Частота это в физике кратко

Обновлено: 05.07.2024

Чaстота́ — физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Стандартные обозначения в формулах — " width="" height="" />
, , " width="" height="" />
или . Единицей частоты в Международной системе единиц (СИ) в общем случае является герц (Гц, Hz). Величина, обратная частоте, называется периодом. Частота, как и время, является одной из наиболее точно измеряемых физических величин: до относительной точности 10 −17 [1] .

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

В квантовой механике частота колебаний волновой функции квантовомеханического состояния имеет физический смысл энергии этого состояния, в связи с чем система единиц часто выбирается таким образом, что частота и энергия выражаются в одних и тех же единицах (иными словами, переводный коэффициент между частотой и энергией — постоянная Планка в формуле E = hν — выбирается равным 1).

Глаз человека чувствителен к электромагнитным волнам с частотами от 4·10 14 до 8·10 14 Гц (видимый свет); частота колебаний определяет цвет наблюдаемого света. Слуховой анализатор человека воспринимает акустические волны с частотами от 20 Гц до 20 кГц . У различных животных частотные диапазоны чувствительности к оптическим и акустическим колебаниям различны.

Отношения частот звуковых колебаний выражаются с помощью музыкальных интервалов, таких как октава, терция, квинта и т. п.. Интервал в одну октаву между частотами звуков означает, что эти частоты отличаются в 2 раза. Кроме того, для описания частотных интервалов используется декада — интервал между частотами, отличающимися в 10 раз. Так, диапазон звуковой чувствительности человека составляет 3 декады ( 20 Гц — 20 000 Гц ).

Содержание

Мгновенная частота и частоты спектральных составляющих

Циклическая частота

В теории электромагнетизма, теоретической физике, а также в некоторых прикладных электрорадиотехнических расчётах удобно использовать дополнительную величину — циклическую (круговую, радиальную, угловую) частоту (обозначается " width="" height="" />
). Циклическая частота связана с частотой колебаний соотношением . В математическом смысле циклическая частота — это первая производная полной фазы колебаний по времени. Единица циклической частоты — радиан в секунду (рад/с, rad/s) .

Численно циклическая частота равна числу циклов (колебаний, оборотов) за 2 π секунд. Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC -контура равна = 1/\sqrt," width="" height="" />
тогда как обычная резонансная частота = 1/(2\pi\sqrt)." width="" height="" />
В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители 2 π и 1/(2 π ), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость.

Частота дискретных событий

Частота дискретных событий (частота импульсов) — физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий секунда в минус первой степени (с −1 , s −1 ), однако на практике для выражения частоты импульсов обычно используют герц.

Частота вращения

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения — секунда в минус первой степени (с −1 , s −1 ), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

Метрологические аспекты

Измерения

  • Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра.
  • Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность), синтезаторы частот, генераторы сигналов и др.
  • Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Эталоны

    — находится во ВНИИФТРИ
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 — находится в СНИИМ (Новосибирск)

См. также

Примечания

  1. ↑Поставлен новый рекорд точности атомных часов. Membrana (5 февраля 2010). Архивировано из первоисточника 9 февраля 2012.Проверено 4 марта 2011.
  2. ↑ Финк Л. М. Сигналы, помехи, ошибки… Заметки о некоторых неожиданностях, парадоксах и заблуждениях в теории связи. — М.: Радио и связь, 1978, 1984.

Литература

  • Финк Л. М. Сигналы, помехи, ошибки… — М.: Радио и связь, 1984
  • Единицы физических величин. Бурдун Г. Д., Базакуца В. А. — Харьков: Вища школа, 1984
  • Справочник по физике. Яворский Б. М., Детлаф А. А. — М.: Наука, 1981

Ссылки

  • Физические величины по алфавиту
  • Теория колебаний
  • Теория волн
  • Радиотехнические величины и параметры

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Частота" в других словарях:

ЧАСТОТА — (1) количество повторений периодического явления за единицу времени; (2) Ч. боковая частота, большая или меньшая несущей частоты высокочастотного генератора, возникающая при (см.); (3) Ч. вращения величина, равная отношению числа оборотов… … Большая политехническая энциклопедия

Частота — ионная плазменная частота – частота электростатических колебаний, которые можно наблюдать в плазме, электронная температура которой значительно превышает температуру ионов; эта частота зависит от концентрации, заряда и массы ионов плазмы.… … Термины атомной энергетики

ЧАСТОТА — ЧАСТОТА, частоты, мн. (спец.) частоты, частот, жен. (книжн.). 1. только ед. отвлеч. сущ. к частый. Частота случаев. Частота ритма. Повышение частоты пульса. Частота тока. 2. Величина, выражающая ту или иную степень какого нибудь частого движения … Толковый словарь Ушакова

частота — ы; частоты; ж. 1. к Частый (1 зн.). Следить за частотой повторения ходов. Необходимая ч. посадки картофеля. Обратить внимание на частоту пульса. 2. Число повторений одинаковых движений, колебаний в какую л. единицу времени. Ч. вращения колеса. Ч … Энциклопедический словарь

ЧАСТОТА — (Frequency) число периодов в одну секунду. Частота величина, обратная периоду колебаний; напр. если частота переменного тока f = 50 колебаниям в сек. (50 Н), то период Т = 1/50 сек. Частота измеряется в герцах. При характеристике излучения… … Морской словарь

частота — гармоника, колебание Словарь русских синонимов. частота сущ. • густота • плотность (о растительности)) Словарь русских синонимов. Контекст 5.0 Информатик. 2012 … Словарь синонимов

частота — появления случайного события – это отношение m/n числа m появлений этого события в данной последовательности испытаний (его встречаемость) к общему числу n испытаний. Термин частота используется также в значении встречаемость. В старинной книжке… … Словарь социологической статистики

Частота — колебаний, количество полных периодов (циклов) колебательного процесса, протекающих в единицу времени. Единицей частоты является герц (Гц), соответствующий одному полному циклу в 1 с. Частота f=1/T, где T период колебаний, однако часто… … Иллюстрированный энциклопедический словарь

ЧАСТОТА — ЧАСТОТА, показатель, выражающий собой число повторений или возникновения событий (процессов). В статистике частота это цифра, показывающая, сколько раз за какой то период происходило некоторое событие, проявлялось определенное свойство объекта… … Научно-технический энциклопедический словарь

ЧАСТОТА — ЧАСТОТА, ы, мн. оты, от, жен. 1. см. частый. 1. Величина, выражающая число повторений чего н. в единицу времени (спец.). Ч. электромагнитных волн. Ч. колебаний маятника. | прил. частотный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю.… … Толковый словарь Ожегова

частота — Величина, обратная периоду электрического тока. Примечание — Аналогично определяют частоты электрического напряжения, электродвижущей силы, магнитного потока и т. д. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия Синонимы… … Справочник технического переводчика

Частотой называют физическую величину, характеризующую периодический процесс.

Она равна числу повторений или реализации событий за единицу времени. Обозначают частоту $\nu ,$ могут встречаться другие варианты обозначений частоты, например $f$ или $F$.

Частота (наряду со временем) - это наиболее точно измеряемая величина.

Частота колебаний

Частота служит одним из основных параметров, характеризующих колебания.

Частота - это физическая величина обратная периоду колебаний (T). Частота - это число полных колебаний, которые совершаются за единицу времени.

В Международной системе единиц (СИ) частота измеряется в герцах или обратных секундах:

Герц - единица измерения частоты периодического процесса, при которой за время в одну секунду протекает один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.

Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, о близкими по величине частотами ($_1\ и\ _2$) равна:

Другой характеристикой колебаний является циклическая частота, которая равна:

Циклическая частота измеряется в радианах, деленных на секунду:

Частота колебаний тела, массой$\ m,$ подвешенного на пружине с жесткостью $k$ равна:

Выражение (4) выполняется для упругих, малых колебаний. Масса пружины должна быть мала в сравнении с массой тела.

Частота колебаний математического маятника, длина нити которого $l$:

где $g$ - ускорение свободного падения.

Частота колебаний физического маятника:

где $J$ - момент инерции тела, совершающего колебания относительно оси; $d$ - расстояние от центра масс маятника до оси колебаний.

Формулы (4) - (6) приближенные. Чем меньше амплитуда колебаний, тем точнее результаты дают эти формулы.

Частота дискретных событий, частота вращения

Частотой дискретных колебаний ($n$) - называют физическую величину, которая равна количеству действий (событий) в единицу времени.

Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:

Единицей измерения частоты дискретных событий является обратная секунда:

Секунда в минус первой степени равна частоте дискретных событий, если за время, равное одной секунде происходит одно событие.

Частотой вращения ($n$) - называют величину, равную количеству полных оборотов, которое совершает тело в единицу времени. Если $\tau $ - время, затрачиваемое на один полный оборот, то:

Примеры задач с решением

Задание. Частица совершает гармонические колебания, которые описывает следующий закон: $x=6t+\frac<\pi >\right)\ >(м)$. Какова частота этих колебаний?

Решение. Рассмотрим уравнение движения частицы:

Из этого уравнения мы видим, что амплитуда колебаний точки равна: $x_m=6\ \left(м\right);;$ циклическая частота колебаний равна $<\omega >_0=\frac<\pi >(\frac)$; начальная фаза колебаний: $_0=\frac<\pi >(рад)$. Частоту найдем, используя формулу:

из которой имеем:

Подставим значение циклической частоты, полученное из уравнения (1.1) в формулу (1.3), получаем:

Ответ. $\nu =\fracГц$

Задание. К упругой пружине прикрепили маленький груз, при этом она растянулась на $\Delta x$ (м). Какой будет частота колебаний грузика, если он будет совершать свободные колебания? Затуханием колебаний пренебречь.

Решение. Сделаем рисунок.

Частота, рисунок 2

В нашей задаче мы имеем колебания пружинного маятника, частоту которого можно найти как:

Рассмотрим состояние равновесия тела, которое прикреплено к пружине (рис.1). Запишем второй закон Ньютона для сил, действующих на это тело в состоянии равновесия:

Запишем проекцию уравнения (2.2) на ось Y:

Так как колебания груза на пружине малые, то выполняется закон Гука и мы можем считать, что:

\[F_u=k\Delta x\ \left(2.4\right).\]

Из (2.3) и (2.4) найдем отношение $/:$

Подставим полученный в (2.5) результат в (1.1), частота колебаний тела на пружине равна:

Частота колебаний имеет следующее определение: это физическая характеристика, которая описывает количество повторений процессов в единицу времени. Для описания подобного движения вводятся и другие понятия: период, фаза, циклическая частота, амплитуда. Между всеми этими характеристиками имеется связь.

  • Примеры движения
  • Амплитуда, период и частота
  • Математический маятник
  • Пружинный маятник
  • Явление резонанса
  • Колебательный контур
  • Звук и электромагнитные волны

Амплитуда

Примеры движения

Колебательное движение является одним из наиболее распространенных в природе. Например, можно представить себе струны музыкальных инструментов, качели или голосовые связки человека.

Маятник в физике

В физике колебаниями называются процессы, которые повторяются через равные промежутки времени. Подобные движения рассматривается посредством нескольких моделей:

  • тела, подвешенного на пружине (двигающееся по направлению вверх-вниз);
  • груза на нитке;
  • электрического контура и других.

Амплитуда, период и частота

Если подвесить одновременно два груза на две разные нити и запустить их, то можно заметить, что расстояние отклонения груза от среднего положения до крайнего — разное.

Частота амплитуды

Это величина носит название амплитуды. Обозначается буквой А и измеряется в системе Си в метрах. Также для обозначения подобного движения применяются следующие термины:

Математический маятник

  • Время, за которое маятник приходит в одно и то же положение, называется периодом колебаний.
  • Количество колебаний в единицу времени представляет собой частоту. Она измеряется в Герцах (Гц). Имеет обратную зависимость от периода.
  • Циклическая частота колебаний (угловая, круговая) представляет собой количество колебаний за 2 π секунд. Обозначается греческой буквой омега. Она вводится для упрощения расчетов в теоретической физике и электронике. Единица измерения циклической частоты рад/с.
  • Если имеется два графика функций с одинаковой частотой, но сдвинуты относительно друг друга, то различна их фаза колебаний.

Выделяют понятие свободных колебаний. Когда системе, например, математическому маятнику, придают импульс, чтобы начать движение, дальнейшие его колебания (самостоятельные) будут считаться свободными.

Математический маятник

Эта модель рассматривает движение груза, подвешенного на нитке. Описывается система, в которой масса нитки намного меньше массы груза, а ее длина намного больше его размеров.

Формула расчетаколебаний

Также нить должна быть невесомой и нерастяжимой.

Груз в этом случае считается материальной точкой.

При выполнении этих условий частота колебаний маятника и период не будут зависеть от массы груза. Движение математического маятника рассматривается при небольшом угле отклонения (α). Последний измеряется в радианах, поэтому приблизительно соответствует по значению его синусу и тангенсу. Этот же угол пропорционален отношению смещения на длину нити:

α=x/l.

Второй закон ньютона

На маятник действует синусовая составляющая силы тяжести и тангенсовая сила натяжения нити. Согласно второму закону Ньютона: ma=-mgsin (α). Откуда можно получить a=-gx/l

Вторая производная уравнения движения дает a=-(ω)^2x

Таким образом: -gx/l=-(ω)^2x -> ω ^2=g/l.

Период: T=2π /ω T=2π*sqrt (g/l)

Это формула Галилея, которая описывает движение математического маятника.

Формула частоты колебаний для математического маятника: v=sqrt (l/g)/2π.

Пружинный маятник

Подобным термином называется система, в которой движения совершает груз, подвешенный на легкой пружине.

Пружинный маятник

Тело находится в положении равновесия, если пружина не деформирована. Если ее растянуть или сжать, то система начнет колебания под действием силы упругости, которая направлена на приведение маятника в положение равновесия.

Сила упругости пропорциональна смещению тела (x), но направлена противоположно. Коэффициент пропорциональности между этими двумя величинами носит название жесткости пружины (k). Таким образом:

F=-kx.

Сила упругости достигает наибольшей величины в положении максимального отклонения тела (амплитуда, смещение) от равновесия. В этой точке наибольшую величину имеет и ускорение.

Формулы расчета

По мере того, как тело приближается к положению равновесия, уменьшается сила упругости и ускорение. В средней точки обе величины равны нулю, но ненулевое значение имеет скорость тела. Поэтому груз не останавливается, а продолжает движение.

После прохождения положения равновесия он двигается в обратном направлении по инерции, а сила упругости тянет его назад. Благодаря трению воздуха скорость уменьшается, и маятник останавливается.

Все эти модели можно отнести к классическому гармоническому осциллятору — системе, которая имеет одну степень свободы и описывается единственным уравнением.

Явление резонанса

Резонанс

Это понятие имеет особое значение для описания колебаний. Если имеется некое воздействие, частота которого приближается к собственной частоте системы, то последняя реагирует резким увеличением амплитуды.

Явление резонанса можно представить себе на примере того же математического маятника. Для этого необходимо маятник привязать к веревке, к которой привязать еще один такой же, но с более длинной нитью. При этом длина нитки второго маятника может регулироваться. Если привести в движение оба маятника, а длину второй нитки постепенно изменять, то можно будет заметить, что амплитуда увеличивается по мере приближения размеров обеих ниток.

В этом случае первый маятник будет приемником колебаний, а второй — передатчиком. Причиной увеличения амплитуды является колебание подвески с такой же частотой.

Колебательный контур

Является еще одним примером колебаний, на котором основаны все радиоприемники. Контур играет роль приемника сигнала.

Колебательный контур

В простейшем примере представляет собой замкнутую цепь из катушки индуктивности и конденсатора. При определенных обстоятельствах в подобном контуре могут возникать и поддерживаться электрические колебания.

Для возбуждения колебаний необходимо подключить источник постоянного напряжения к конденсатору и зарядить его. После этого источник убрать, а цепь замкнуть.

Конденсатор разряжается через катушку индуктивности, а в цепи создается ток, интенсивность которого увеличивается по мере разряда конденсатора. Вокруг катушки создается магнитное поле.

Колебательный контур с резистором

Электрический заряд конденсатора преобразовался в магнитное поле. После этого магнитное поле катушки будет уменьшаться, а конденсатор обратно заряжаться. Процесс повторяется циклически и описывается теми же характеристиками, что и механические колебания: частотой, амплитудой и периодом.

Они являются свободными и затухающими. Чтобы их поддерживать, необходимо периодически заряжать конденсатор.

Звук и электромагнитные волны

Таблица электромагнитных волн в физике

Понятие частоты вводится и для звуковых и электромагнитных волн. Первые представляют собой колебания плотности среды. Вторые — изменение со временем напряженности магнитного и электрического полей.

От частоты звука зависит его тональность. Этим свойством пользуются для стандартизации описания музыки и создания музыкальных инструментов — каждой ноте соответствует своя частота.

До 16 Гц человеческое ухо не воспринимает, так же как и выше 20 КГЦ. Более высокие частоты используются в эхолокации, ультразвуковой диагностике.

Примеры частоты и длинны электромагнитных волн волн

Частота электромагнитных волн также определяет их способность взаимодействовать с человеческим организмом. Рентгеновское излучение проходит насквозь, при этом взаимодействуя с молекулами, вызывая их ионизацию. Ультразвук провоцирует процессы загара, фотосинтеза. Радиоволновое излучение практически не оказывает прямого воздействия, но хорошо подходит для передачи информации. В видимом диапазоне частота определяет цвет.

Есть также такая характеристика, как частота колебаний молекул. Она зависит от температуры тела и определяет его агрегатное состояние.

Таким образом, частота колебаний описывает большое количество процессов и оказывает воздействие на их характеристики.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Механические колебания и волны

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Амплитуда период частота колебаний

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

Амплитуда период частота колебаний

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Амплитуда период частота колебаний

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

Амплитуда период частота колебаний

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

Амплитуда период частота колебаний

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Единица измерения периода в системе СИ – секунда.

На графике колебаний период определяется как промежуток времени. через который система возвращается в то же состояние, в котором она находилась в начальный момент времени, который выбирается произвольно (рис.1).


Рис.1. Определение по графику периода колебаний.

\[\nu =\frac<n></p>
<p>=\frac\]

Единица измерения частоты в системе СИ – 1 Герц (Гц).

Циклическая частота – это число колебаний, совершаемых телом за секунд:

\[\omega =\frac<2\pi ></p>
<p>\]

Единица измерения циклической частоты в системе СИ — рад/с.

Частота и циклическая частота связаны между собой формулой:

Примеры решения задач

Задание Определить частоту колебаний железнодорожных вагонов, если период их вертикального колебания равен 0,5 с.
Решение Частота колебаний – это величина, обратная периоду:

\[\nu =\frac<1></p>
<p>\ ,\]


Гц

Задание Маятник совершает 9 колебаний за 18 с. Определить период и частоту колебаний. Записать уравнение гармонических колебаний и построить график колебаний маятника, если амплитуда равна 10 см.
Решение Частота колебаний определяется формулой:

\[\nu =\frac<n></p>
<p>;\]


Гц

\[T=\frac<1></p>
<p>;\]

\[T=\frac<1></p>
<p>=2\ c\]

\[x=A\sin \left(\omega t+<\varphi ></p>
<p>_0\right)\ \]

В данном случае:


Задание Период колебаний крыльев шмеля 5 мс, а частота колебаний крыльев комара 600 Гц. Определить, какое насекомое и на сколько больше сделает взмахов крыльями при полете за 1 минуту.
Решение Определим частоту колебаний крыльев шмеля:

\[<\nu ></p>
<p>_1=\frac\ \]

С другой стороны, частота:

\[<\nu ></p>
<p>_1=\ \frac\]

Приравняв правые части равенств, найдем число взмахов крыльями, которое сделает шмель за время :

\[\frac<1></p>
<p>=\frac;\]

\[n_1=\frac<t></p>
<p>\]

Число взмахов крыльями, которое сделает комар за время , найдем непосредственно из формулы:

\[<\nu ></p>
<p>_2=\ \frac;\]

\[n_2=<\nu ></p>
<p>_2t\]

=5\cdot <10></p>
<p>Переведем единицы в систему СИ:  мс ^\ c; \quad t=1
мин .

\[n_1=\frac<60></p>
<p>^>=12000;\]

Читайте также: