Борьба с энтропией кратко

Обновлено: 05.07.2024

Энтропия - это физическая величина, связанная с тепловой смертью Вселенной, одной из наиболее признанных теорий о том, как произойдет конец света.

Все меняется, и некоторым из нас это не всегда нравится. Но согласно одной из точек зрения, энтропия Вселенной и природы в целом (то есть степень беспорядка или случайности в системе) может быть тем, что в первую очередь способствовало возникновению жизни.

реклама

Согласно этой точке зрения, когда группа атомов приводится в движение внешним источником энергии, например Солнцем, и окружена источником тепла, например атмосферой, она постепенно перестраивается таким образом, чтобы рассеивать все больше энергии. С этого момента, при определенных условиях, материя неумолимо приобретает свойства, ассоциирующиеся с жизнью.

Однако энтропию также связывают с тепловой смертью Вселенной. Вот все, что необходимо знать об энтропии в термодинамике и о том, как она влияет на Вселенную и, в конечном счете, на нас.


Чёрные дыры способствуют увеличению энтропии Вселенной. JeremySchnittman/Wikimedia Commons

Что такое энтропия Вселенной?

Хотя в физике это не одно и то же, полезно вспомнить о теории хаоса и о том, как она связана с энтропией, и, в конечном счете, какое влияние энтропия может оказывать на Вселенную.

реклама

Согласно теории хаоса, в кажущейся случайности хаотических, сложных систем есть скрытые закономерности и взаимосвязи. Если знать начальные условия и выяснить эти базовые закономерности, то можно предсказать нарушения, которые произойдут в будущем. Другими словами, хаос не так беспорядочен и случаен, как может показаться.

В своей самой простой формулировке энтропия определяется как мера тепловой энергии в системе на единицу температуры, которая не может быть использована для совершения полезной работы. Поскольку работа получается в результате упорядоченного движения молекул, энтропия также является мерой молекулярного беспорядка, или случайности, в системе.

Не только физика, но и многие дисциплины нашли применение этой концепции, включая химию, биологию, изменение климата, социологию, экономику, теорию информации и даже бизнес.

Но давайте остановимся на физике, а точнее, на фундаментальных законах термодинамики.

  • Нулевой закон термодинамики - это закон теплового равновесия. Он гласит, что если две независимые системы находятся в тепловом равновесии с третьей системой, то они также находятся в тепловом равновесии друг с другом. Это означает, что если A = B и B = C, то A = C. Это легко наблюдать в реальной жизни. Например, когда вы подносите холодный стакан воды к горячему стакану воды. Они будут обмениваться теплом через диатермальную стенку, пока оба не достигнут теплового равновесия с температурой в комнате.
  • Первый закон термодинамики - это применение закона сохранения энергии к термодинамическим процессам. Закон сохранения энергии утверждает, что энергию нельзя создать или уничтожить, а возможно только преобразовать или передать. В случае изолированной термодинамической системы это происходит за счет работы и тепла. Именно поэтому формула первого закона термодинамики имеет вид ΔU = Q - W, где ΔU - изменение внутренней энергии системы, Q - подведенное к ней тепло, а W - работа, которую система совершает над окружающей средой.
  • Второй закон термодинамики также известен как закон энтропии, поскольку он вводит такое понятие, как уровень беспорядка в системе. Он обозначается буквой S. В каждом процессе есть определенное количество энергии, которое не может быть преобразовано в работу. Вместо этого она превращается в тепло. Тепло увеличивает беспорядок, или энтропию, изолированной системы. А поскольку всегда существует некоторая степень неиспользуемой энергии, которая превратится в тепло, второй закон термодинамики утверждает, что в изолированных системах всегда будет происходить увеличение энтропии. Изменение энтропии ΔS равно теплопередаче ΔQ, деленной на температуру T: ΔS =ΔQ / T.
  • Третий закон термодинамики гласит, что энтропия системы приближается к постоянному значению по мере приближения температуры к абсолютному нулю. Если температура системы равна абсолютному нулю (нижний предел в термодинамической шкале температур), то энтропия также будет равна нулю.

Кто ввел понятие энтропии?

реклама

Несмотря на то, что понятие энтропии применяется в различных дисциплинах, оно берет свое начало в физике. Изучая сохранение механической энергии в своей работе " Основные принципы равновесия и движения" (1803), французский математик Лазар Карно предложил, что ускорения и удары движущихся частей в машине представляют собой "потери момента активности". Момент активности" Карно сопоставим с современным понятием работы в термодинамике. Таким образом, в любом естественном процессе существует неотъемлемая тенденция к рассеиванию полезной энергии.


Рудольф Юлиус Эмануэль Клаузиус

Другие ученые исследовали эту "потерянную" энергию, и в последней половине 19 века они указали, что это не настоящее исчезновение, а преобразование. Это и есть концепция сохранения энергии, которая проложила путь к первому закону термодинамики. Такие ученые, как Джеймс Джоуль, Юлиус Майер, Герман Гельмгольц и Уильям Томпсон (также известный как лорд Кельвин), опубликовали работы, исследующие эту концепцию.

реклама

Но термин "энтропия" появился в работах немецкого физика Рудольфа Клаузиуса, который сегодня считается одним из авторов термодинамики.

В 1850-х годах он представил изложение Второго закона термодинамики применительно к тепловому насосу. Заявление Клаузиуса подчеркивало тот факт, что невозможно построить устройство, работающее по циклу и не производящее никакого другого эффекта, кроме передачи тепла от более холодного тела к более горячему.

В 1860-х годах он придумал слово "энтропия" от греческого слова, означающего превращение, или поворотный пункт, для обозначения необратимой потери тепла. Он описал ее как функцию состояния в термодинамическом цикле, в частности в цикле Карно, теоретическом цикле, предложенном сыном Лазаря Карно, Сади Карно.

В 1870-х годах австрийский физик и философ Людвиг Больцман переосмыслил и адаптировал определение энтропии к статистической механике. Ближе к тому, что подразумевает этот термин сейчас, он описывает энтропию как измерение всех возможных микро-состояний в системе, макроскопическое состояние которой было изучено. Как могут измениться все наблюдаемые свойства системы? Сколькими способами? Эти вопросы охватывают понятие беспорядка, которое лежит в основе одного из понятий энтропии.

Она записывается формулой S = k ln Ω, где S - энтропия, K - постоянная Больцмана (1,38064852 × 10 -23 м 2 кг с-2 K- 1 ), а Ω - количество, число возможных микросостояний.

Находится ли Вселенная в состоянии энтропии?

Еще в 19 веке Рудолф Клаузиус вывел, что энергия Вселенной постоянна, а ее энтропия имеет тенденцию к увеличению с течением времени.

Согласно наиболее широко принятой модели возникновения Вселенной, все пространство и время были созданы в результате Большого взрыва - события, произошедшего примерно 13,8 миллиарда лет назад. Согласно теории, до этого Вселенная была очень крошечной, очень горячей, плотной точкой, похожей на сингулярность, из которой возникло все, что мы видим вокруг себя.


Источник: Пабло Карлос Будасси / Wikimedia Commons

По мнению космологов, затем эта точка "взорвалась", расширяясь и распространяясь со скоростью, превышающей скорость света, и породив все частицы, античастицы и излучения во Вселенной.

Конечно, для этого должно было произойти огромное количество процессов связанных с изменением энтропии. Однако если мы подумаем о непрерывном увеличении энтропии, которое происходило на протяжении всех этих лет, то сможем сделать вывод, что энтропия Вселенной сейчас должна быть намного больше. На самом деле, согласно расчетам, энтропия Вселенной сегодня примерно в квадриллион раз больше, чем во время Большого взрыва.

По мнению некоторых космологов, это можно объяснить с помощью идеи о существовании энтропии времени. Поскольку второй закон термодинамики гласит, что энтропия изолированной системы может увеличиваться, но не уменьшаться, энтропия требует определенного направления времени, иногда называемого осью времени. Таким образом, измерение энтропии - это способ отличить прошлое от будущего.

Почему энтропия Вселенной растет?

Энтропия Вселенной будет продолжать расти, но что именно приводит к этому росту? Остаточные уровни излучения после Большого взрыва, ядерный синтез в звездах. Существует множество процессов, которые поддерживают поток энергии, но считается, что основной вклад в это вносят черные дыры из-за огромного количества частиц, которые они содержат.

Черные дыры обладают огромной концентрацией массы, которая обеспечивает им исключительно сильное гравитационное поле. Поэтому они допускают множественность микросостояний. В связи с этим Стивен Хокинг предположил, что черные дыры выделяют тепловое излучение вблизи своих горизонтов событий. Это излучение Хокинга может привести к потере массы и окончательному испарению черных дыр.


Source: Geralt/Pixabay

Но помните, что черные дыры подчиняются второму закону термодинамики, который гласит, что энтропия всегда будет иметь тенденцию к увеличению. Поэтому они будут набирать все большую массу и сливаться с другими черными дырами, превращаясь в сверхмассивные чёрные дыры. А когда они в конце концов распадутся, излучение Хокинга, создаваемое распадающимися чёрными дырами, будет иметь такое же количество возможных состояний, как и сама ранее существовавшая черная дыра. Согласно этой точке зрения, ранняя Вселенная имела низкую энтропию из-за меньшего количества или гораздо меньших размеров черных дыр.

Существует ли предел энтропии во Вселенной?

Как бы мы ни говорили о тенденции к увеличению энтропии, законы термодинамики также подразумевают состояние максимальной энтропии.

В повседневной жизни мы можем наблюдать это, когда наш кофе остывает в чашке. Когда кофе достигает комнатной температуры, это означает, что он находится в тепловом равновесии с окружающей средой. В кипящей воде, используемой для приготовления кофе, было много возбужденных атомов, но они замедлились и в конце концов достигли максимальной энтропии для данной системы.


Термодинамическое равновесие - это стабильное состояние, которое не обратимо без "помощи" - поступления энергии. Кофе нужно было бы подогреть, добавив энергию, например, поставив его на плиту или в микроволновую печь. Однако у нас нет никакого способа подать энергию во Вселенную после того, как она достигнет теплового равновесия. В конце концов, повсюду будут достигнуты одни и те же значения.

При постоянной, стабильной температуре во всем космосе больше не останется энергии для совершения работы, так как энтропия достигнет максимального уровня. Все эти предположения составляют теорию тепловой смерти Вселенной. Эта теория также известна под названием "Большой заморозки", поскольку в этом сценарии энтропия Вселенной будет постоянно возрастать, пока не достигнет максимального значения. В этот роковой момент все тепло в нашей Вселенной будет распределено абсолютно равномерно, не оставляя места для полезной энергии.

Однако это лишь одна из теорий о конце света. Согласно другим теориям, энергия, содержащаяся в темной материи, заставит Вселенную сжаться и снова нагреться, что приведет к чему-то похожему на новый большой взрыв.

Может ли энтропия Вселенной уменьшиться?

Можно с уверенностью сказать, что энтропия во Вселенной в какой-то момент уменьшилась, потому что в ней существует определенный порядок. Гравитационные взаимодействия могут к примеру превращать туманности в звезды. Это своего рода порядок.


Ученые считают, что человеческое сознание может быть побочным эффектом энтропии

Энтропия может уменьшаться без нарушения второго закона термодинамики до тех пор, пока она увеличивается в других частях системы. В конце концов, второй закон термодинамики не говорит, что энтропия не может уменьшаться в определенных частях системы, а только то, что общая энтропия системы имеет естественную тенденцию к увеличению.

При этом общая энтропия Вселенной не уменьшается. Как было сказано выше, энтропия будет иметь тенденцию к увеличению, пока не достигнет своего максимального уровня и не приведет к тепловой смерти. Это стационарное состояние термодинамического равновесия, в котором энтропия не только максимальна, но и постоянна, и она будет оставаться такой, пока не произойдет приток энергии, который оживит систему.

Тогда цикл может повториться. С новой, дополнительной энергией, совершающей работу, останется часть энергии, не способной совершить работу, которая превратится в тепло. Это снова увеличит энтропию системы. Но откуда возьмется эта энергия? Что заставит оставшиеся лептоны и фотоны, если таковые имеются, взаимодействовать?

Однако мы не будем присутствовать при этом процессе. Конечно, страшно подумать, что когда-нибудь вся активность во Вселенной прекратится, что означает конец света и всего остального, но ученые считают, что тепловая смерть наступит примерно через 10 100 лет. Так что мы еще некоторое время можем быть спокойны.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

Что такое энтропия

Что такое энтропия? Этим словом можно охарактеризовать и объяснить почти все процессы в жизни человека (физические и химические процессы, а также социальные явления). Но не все люди понимают значение этого термина и уж тем более не все могут объяснить, что это слово значит. Теория сложна для восприятия, но если добавить в неё простые и понятные примеры из жизни, то разобраться с определением этого многогранного термина будет легче. Но обо всём по порядку.

Энтропия: определение и история появления термина

История появления термина

Энтропия как определение состояния системы была введена в 1865 году немецким физиком Рудольфом Клаузиусом, чтобы описать способность теплоты превращаться в другие формы энергии, главным образом в механическую. С помощью этого понятия в термодинамике описывают состояние термодинамических систем. Приращение этой величины связано с поступлением тепла в систему и с температурой, при которой это поступление происходит.

Определение термина из Википедии

Виды энтропий

Этот термин используется в термодинамике, экономике, теории информации и даже в социологии. Что же он определяет в этих областях?

В физической химии (термодинамике)

Как изменяется энтропия

Основной постулат термодинамики о равновесии: любая изолированная термодинамическая система приходит в равновесное состояние с течением времени и не может из него выйти самопроизвольно. То есть каждая система стремится в равновесное для неё состояние. И если говорить совсем простыми словами, то такое состояние характеризуется беспорядком.

Энтропия — это мера беспорядка. Как определить беспорядок? Один из способов — приписать каждому состоянию число вариантов, которыми это состояние можно реализовать. И чем больше таких способов реализации, тем больше значение энтропии. Чем больше организованно вещество (его структура), тем ниже его неопределённость (хаотичность).

Абсолютное значение энтропии (S абс.) равно изменению имеющейся у вещества или системы энергии во время теплопередачи при данной температуре. Его математическая величина определяется из значения теплопередачи (Q), разделённого на абсолютную температуру (T), при которой происходит процесс: S абс. = Q / T. Это означает, что при передаче большого количества теплоты показатель S абс. увеличится. Тот же эффект будет наблюдаться при теплопередаче в условиях низких температур.

В экономике

Энтропия сведение из википедии

В экономике используется такое понятие, как коэффициент энтропии. С помощью этого коэффициента исследуют изменение концентрации рынка и её уровень. Чем выше значение коэффициента, тем выше экономическая неопределённость и, следовательно, вероятность появления монополии снижается. Коэффициент помогает косвенно оценить выгоды, приобретённые фирмой в результате возможной монопольной деятельности или при изменении концентрации рынка.

В статистической физике или теории информации

Информационная энтропия (неопределённость)— это мера непредсказуемости или неопределённости некоторой системы. Эта величина помогает определить степень беспорядочности проводимого эксперимента или события. Чем больше количество состояний, в которых может находиться система, тем больше значение неопределённости. Все процессы упорядочивания системы приводят к появлению информации и снижению информационной неопределённости.

С помощью информационной непредсказуемости можно выявить такую пропускную способность канала, которая обеспечит надёжную передачу информации (в системе закодированных символов). А также можно частично предсказывать ход опыта или события, деля их на составные части и высчитывая значение неопределённости для каждой из них. Такой метод статистической физики помогает выявить вероятность события. С его помощью можно расшифровать закодированный текст, анализируя вероятность появления символов и их показатель энтропии.

Существует такое понятие, как абсолютная энтропия языка. Эта величина выражает максимальное количество информации, которое можно передать в единице этого языка. За единицу в этом случае принимают символ алфавита языка (бит).

В социологии

Объяснение термина энтропия

Здесь энтропия (информационная неопределённость) является характеристикой отклонения социума (системы) или его звеньев от принятого (эталонного) состояния, а проявляется это в снижении эффективности развития и функционирования системы, ухудшении самоорганизации. Простой пример: сотрудники фирмы так сильно загружены работой (выполнением большого количества отчётов), что не успевают заниматься своей основной деятельностью (выполнением проверок). В этом примере мерой нецелесообразного использования руководством рабочих ресурсов будет являться информационная неопределённость.

Энтропия: тезисно и на примерах

  • Чем больше способов реализации, тем больше информационная неопределённость.

Пример 1. Программа Т9. Если в слове будет небольшое количество опечаток, то программа легко распознает слово и предложит его замену. Чем больше опечаток, тем меньше информации о вводимом слове будет у программы. Следовательно, увеличение беспорядка приведёт к увеличению информационной неопределённости и наоборот, чем больше информации, тем меньше неопределённость.

Пример 2. Игральные кости. Выкинуть комбинацию 12 или 2 можно только одним способом: 1 плюс 1 или 6 плюс 6. А максимальным числом способов реализуется число 7 (имеет 6 возможных комбинаций). Непредсказуемость реализации числа семь самая большая в этом случае.

  • В общем смысле энтропию (S) можно понимать как меру распределения энергии. При низком значении S энергия сконцентрирована, а при высоком — распределена хаотично.

Пример. Н2О (всем известная вода) в своём жидком агрегатном состоянии будет обладать большей энтропией, чем в твёрдом (лёд). Потому что в кристаллическом твёрдом теле каждый атом занимает определённое положение в кристаллической решётке (порядок), а в жидком состоянии у атомов определённых закреплённых положений нет (беспорядок). То есть тело с более жёсткой упорядоченностью атомов имеет более низкое значение энтропии (S). Белый алмаз без примесей обладает самым низким значением S по сравнению с другими кристаллами.

Понятие термина энтропия

Пример 1. Молекула находится в сосуде, который имеет левую и правую часть. Если неизвестно, в какой части сосуда находится молекула, то энтропия (S) будет определяться по формуле S = S max = k * lgW, где k -число способов реализации, W- количество частей сосуда. Информация в этом случае будет равна нулю I = I min =0. Если же точно известно, в какой части сосуда находится молекула, то S = S min =k*ln1=0, а I = I max= log 2 W. Следовательно, чем больше информации, тем ниже значение информационной неопределённости.

Пример 3. Информация о классе больше на уроке, чем на перемене. Энтропия на уроке ниже, так как ученики сидят упорядочено (больше информации о местоположении каждого ученика). А на перемене расположение учеников меняется хаотично, что повышает их энтропию.

Пример. При реакции щелочного металла с водой выделяется водород. Водород-это газ. Так как молекулы газа движутся хаотично и имеют высокую энтропию, то рассматриваемая реакция происходит с увеличением её значения. То есть энтропия химической системы станет выше.

В заключение

Если объединить всё вышесказанное, то получится, что энтропия является мерой беспорядка или неопределённости системы и её частей. Интересен тот факт, что всё в природе стремится к максимуму энтропии, а человек — к максимуму информации. И все рассмотренные выше теории направлены на установление баланса между стремлением человека и естественными природными процессами.

Что такое энтропия

Что такое энтропия? Этим словом можно охарактеризовать и объяснить почти все процессы в жизни человека (физические и химические процессы, а также социальные явления). Но не все люди понимают значение этого термина и уж тем более не все могут объяснить, что это слово значит. Теория сложна для восприятия, но если добавить в неё простые и понятные примеры из жизни, то разобраться с определением этого многогранного термина будет легче. Но обо всём по порядку.

  • Энтропия: определение и история появления термина
  • История появления термина
  • Определение термина из Википедии
  • Виды энтропий
  • В физической химии (термодинамике)
  • В экономике
  • В статистической физике или теории информации
  • В социологии
  • Энтропия: тезисно и на примерах
  • В заключение

Энтропия: определение и история появления термина

История появления термина

Энтропия как определение состояния системы была введена в 1865 году немецким физиком Рудольфом Клаузиусом, чтобы описать способность теплоты превращаться в другие формы энергии, главным образом в механическую. С помощью этого понятия в термодинамике описывают состояние термодинамических систем. Приращение этой величины связано с поступлением тепла в систему и с температурой, при которой это поступление происходит.

Определение термина из Википедии

Виды энтропий

Этот термин используется в термодинамике, экономике, теории информации и даже в социологии. Что же он определяет в этих областях?

В физической химии (термодинамике)

Как изменяется энтропия

Основной постулат термодинамики о равновесии: любая изолированная термодинамическая система приходит в равновесное состояние с течением времени и не может из него выйти самопроизвольно. То есть каждая система стремится в равновесное для неё состояние. И если говорить совсем простыми словами, то такое состояние характеризуется беспорядком.

Энтропия — это мера беспорядка. Как определить беспорядок? Один из способов — приписать каждому состоянию число вариантов, которыми это состояние можно реализовать. И чем больше таких способов реализации, тем больше значение энтропии. Чем больше организованно вещество (его структура), тем ниже его неопределённость (хаотичность).

Абсолютное значение энтропии (S абс.) равно изменению имеющейся у вещества или системы энергии во время теплопередачи при данной температуре. Его математическая величина определяется из значения теплопередачи (Q), разделённого на абсолютную температуру (T), при которой происходит процесс: S абс. = Q / T. Это означает, что при передаче большого количества теплоты показатель S абс. увеличится. Тот же эффект будет наблюдаться при теплопередаче в условиях низких температур.

В экономике

Энтропия сведение из википедии

В экономике используется такое понятие, как коэффициент энтропии. С помощью этого коэффициента исследуют изменение концентрации рынка и её уровень. Чем выше значение коэффициента, тем выше экономическая неопределённость и, следовательно, вероятность появления монополии снижается. Коэффициент помогает косвенно оценить выгоды, приобретённые фирмой в результате возможной монопольной деятельности или при изменении концентрации рынка.

В статистической физике или теории информации

Информационная энтропия (неопределённость)— это мера непредсказуемости или неопределённости некоторой системы. Эта величина помогает определить степень беспорядочности проводимого эксперимента или события. Чем больше количество состояний, в которых может находиться система, тем больше значение неопределённости. Все процессы упорядочивания системы приводят к появлению информации и снижению информационной неопределённости.

С помощью информационной непредсказуемости можно выявить такую пропускную способность канала, которая обеспечит надёжную передачу информации (в системе закодированных символов). А также можно частично предсказывать ход опыта или события, деля их на составные части и высчитывая значение неопределённости для каждой из них. Такой метод статистической физики помогает выявить вероятность события. С его помощью можно расшифровать закодированный текст, анализируя вероятность появления символов и их показатель энтропии.

Существует такое понятие, как абсолютная энтропия языка. Эта величина выражает максимальное количество информации, которое можно передать в единице этого языка. За единицу в этом случае принимают символ алфавита языка (бит).

В социологии

Объяснение термина энтропия

Здесь энтропия (информационная неопределённость) является характеристикой отклонения социума (системы) или его звеньев от принятого (эталонного) состояния, а проявляется это в снижении эффективности развития и функционирования системы, ухудшении самоорганизации. Простой пример: сотрудники фирмы так сильно загружены работой (выполнением большого количества отчётов), что не успевают заниматься своей основной деятельностью (выполнением проверок). В этом примере мерой нецелесообразного использования руководством рабочих ресурсов будет являться информационная неопределённость.

Энтропия: тезисно и на примерах

  • Чем больше способов реализации, тем больше информационная неопределённость.

Пример 1. Программа Т9. Если в слове будет небольшое количество опечаток, то программа легко распознает слово и предложит его замену. Чем больше опечаток, тем меньше информации о вводимом слове будет у программы. Следовательно, увеличение беспорядка приведёт к увеличению информационной неопределённости и наоборот, чем больше информации, тем меньше неопределённость.

Пример 2. Игральные кости. Выкинуть комбинацию 12 или 2 можно только одним способом: 1 плюс 1 или 6 плюс 6. А максимальным числом способов реализуется число 7 (имеет 6 возможных комбинаций). Непредсказуемость реализации числа семь самая большая в этом случае.

  • В общем смысле энтропию (S) можно понимать как меру распределения энергии. При низком значении S энергия сконцентрирована, а при высоком — распределена хаотично.

Пример. Н2О (всем известная вода) в своём жидком агрегатном состоянии будет обладать большей энтропией, чем в твёрдом (лёд). Потому что в кристаллическом твёрдом теле каждый атом занимает определённое положение в кристаллической решётке (порядок), а в жидком состоянии у атомов определённых закреплённых положений нет (беспорядок). То есть тело с более жёсткой упорядоченностью атомов имеет более низкое значение энтропии (S). Белый алмаз без примесей обладает самым низким значением S по сравнению с другими кристаллами.

Понятие термина энтропия

Пример 1. Молекула находится в сосуде, который имеет левую и правую часть. Если неизвестно, в какой части сосуда находится молекула, то энтропия (S) будет определяться по формуле S = S max = k * lgW, где k -число способов реализации, W- количество частей сосуда. Информация в этом случае будет равна нулю I = I min =0. Если же точно известно, в какой части сосуда находится молекула, то S = S min =k*ln1=0, а I = I max= log 2 W. Следовательно, чем больше информации, тем ниже значение информационной неопределённости.

Пример 3. Информация о классе больше на уроке, чем на перемене. Энтропия на уроке ниже, так как ученики сидят упорядочено (больше информации о местоположении каждого ученика). А на перемене расположение учеников меняется хаотично, что повышает их энтропию.

Пример. При реакции щелочного металла с водой выделяется водород. Водород-это газ. Так как молекулы газа движутся хаотично и имеют высокую энтропию, то рассматриваемая реакция происходит с увеличением её значения. То есть энтропия химической системы станет выше.

В заключение

Если объединить всё вышесказанное, то получится, что энтропия является мерой беспорядка или неопределённости системы и её частей. Интересен тот факт, что всё в природе стремится к максимуму энтропии, а человек — к максимуму информации. И все рассмотренные выше теории направлены на установление баланса между стремлением человека и естественными природными процессами.

Читайте также: