловой форме от низкотемпературного источника энергии (холодильника) и передает ее высокотемпературному источнику энергии (нагревателю). На первый взгляд это противоречит второму закону термодинамики, одна из формулировок которого гласит:

• энергия в тепловой форме не может самопроизвольно переходить от менее нагретого тела к более нагретому телу.

Из этой формулировки видно лишь то, что процесс не может быть самопроизвольным. Следовательно, принципиально второй закон термо­динамики не запрещает переход теплоты от низкотемпературного резер­вуара (источника) к высокотемпературному. Из практики действительно известно, что при приведении в контакт двух тел энергия в форме теплоты будет самопроизвольно передаваться от более нагретого тела (имеющего большую температуру) к менее нагретому телу (имеющему меньшую тем­пературу). В противоположном направлении переход энергии в тепловой форме от менее нагретого тела к более нагретому телу самопроизвольно невозможен. Тем не менее, этот процесс возможен при определенных условиях, которые должны быть созданы искусственно. Совершив цикл Карно в обратном направлении, можно целенаправленно вызвать переход энергии в тепловой форме от менее нагретого тела к более нагретому телу.

В чем состоит идея холодильной машины Карно? Фактически это та же тепловая машина, но работающая по обратному циклу.

Пусть рабочее тело (газ) находится в цилиндре в сжатом состоянии (точка а на индикаторной диаграмме; рис. 8.22). Предоставим газу воз­можность расшириться адиабатически, т. е. без притока энергии извне[6].

Отвод энергии е Тепловой форме

\ \Иэотерма\I

Цикл холодильной машины Карно. Принцип работы холодильника

Высоттемжрамурный источник тепловой энергии J

Источник

Рис. 8.21. Условная схема работы тепловой машины по обратному циклу Карно

Г Нобёой эмёргйй V "

\Лдиабата I————

\Иэотерма\

1 TJ___________ Адиабата

Подвод энергии E Тепловой форме

Рис. 8.22. Индикаторная диаграм­ма обратного цикла Карно

Процесс адиабатического расширения будет происходить по линии а-Ъ. Объем газа увеличится. Рабочим телом (термодинамической системой) будет совершена положительная работа, численно равная площади фигуры А-Ь-2-1 под линией адиабатического расширения а-Ъ. Так как в этом процессе энергия в форме теплоты к рабочему телу не подводится, но отводится в механической форме (путем совершения работы), внутренняя энергия рабочего тела будет уменьшаться:

AU = иь — иа = Qa-b — Wa-b = — WV*; Ub-Ua = Ua — Ub = Wa-b]

(Qa.6 = 0); Wa. b >0^Ua>Ub

Можно заключить, что подводимая в адиабатическом процессе сжатия работа (энергия в механической форме) расходуется только на повышение внутренней энергии рабочего тела, так как Qc-d = 0. Так как в процессе сжатия c-d внутренняя энергия рабочего тела увеличивается, увеличива­ется и его температура (Td > Тс).

В адиабатическом процессе сжатия к рабочему телу подводится энергия в механической форме И^, численно равная площади фигуры c-d3-4.

Таким образом, процесс сжатия d-a будет происходить изотермически (Ti = idem). В точке а цикл замыкается. В процессе изотермического сжатия d-a от рабочего тела в высокотемпературный источник энергии (нагреватель) будет отведена энергия в форме теплоты в количестве Q\. Поскольку обратный цикл Карно начался в точке а и закончился в ней, значения параметров рабочего тела в конце цикла равны их значениям в начале цикла, т. е.

ТКОн = -^нач ~ Та — Т\ J

Ркон == Рнач = Pa j

Так как Ткон = Тнач, то изменение внутренней энергии рабочего тела за цикл a-b-c-d-a равно нулю: AUa-b-c-d-a = fruv(TKOH — Тнач) = 0.

В изотермическом процессе сжатия d-a затрачивается энергия в меха­нической форме в количестве Wd-a• Эта энергия (работа) численно равна площади фигуры d-a-1-З.

Сравнение площадей фигур c-d-a-l~4 и а-Ь-с~4~1 (рис. 8.22) позволяет заключить, что в ходе обратного цикла к рабочему телу подводится больше энергии в механической форме, чем отводится от него в такой же форме:

Площадь c-d-a-1-4 > площадь a-b-c-A-1.

По этой причине результирующая работа цикла Wpe3 будет отрицатель­ной величиной. На основании выражения первого закона термодинамики (8.5) для обратного циклического процесса можно записать

AU = Q2-Q1-(-W) = Q2-Q1 + Wpe3 = Q. (8.52)

Так как в ходе циклического процесса внутренняя энергия рабочего тела не изменяется (AU 0), выражение (8.52) можно записать в виде

Qi = Q2 + Wpe3. (8.53)

Полученное выражение позволяет заключить, что высокотемператур­ному источнику передается больше энергии в форме теплоты, чем прини­мается от низкотемпературного источника.

Исходя из этих соотношений, на основании выражения (8.74) можно установить, что холодильный коэффициент г)хол тепловой машины Карно может быть большим 1, равным 1 и меньшим 1.

Выражение (8.74) справедливо только для холодильной машины. Из анализа зависимости (8.74) вытекает следующее:

• холодильный коэффициент цикла зависит от температур горячего и холодного источников и не зависит от природы рабочего тела;

• значение холодильного коэффициента цикла тем больше, чем меньше разность температур (Т2 — 7\) холодного и горячего источников;

• значение холодильного коэффициента может изменяться от 0 до беско­нечности;

• холодильный коэффициент обратного цикла Карно имеет максимальное значение в сравнении с другими циклами.

Циклы современных холодильных машин определяются назначением, глубиной охлаждения и свойствами используемого в них рабочего тела.

Q2 mRgTi In ^

Проанализируем на качественном уровне изменения, которые происхо­дят на нашей кухне при работе холодильника. В холодильник встроена теп­ловая машина, работающая по некоторому обратному циклу. В результате работы этой тепловой машины по обратному циклу тепловая энергия отби­рается из внутреннего пространства (холодильной камеры), являющегося

Низкотемпературным источником теплоты, и передается воздуху на кухне с помощью теплообменника, расположенного снаружи на задней стенке холодильника. Многие из личного опыта знают, что задняя стенка (там, как правило, расположен теплообменник) холодильника всегда теплее, чем окружающий воздух. От теплообменника теплота передается воздуху. Если бы кухня не проветривалась, а ее стенки имели идеальную тепло­вую изоляцию, вскоре можно было бы заметить существенное повышение температуры воздуха. Как правило, эти условия не выполняются, поэтому заметить повышение температуры воздуха не представляется возможным.

Целевое предназначение тепловой машины, установленной в холодиль­нике, состоит в понижении температуры в камере (охлаждении морозиль­ной камеры). Отсюда и происходит название — холодильник.

Несколько изменим планировку кухни. Поставим холодильник так, что­бы его двери открывались наружу квартиры (на улицу), а теплообменник (задняя стенка) находился внутри квартиры. Если включить холодильник и открыть его дверцу, то в холодильную камеру будет постоянно подводить­ся энергия в форме теплоты из окружающей среды (с улицы). Эта тепловая энергия через теплообменник будет переноситься внутрь квартиры. Если квартира имеет хорошую тепловую изоляцию, то температура воздуха в ней будет повышаться. При этом температура воздуха на улице не умень­шится ввиду значительных размеров окружающей среды. В этом случае тепловая машина, установленная в холодильнике, работает как тепловой насос, — повышает температуру воздуха в помещении за счет притока энергии в тепловой форме из окружающей среды (низкотемпературного источника тепловой энергии).

Если тепловая машина, работающая по обратному циклу, используется в качестве теплового насоса, ее эффективность оценивается с помощью отопительного коэффициента.

Отопительный коэффициент характеризует эффективность передачи энергии высокотемпературному источнику энергии. Он определяется по формуле ^

Voron — 777— • (8.75)

Подставим выражения (8.62) и (8.64) в выражение (8.75), получим

Votoii — ~~—Л7———————————— —VZ • (8.76)

ТДоГ2 In £ + тДоТх In £ VB Vd

Учитывая соотношения (8.71), выражение (8.76) можно представить в виде

Так как Т2 Т2 — Холодильные установки и тепловые насосы работают по циклу, в ко­тором осуществляется переход тепловой энергии от менее нагретых тел к более нагретым телам. Согласно второму закону термодинамики такой процесс возможен только при дополнительном компенсирующем процессе, в качестве которого используют переход энергии из механической формы в тепловую форму или переход энергии в форме теплоты от какого-нибудь горячего тела к холодному. В обоих случаях присутствуют затраты энер­гии, полученной извне по отношению к данной установке.

В зависимости от применяемого хладагента холодильные установки делятся на две основные группы:

• газовые (воздушные), в которых хладагент находится в состоянии, удаленном от состояния насыщения;

• паровые, в которых хладагент (пар) находится в состоянии, близком к состоянию насыщения.

В зависимости от температуры, которая должна быть достигнута при охлаждении, различают холодильные установки умеренного холода (темпе­ратура до —70° С) и установки глубокого холода (температура до —200° С и ниже). Последние, как правило, используются для сжижения воздуха и других газов.

Установки, в которых энергия для получения холода затрачивается в виде механической работы на привод компрессора, называются компрес­сорными, а установки, в которых энергия затрачивается в форме теплоты на термохимическую компрессию, — абсорбционными.

В заданном интервале температур теоретически наиболее выгодным циклом холодильной установки является обратный цикл Карно, но из-за конструктивных трудностей и больших потерь на трение обратный цикл Карно реально неосуществим. Он служит некоторым эталоном, с которым сравнивают эффективность действительных циклов холодильных машин.

В промышленных масштабах холод впервые был получен с помощью воздушных компрессорных холодильных машин.

Комментарии к записи Цикл холодильной машины Карно. Принцип работы холодильника отключены

В термодинамике цикл Карно? или процесс Карно — это обратимый круговой процесс, состоящий из двухадиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно.


Цикл Карно в координатах T-s

Одной из координат в этом графике является ЭНТРОПИЯ – s.

Энтропия выражается функцией:


,

где q – подведенная к рабочему телу теплота, T – его температура при изотермическом процессе.

Для цикла Карно в T,s - диаграмме подведенная q1 и отведенная q2 теплота к рабочему телу представляют площади под изотермическими процессами, которые соответствуют прямоугольникам со сторонами: для q1 - с Т1 и Δs, для q2 - с T2 и Δs. Величины q1 и q2 определяются по формулам изотермического процесса:



Работа цикла Карно равна разности подведенной и отведенной теплоты


В соответствии с последним выражением получить работу возможно только при наличии разности температур у горячего и холодного источников теплоты. Максимальная работа Цикла Карно теоретически была бы при Т2=0, но в качестве холодного источника в тепловых машинах, как правило, используется окружающая среда (вода, воздух) с температурой около 300 К. Кроме этого, достижение абсолютного нуля в природе невозможно (этот факт относится к третьему закону термодинамики). Таким образом, в цикле Карно не вся теплота q1 превращается в работу, а только ее часть, Оставшаяся после получения работы теплота q2, отдается холодному источнику, и при заданных Т1 и Т2 она не может быть использована для получения работы, величина q2 является тепловыми потерями (тепловым отбросом) цикла.

Пусть тепловая машина состоит из: 1) нагревателя с температурой , 2) холодильника с температурой и 3) рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→Б). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.


2. Адиабатическое расширение (на рис. 1 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс В→Г). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.




Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно


.

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику


.

Отсюда коэффициент полезного действия тепловой машины Карно равен


.

Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.

Цикл Карно может быть представлен и в координатах P (давление рабочего тела) и V (объем рабочего тела). Понятно, что рабочее тело – это пар в турбине, или газ в цилиндре двигателя внутреннего сгорания.


Рис. 2. Цикл Карно в координатах P и V

Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.

Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД.

Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.

В термодинамике цикл Карно? или процесс Карно — это обратимый круговой процесс, состоящий из двухадиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно.


Цикл Карно в координатах T-s

Одной из координат в этом графике является ЭНТРОПИЯ – s.

Энтропия выражается функцией:


,

где q – подведенная к рабочему телу теплота, T – его температура при изотермическом процессе.

Для цикла Карно в T,s - диаграмме подведенная q1 и отведенная q2 теплота к рабочему телу представляют площади под изотермическими процессами, которые соответствуют прямоугольникам со сторонами: для q1 - с Т1 и Δs, для q2 - с T2 и Δs. Величины q1 и q2 определяются по формулам изотермического процесса:



Работа цикла Карно равна разности подведенной и отведенной теплоты


В соответствии с последним выражением получить работу возможно только при наличии разности температур у горячего и холодного источников теплоты. Максимальная работа Цикла Карно теоретически была бы при Т2=0, но в качестве холодного источника в тепловых машинах, как правило, используется окружающая среда (вода, воздух) с температурой около 300 К. Кроме этого, достижение абсолютного нуля в природе невозможно (этот факт относится к третьему закону термодинамики). Таким образом, в цикле Карно не вся теплота q1 превращается в работу, а только ее часть, Оставшаяся после получения работы теплота q2, отдается холодному источнику, и при заданных Т1 и Т2 она не может быть использована для получения работы, величина q2 является тепловыми потерями (тепловым отбросом) цикла.

Пусть тепловая машина состоит из: 1) нагревателя с температурой , 2) холодильника с температурой и 3) рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→Б). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.


2. Адиабатическое расширение (на рис. 1 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс В→Г). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно


.

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику


.

Отсюда коэффициент полезного действия тепловой машины Карно равен


.

Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.

Цикл Карно может быть представлен и в координатах P (давление рабочего тела) и V (объем рабочего тела). Понятно, что рабочее тело – это пар в турбине, или газ в цилиндре двигателя внутреннего сгорания.


Рис. 2. Цикл Карно в координатах P и V

Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.

Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД.

Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.

Читайте также: