Акустические свойства строительных материалов кратко

Обновлено: 04.07.2024

Акустические строительные материалы призваны поглощать звуковую волну и внешние звуковые эффекты. Шумоизоляция — важная составляющая комфорта и уюта в доме. Акустические материалы применяются в производственных, учебных, общественных и жилых помещениях, а также везде, где присутствует высокий порог слышимости. Правильная планировка конструкций и разумный подход к выбору материалов является главным условием хорошей производительности. Материалы имеют разное предназначение и возможности. Акустические материалы являются препятствием на пути звуковой волны, что является идеальным решением для устройства межквартирных перегородок. Намного сложнее установить звукоизоляцию при устройстве междуэтажных перекрытий. Для этого требуется устанавливать либо очень тяжелые ограждения, либо двухслойные стенки с воздушными прослойками. Различают звукопоглощающие и звукоизоляционные акустические материалы. Первые поглощают звук, а вторые снижают уровень шума. Акустические материалы изготавливаются в виде матов, плит, блоков, ваты или сыпучих веществ (керамзит, вспученный перлит).

В данном реферате, показывается, насколько разнообразны виды акустических строительных материалов, какое применение, строение, использование, в быту и в повседневной жизни имеют акустические строительные материалы. Также показывается важность использования различных акустических строительных материалов, в той или иной ситуации, описаны параметры, по которым можно ориентироваться при выборе акустических материалов, их особенности, различия в составе, различные качественные и другие характеристики.

1 КЛАССИФИКАЦИЯ АКУСТИЧЕСКИХ

1.1 Классификация по функциональному назначению

Звукопоглощающие материалы предназначены для применения в конструкциях звукопоглощающих облицовок внутренних помещений и для отдельных звукопоглотителей для снижения звукового давления в помещениях производственных и общественных зданий. Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.).

Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75 % по объёму).

. труда и отдыха; чрезмерная производственная нагрузка работников; отсутствие навыков по снижению влияния психоэмоционального напряжения. Вопросы, относящиеся к обеспечению охраны труда при работе за компьютером, регулируются Конституцией . - не менее 23 м3 Для внутренней отделки помещений должны использоваться диффузно-отражающие материалы с коэффициентом отражения от потолка - 0,7 - 0,8; для стен .

Большая удельная поверхность материалов, создаваемая стенками открытых пор, способствует активному преобразованию энергии звуковых колебаний в тепловую энергию вследствие потерь на трение. Эффективность звукопоглощающих материалов оценивается коэффициентом звукопоглощения, равным отношению количества поглощённой энергии к общему количеству падающей на материал энергии звуковых волн. Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые).

Мягкие звукопоглощающие материалы изготовляются на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3 % по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м 3 , которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250-1000 Гц) от 0,7 до 0,85. К полужёстким материалам относятся минераловатные или стекловолокнистые плиты с объёмной массой от 80 до 130 кг/м 3 при содержании синтетического связующего от 10 до 15 % по массе, а также древесноволокнистые плиты с объёмной массой 180-300 кг/м 3 [3].

Поверхность плит покрывается пористой краской или плёнкой. Коэффициент звукопоглощения полужёстких материалов на средних частотах составляет 0,65-0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).

Звукоизоляционные материалы применяются в качестве прокладок (прослоек) в многослойных ограждающих конструкциях для улучшения изоляции ограждений от ударного и воздушного звуков. Звукоизоляционные прокладочные материалы применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование. Характеризуются малым значением динамического модуля упругости, как правило, не превышающим 1,2 Мн/м 2 (12 кгс/см 2 ), при нагрузке 20 Мн/м 2 (200 кгс/см 2 ).

Упругие свойства скелета материала и наличие воздуха, заключённого в его порах, обусловливают гашение энергии удара и вибрации, что способствует снижению структурного и ударного шума. Различают звукоизоляционные прокладочные материалы, изготовляемые из волокон органического или минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны и плиты толщиной от 10 до 40 мм, объёмная масса 30-20 кг/м 3 ), а также из эластичных газонаполненных пластмасс (латексы синтетических каучуков, пенополиуретан, пенополивинилхлорид), выпускаемых в виде плит толщиной от 5 до 30 мм; объёмная масса эластичного пенополиуретана 40-70 кг/м 3 , пенополивинилхлор ида 70-270 кг/м 3 . В ряде случаев для целей звукоизоляции применяются штучные прокладки из литой или губчатой резины.

Способы прокладок открытых электропроводок

. сооружений из трудносгораемых и несгораемых материалов; по конструкциям и поверхностям из сгораемых материалов прокладка этих труб не допускается. Открытые электропроводки в пластмассовых защитных трубах . последних. Особенно широко этот метод применяется сегодня в крупнопанельном домостроении, где для монтажа используют сменяемые групповые электропроводки. Это не только повышает заводскую .

Вибропоглощающие материалы предназначены для ослабления изгибных колебаний, распространяющихся по жестким конструкциям (преимущественно тонким) для снижения излучаемого ими звука, для поглощения вибрации и вызываемых шумов при работе инженерного и санитарно-технического оборудования. Вибропоглощающие материалы изготавливают как на основе натурального волокна (базальтовая вата, каолиновая вата, вспученный перлит, вспененное стекло, шамот) так и на основе синтетической субстанции (пенополиэстр, пенополиуратен, пенополиэтилен, пенополипропилен).

Наиболее долговечна минеральная вата из горных пород, в большинстве случаев — базальтовая. Среди её дополнительных преимуществ выделяют гидрофобность, огнестойкость, паропроницаемость и экологическую безопасность.

Эффективными звукоизоляционными изделиями с волокнистой структурой являются маты и плиты полужесткие минераловатные и стекловатные на синтетическом связующем, маты и рулоны прошивные стекловатные, древесноволокнистые изоляционные плиты, пористая резина, поливинилхлоридные и полиуретановые пенопласты. Изготавливают ленточные и полосовые прокладки длиной от 1000 до 3000 мм и шириной 100, 150, 200 мм, штучные прокладки — длиной и шириной 100, 150, 200 мм. Изделия из волокнистых материалов применяются только в оболочке из водостойкой бумаги, пленки, фольги.

Вибропоглощающими материалами служат некоторые сорта резины и мастики, фольгоизол, листовые пластмассы. Вибропоглощающие материалы наносятся на тонкие металлические поверхности, при этом создается эффективная вибропоглощающая конструкция с высокой энергией на трение.

1.2 Классификация акустических материалов по основным признакам

1 По форме звукопоглощающие материалы и изделия подразделяют на штучные (блоки, плиты); рулонные (маты, полосовые прокладки, холсты); рыхлые и сыпучие (вата минеральная и стеклянная, керамзит, вспученный перлит и другие пористые зернистые материалы).

2 По жесткости звукопоглощающие материалы подразделяют на мягкие, полужесткие, жесткие и твердые.

3 По структурным признакам звукопоглощающие материалы и изделия подразделяют на пористо-зернистые, пористо-волокнистые, пористо-ячеистые (из ячеистого бетона и перлита) и пористо-губчатые (пенопласты, резины).

4 По возгораемости акустические материалы и изделия подразделяют на три группы: сгораемые, трудносгораемые и несгораемые.

2 СВОЙСТВА АКУСТИЧЕСКИХ МАТЕРИАЛОВ

Совокупность многочисленных звуков, быстро меняющихся по частоте и силе, принято называть шумом. Шум в помещениях относится к категории санитарно-гигиенических вредностей, так как длительное его воздействие вредно для здоровья человека и понижает его работоспособность. Различают шумы воздушные и ударные. Воздушный шум возникает и распространяется в воздушной среде. Звуковые волны воздействуют на ограждающие конструкции зданий, приводят их в колебательное движение и тем самым передают звук в соседние помещения, отражаются и частично поглощаются ограждениями. Ударный шум возникает и передается в ограждающих конструкциях при ударных, вибрационных и других воздействиях непосредственно на конструкцию.

Запись и обработка звука на базе студии звукозаписи

. рассмотрения, что и предопределило актуальность темы данного исследования. Цель: изучить процесс и условия записи обработки звука на базе студии звукозаписи. студийный звукозапись аппаратный частотный Задачи исследования: 1. . Материалом для них служила отработанная рентгеновская пленка. Эти пластинки так и назывались "на ребрах", так как на просвет на них были видны кости. Качество звука на .

Вредное действие шумов стремятся уменьшить путем разработки рациональных планировочных и конструктивных решений зданий, осуществляемых с применением акустических материалов и изделий.

Акустическими называют материалы, способные поглощать звуковую энергию, а также снижать уровень силы и громкости, проходящих через них звуков, возникших как в воздухе, так и в материале ограждения.

Акустические свойства материалов связаны с взаимодействием материалов и звука. Наиболее значимыми акустическими свойствами материала являются звукопроводность, звукопоглощение и звукоизоляция.

Звукопроводность – это свойство материала пропускать через свою толщину звук. Для изоляции помещений от шумов важно, чтобы строительные конструкции имели низкую звукопроводность. Она зависит от строения и массы материала. Тяжелые материалы (кирпич), а также пористые и волокнистые материалы плохо проводят звук.

Звукопоглощение – это свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала, его толщины, состояния поверхности, а также частоты звукового тона, измеряемого количеством колебаний в секунду.

Основной акустической характеристикой звукопоглощающих материалов является коэффициент звукопоглощения а равный отношению количества энергии звуковых колебаний, поглощенной материалом или конструкцией, к общему количеству звуковой энергии, падающей на изолируемую поверхность в единицу времени.

Звукопоглощающие материалы отличаются декоративностью и способствуют формированию выразительного и эстетичного вида помещения.

Производство строительных материалов, изделий и конструкций в .

. что себестоимость строительства в Казахстане остается одной из самых высоких среди стран СНГ, основной причиной этого является дороговизна строительных материалов в Республике. . строительных материалов, соответствующих мировым стандартам. В последние годы в Казахстане наметилась положительная тенденция наращивания темпов роста производства строительных материалов, изделий и конструкций. Значительно .

Под звукоизоляцией подразумевают комплекс мероприятий, направленных на снижение интенсивности проникновения звука (шума) до допустимых величин при прохождении его через ограждающие конструкции. Критерием звукоизоляции является разность уровней силы звука до и после прохождения его через ограждающую конструкцию. Разность уровней силы звука в жилых домах для стеновых материалов и материалов междуэтажных перекрытий должна составлять 50 дБ, для перегородок – 40 дБ.

Главное свойство звукоизоляционных материалов — это ослабление ударного шума. Звукоизоляционная способность материала в ограждении оценивается по разности уровней звука с обеих сторон ограждения и выражается в децибелах. Предельные (максимально допустимые) уровни шума устанавливаются в зависимости от назначения помещения и частотной характеристики звука. Нормальное ухо человека воспринимает звуковые колебания частотой 16…20000 Гц, причем особо чувствительными являются частоты 1500…3000 Гц. Звукоизоляционная способность ограждения прямо пропорциональна десятичному логарифму его массы. Однако увеличение массы конструкций делает их слишком тяжелыми, громоздкими и дорогими. Гораздо эффективнее конструкции, изготовленные из пористых материалов, или многослойные конструкции, имеющие воздушные прослойки. В этом случае используются упругие свойства воздуха, которые гасят звуковые колебания и прерывают распространение звука. По этой же причине и звукопоглощающие материалы стремятся изготовлять высокопористыми (пористость 40…90 %), т. е. как и теплоизоляционные материалы. Однако в отличие от теплоизоляционных материалов, где выгодны замкнутые воздушные поры, эффективность звукопоглощающих материалов возрастает при наличии сквозных пор или специально предусмотренной перфорации.

Строительно-эксплуатационные свойства акустических материалов оценивают по механической прочности, деформации при колебаниях температуры и влажности, стойкости при воздействии влаги, высокой температуры, огня, микроорганизмов, соответствию санитарно-гигиеническим нормам и способности сохранять свои свойства в процессе длительной эксплуатации.

Всем приятно находится в помещении с хорошей акустикой. Но не каждый знает, что же это такое, а тем более как этого достичь. Представив разговор в пустой комнате можно понять, что такое отсутствие акустики, ведь все твердые поверхности, такие как пол, потолок будут отражать возникающие звуки. Мягкая мебель может помочь в улучшении звуковой среды, но ее будет недостаточно при создании идеала. Для обеспечения нужного звучания, без каких – либо помех, необходимо использовать акустические материалы. Подобрать нужный вариант не составит большого труда – на ваш выбор представлен широкий спектр материалов различных видов и цветов. С каждым днем спрос на акустические материалы становится больше, следовательно, растет и ассортимент продукции.

Способы звукоизоляции помещений

. материалов можно добиться не только эффективной защиты от шума, но и способствовать исчезновению влаги, а также установить идеальный теплобаланс в различных помещениях. Далее мы рассмотрим несколько способов звукоизоляции помещений. Шум и звукоизоляция Звукоизоляция .

При строительстве жилых, промышленных и офисных помещений для возведения стен, перегородок, плоских и скатных крыш с небольшим углом наклона может применяться строительный материал фибролит. Он производится из древесного или синтетического волокна и цемента, обладает плотностью от 208 до 570 кг на м 3 . Фибролит служит материалом для производства несъёмной опалубки, применяемой для каркасного домостроения. Один из его видов — акустический фибролит используется для создания акустических потолков.

Благодаря высокому коэффициенту звукопоглощения, большое распространение получили материалы из каменной ваты. В виде плит различной толщины они применяются для звукоизоляции помещений всех типов. Среди них есть универсальные материалы для повышения звукоизоляции стен, пола и потолков.

Примеры похожих учебных работ

Звукопоглащающие плиты и материалы

. Инструментами, позволяющими эффективно регулировать акустику помещения, являются декоративно-отделочные звукопоглощающие материалы и конструкции. При этом звукоизоляционные материалы должны выполнять две главные функции - предотвращать колебания .

Способы звукоизоляции помещений

. установленным ГОСТами. Правильная акустика жилых помещений стала важным этапом строительства сравнительно недавно. В целях удешевления строительных работ звукоизоляция квартир выполнялась на невысоком уровне. Однако сегодня, после принятия .

Запись и обработка звука на базе студии звукозаписи

. внимательного рассмотрения, что и предопределило актуальность темы данного исследования. Цель: изучить процесс и условия записи обработки звука на базе студии звукозаписи. студийный звукозапись аппаратный частотный Задачи исследования: 1. Проследить .

Древесно-волокнистые плиты

. 25 мм во всю длину плиты. Такие плиты изготовляют из мягких плит М-20. Поверхность плит в процессе производства покрывают . весины, или других рисунков. Существует несколько видов этих плит. Плиты типа А полутвердые и твердые, покрытые водоэмульси­ .

ОСНОВАНИЕ И ПОРЯДОК ВЫСЕЛЕНИЯ ГРАЖДАН ИЗ ЖИЛЫХ ПОМЕЩЕНИЙ

. статей 84 и 85 ЖК РФ, которым жилое помещение было предоставлено на основании договора социального найма. Важно обратить внимание, что только в судебном порядке выселение допускается из указанных жилых помещений.На основании статьи 84 .

Технологические свойства характеризуют способность строительного материала подвергаться тому или иному виду обработки. Так, древесина хорошо обрабатывается инструментами. Технологические свойства некоторых полимерных материалов включают способность сверлиться, обтачиваться, свариваться, склеиваться. Глиняные, бетонные и иные смеси обладают пластичностью, вязкостью, которые обеспечивают заполнение определенного объема.

Вязкость строительных материалов. Вязкость - это сопротивление жидкости передвижению одного ее слоя относительно другого. Когда какой-либо слой жидкости приводится в движение, то соседние слои также вовлекаются в движение и оказывают ему сопротивление, величина которого зависит от температуры и вещественного состава. Вязкостные свойства важны при использовании органических вяжущих веществ, природных и синтетических полимеров, красочных составов, масел, клеев. При нагревании вязкость этих строительных материалов снижается, при охлаждении -повышается.

Упругость строительных материалов. Упругость является свойством строительного материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считается напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины.

Пластичность строительных материалов - способность строительного материала деформироваться без разрыва сплошности под влиянием внешнего механического воздействия и сохранять полученную форму, когда действие внешней силы закончится. Все материалы делятся на пластичные и хрупкие. К пластичным относят сталь, медь, глиняное тесто, нагретый битум и др.

Акустические свойства строительных материалов

Акустические свойства строительных материалов проявляются при действии звука на материал. Акустические материалы по назначению могут быть звукопоглощающие, звукоизолирующие, вибропоглощающие и виброизолирующие.

Звукопоглощающие строительные материалы. Звукопоглощающие материалы предназначены для поглощения шумового звука. Их акустической характеристикой является величина коэффициента звукопоглощения, равная отношению количества поглощенной материалом звуковой энергии к общему количеству звуковой энергии, падающей на поверхность материала в единицу времени. Как правило, такие строительные материалы имеют большую пористость или шероховатую, рельефную поверхность, поглощающую звук. Строительные материалы, у которых коэффициент звукопоглощения выше 0,2, называют звукопоглощающими.

Звукоизолирующие строительные материалы. Звукоизолирующие материалы применяют для ослабления ударного звука, передающегося через строительные конструкции здания из одного помещения в другое.

Звукоизоляционные строительные материалы оценивают по двум показателям: относительной сжимаемости под нагрузкой в процентах и динамическому модулю упругости.

Вибропоглощающие и виброизолирующие материалы предназначены для предотвращения передачи вибрации от машин и механизмов к строительным конструкциям.

Звук представляет собой механические колебания упругой среды (газообразной, жидкой или твердой) в диапазоне слышимых частот и характеризуется частотой, интенсивностью и звуковым давлением. Скорость распространения звуковых волн зависит от упругих свойств, температуры и плотности среды, в которой они распространяются. Например, скорость распространения звуковых волн в воздухе при температуре 20 °С равна 343 м/с, в стали – 5000 м/с, в бетоне – 4000 м/с.

Шум представляет собой беспорядочное хаотичное смешение (совокупность) звуков различной частоты. По характеру распространения он может быть воздушным, структурным и ударным. Воздушный – это шум, излучаемый непосредственно в воздух, и источник шума не связан с ограждающими конструкциями. Структурный шум создается от механического воздействия (например, при вибрации коммуникаций в зданиях) и распространяется в другие помещения посредством звуковой волны в твердых сопряженных конструкциях, т.е. это звук внутри строительной конструкции. Ударный шум создается от непосредственного контакта предмета о предмет (удары в стену, стук по трубам и др.) и тоже распространяется на большие расстояния.

Уровень шума измеряется в децибелах (дБ). Санитарные нормы в зависимости от частоты звука устанавливают допустимый уровень шума в производственных помещениях 80…85 дБ, административных – 38…71 дБ и больницах – 13…51 дБ. Минимальные требования к звукоизоляции перегородок между квартирами – 54 дБ, для межкомнатных перегородок – 43 дБ. Длительное воздействие шума в 90 дБ и более негативно сказывается на здоровье людей (нервные расстройства, потеря слуха и другие более серьезные последствия).

воздействие звуковых волн на материал ограждения

Рис. 1. Схема воздействия звуковых волн на материал ограждения

При падении звуковой волны на ограждающую поверхность часть звуковой энергии отражается, часть поглощается материалом, а часть проходит через ограждающую конструкцию (рис. 1). Материалы и изделия, способные уменьшать энергию звуковых волн и снижать уровень громкости внутреннего или внешнего звука называют акустическими. Придание им звукоизолирующих свойств основывается на трех основных физических явлениях: отражении воздушных звуковых волн от поверхности ограждения, поглощении звуковых волн материалом ограждения и гашении ударного или воздушного шума за счет деформации элементов конструкции и материалов, из которых она изготовлена. При этом физическая сущность их состоит в том, что падающая на них энергия звуковой волны отражается в значительно большей степени, чем проходит через них.

2. Классификация акустических материалов

Строительные акустические материалы и изделия классифицируют по следующим основным признакам (ГОСТ 23499):

  • функциональному назначению:
  • звукоизоляционныепрокладочные (снижающие уровень шума);
  • звукопоглощающие(активно поглощающие звук). По характеру поглощения звука они подразделяются:
  • на панельные материалы и конструкции, в которых звукопоглощение обусловлено активным сопротивлением системы, совершающей вынужденные колебания под действием звуковой волны (жесткие ДВП, звуконепроницаемые ткани);
  • пористые с твердым скелетом, в которых звук поглощается в результате вязкого трения в порах (пенобетон, пеностекло);
  • пористые с гибким скелетом, в которых кроме резкого трения в порах возникают релаксационные потери, связанные с деформацией нежесткого скелета (каменная вата).

По эффективности звукопоглащения их подразделяют на классы (табл. 1).

Таблица 1. Классы звукопоглощающих материалов (EN ISO 11654, ГОСТ 23499)

  • вибропоглощающие– предназначенные для поглощения вибрации и вызываемых шумов при работе инженерного и санитарно-технического оборудования. В основном они представлены вязкоупругими материалами (обычно на основе битума, вспененного каучука, резины и т.п.), в которых происходят значительные механические потери, обусловленные внутренним трением. Эффективность виброизоляции таких материалов оценивается коэффициентом механических потерь и динамическим модулем упругости;
  • внешнему виду (форме) – штучные (блоки, плиты, листы), рулонные (маты, линолеум, холсты) и сыпучие (песок, керамзит, шлак, перлит и другие пористые заполнители);
  • структуре (ячеистые, волокнистые, зернистые, губчатые и смешанной структуры);
  • сжимаемости (мягкие, полужесткие, жесткие и твердые). Сжимаемость акустических материалов и изделий характеризуется коэффициентом относительного сжатия ε, зависящего от вида и структуры материала или изделия, и определяется экспериментально;
  • пожарной безопасности – на группы по горючести, воспламеняемости, распространению пламени, дымообразующей способности и токсичности.

Кроме того, акустические материалы могут быть отделочными и прокладочными. Отделочные акустические материалы в основной массе поглощают звук внутри помещений и оптимизируют условия слышимости. Однако часть звуковых волн может отражаться от конструкций, и тогда в помещении сохраняется звучание даже после прекращения действия источника звука. Такое явление называется реверберацией. Прокладочные акустические материалы используют в конструкциях перекрытий между этажами, во внутренних перегородках и стенах и в качестве виброизоляционных прокладок под оборудование и машины. Часто такие материалы комбинируют с отделочными.

3. Основные свойства акустических материалов

Основными качественными характеристиками акустических материалов и изделий являются:

  • динамическая жесткость si (Н/м 3 ) (СТБ EN 29052-1, ГОСТ Р 53378) – отношение динамической силы, действующей перпендикулярно к поверхности звукоизоляционного материала или изделия, к динамическому смещению, и отнесенное к площади упругого материала. Динамическое смещение (Δd, м) оценивается изменением толщины слоя упругого материала под действием вынуждающей силы. Динамическая жесткость волокнистых изделий из минеральной ваты должна быть в пределах 20…200 МПа/м при нагрузке на звукоизоляционный слой 2…10 кПа, губчатых изделий (из пенорезины, полиуретана) и зернистых материалов – не более 250 МПа/м;
  • динамический модуль упругости Ed(Н/м 2 ) – физическая величина, характеризующая упругие свойства звукоизоляционных материалов и изделий, определяемая при продольных колебаниях (СТБ 1438, ГОСТ 16297). Чем ниже значение динамического модуля упругости, тем эффективнее звукоизоляционный материал. Динамический модуль упругости звукоизоляционных материалов в зависимости от их вида не должен превышать 5 МПа при удельной нагрузке 0,002 МПа для штучных изделий и 15 МПа – для зернистых засыпок. У большинства звукоизоляционных материалов динамический модуль упругости в несколько раз превышает статический;
  • удельное сопротивление потоку воздуха r (для однородных материалов, Па · с/м 2 ) определяется как отношение удельного сопротивления продуванию потоком воздуха Rsк толщине образца d в направлении потока воздуха (r = Rs/ d) (СТБ EN 29053) и должно составлять 10…100 кПа · с/м 2 ;
  • нормальный коэффициент звукопоглощения αn– измеренный в условиях падения звуковой волны под одним углом (по нормали) к поверхности материала или изделия. Как правило, устанавливает предварительную оценку звукопоглощающих свойств (СТБ 1438);
  • реверберационный коэффициент звукопоглощения αs– измеренный в реверберационной камере при хаотическом падении звука на поверхность звукопоглощающего материала или изделия. В зависимости от частоты звукового сигнала изменяется от 0 до 1 (ГОСТ Р 53376). Явление реверберации возникает при отражении звуков ограждающими поверхностями помещений;
  • коэффициент звукопоглощения (ГОСТ 16297) равен отношению звуковой энергии Епогл, поглощенной материалом (не отраженной), к энергии Епад, падающей на него α = Епогл / Епад.

За единицу звукопоглощения условно принимают звукопоглощение 1 м 2 открытого окна, равное единице (предполагается, что звук, вышедший из комнаты в окно, обратно уже не возвращается). Единицей измерения служит сэбин (по имени американского акустика W. Sabine). Значение коэффициента звукопоглощения может находиться в пределах от 0 (звук полностью отражается в помещение) до 1 (звук полностью поглощается материалом), т.е. чем выше численное значение коэффициента, тем больше звукопоглощение. Звукопоглощающие материалы должны иметь коэффициент звукопоглощения не менее 0,4.

На величину α оказывает влияние уровень и характеристика звука (частота звуковой волны), свойства звукопоглощающего материала (характер и объем пористости), конструктивные особенности устройства звукопоглощающей облицовки ограждения и др. Например, один и тот же материал может хорошо поглощать высокочастотный звук и плохо – низкочастотный. Наилучшие условия для поглощения звука создаются в материалах с сообщающимися и открытыми порами. С возрастанием частоты звука α одного и того же материала возрастает. Низкочастотные волны в материал почти не проникают. Коэффициент звукопоглощения применяется в качестве предварительной оценки звукопоглощающих свойств;

  • индекс улучшения изоляции ударного шумаL (дБ) – частотно независимые значения характеристики улучшения звукоизоляции, соответствующие величине смещенной нормативной кривой на частоте 500 Гц (среднегеометрической частоте октавной полосы). Для рулонных покрытий пола он должен составлять не менее 18 дБ;
  • индекс звукопоглощения αw– частотно независимые значения коэффициентов звукопоглощения, соответствующие величине смещенной нормативной кривой на частоте 500 Гц. Является наиболее применяемой на практике характеристикой звукопоглощающих свойств (ГОСТ Р 53377);
  • удельное сопротивление продуванию потоком воздуха Rs(Па · с/м) (СТБ EN 29053) определяется как отношение разности давлений с двух сторон образца пористого материала к линейной скорости потока воздуха через образец (Rs= R · A). Для продуваемых защитных оболочек из тканей или рогожек Rsдолжно быть в интервале 100…200 Па · с/м при поверхностной плотности оболочек не более 125 г/м 2 ;
  • плотность ρ (кг/м 3 ) (ГОСТ 17177) – чем плотнее материал, тем выше его отражающая способность и тем эффективнее защита от воздушного шума. Звукопоглощающие волокнистые материалы и изделия должны изготовляться плотностью 20…200 кг/м 3 ;
  • коэффициент относительного сжатия ε – относительное изменение толщины упругого слоя звукоизоляционного материала или изделия под нагрузкой 2, 5 и 10 кПа. Зависит в основном от вида и структуры материала или изделия и определяется экспериментально. Применяют при вычислении резонансной частоты конструкции плавающего пола;
  • предел прочности при изгибе или сжатии (для жестких и твердых изделий) кПа (МПа) (ГОСТ 17177);
  • сорбционная влажность (должна быть не более 10%);
  • индекс перфорации – отношение суммарной площади отверстий перфорированного покрытия (живое сечение) к общей площади покрытия, %.

4. Звукопоглощающие материалы и изделия

К звукопоглощающим относят материалы, имеющие, как правило, сквозную пористость и характеризующиеся относительно высоким коэффициентом звукопоглощения (α > 0,4). Они предназначены для применения в качестве поглощающего слоя в конструкциях облицовок внутренних поверхностей помещений и шумозащитных сооружений с целью снижения интенсивности отражения звуковых волн, а также в конструкциях легких многослойных ограждений с целью улучшения изоляции воздушного шума. Задача их – поглотить звук, не дать ему отразиться от преграды обратно в помещение и тем самым регулировать акустические характеристики помещения.

Способность материалов поглощать звуки в основном обусловлена их пористой структурой и наличием большого количества сообщающихся открытых пор со стороны падения звука. Максимальный диаметр пор не должен превышать 2 мм, а общая пористость составлять не менее 75%. Это вызвано тем, что при прохождении звуковой волны через толщу материала она приводит воздух, заключенный в его порах, в колебательное движение. Мелкие поры при этом создают большее сопротивление потоку воздуха, чем крупные. Движение воздуха в них тормозится, и в результате трения часть механической энергии превращается в тепловую. Чем выше открытая пористость изолирующей поверхности, тем выше звукопоглощение. Условно различают пористые звукопоглощающие материалы, резонансные поглотители звука и отдельные звукопоглотители.

Звукопоглощающие материалы могут иметь волокнистое, зернистое или ячеистое строение и обладать различной степенью жесткости (мягкие, полужесткие, жесткие или твердые). Твердые материалы волокнистого строения изготовляют в виде плит из минеральной ваты (преимущественно из каменной или стеклянной) на крахмальном или синтетическом связующем. Плотность их должна составлять до 200 кг/м 3 , диаметр волокон – не менее 1 мкм и не более 20 мкм, а содержание неволокнистых соединений (корольков) – не превышать 5% по массе.

Поверхность минераловатных плит, как правило, окрашивается или может иметь другое декоративное и проницаемое для звуковых волн покрытие, обладать различной фактурой (рифленой, бороздчатой, трещиноватой). Коэффициент звукопоглощения находится в пределах 0,6…0,7, плотность – 300…400 кг/м 3 . Звукопоглощающие плиты могут изготовляться также из белых и цветных цементов и пористых заполнителей (перлит, вермикулит, пемза, древесная шерсть), ячеистых бетонов, литых гипсовых и др.

В качестве полужестких используются минераловатные плиты с содержанием синтетического связующего 10…15%, древесноволокнистые плиты, из пористых пластмасс ячеистой структуры (пенополистирольные, пенополиуретановые и др.). Коэффициент звукопоглощения таких изделий находится в пределах 0,5…0,75, плотность – 80…130 кг/м 3 .

Мягкие звукопоглощающие материалы (рулоны, маты) тоже изготовляют из минеральной ваты без синтетического связующего и в комбинации с перфорированными листовыми экранами (алюминия, поливинилхлорида). Коэффициент звукопоглощения находится в пределах 0,7…0,95, плотность – до 70 кг/м 3 . Мягкие и полужесткие звукопоглощающие волокнистые материалы и изделия должны изготовляться и применяться только с защитными (продуваемыми или непродуваемыми) оболочками, препятствующими высыпанию волокон и пыли. Вместе с тем защитные оболочки не должны оказывать влияния на звукопоглощающие свойства защищаемого материала.

В настоящее время самыми эффективными звукопоглощающими материалами являются супертонкие минеральные (стеклянные и каменные) волокна. Однако их применение допускается при наличии специальных покрытий, обеспечивающих высокую степень защиты от нежелательной эмиссии частиц волокна. При этом для выполнения своих акустических функций такое покрытие должно быть пористым, т.е. негерметичным. В некоторых случаях в качестве отделочных покрытий звукопоглощающих конструкций могут применяться разнообразные ткани, ковры, шкуры и паласы, тоже обладающие некоторым акустическим эффектом.

На звукопоглощающие свойства материалов оказывает влияние также их упругость. В изделиях с гибким деформирующимся каркасом имеют место дополнительные потери звуковой энергии вследствие активного сопротивления материала вынужденным колебаниям под действием падающих звуковых волн. Основными качественными характеристиками всех звукопоглощающих материалов и изделий являются динамическая жесткость и динамический модуль упругости, удельное сопротивление потоку воздуха и продуванию потоком воздуха, нормальный и реверберационный коэффициенты звукопоглощения и индексы улучшения изоляции ударного шума и звукопоглощения.

5. Звукоизоляционные материалы и изделия

Материалы, предназначенные для решения вопросов звукопоглощения и звукоизоляции, не являются взаимозаменяемыми. Звукоизоляционные материалы предназначены для применения в качестве звуко- и виброизоляционного и демпфирующего (упругого) слоя в многослойных строительных конструкциях с целью улучшения изоляции воздушного, ударного и структурного звуков. Задача их – отразить звук и не позволить ему пройти сквозь стену. По определению ГОСТ 23499 они характеризуются вязкоупругими свойствами и обладают динамической жесткостью не более 250 МПа/м.

Следовательно, звукоизоляционные материалы не могут выполнять функции звукопоглощающих, в то время как качественные звукопоглощающие материалы способствуют улучшению звукоизоляции в помещениях. Поэтому в современном строительстве используют, как правило, комбинированное применение звукоизоляционных материалов в составе ограждающих конструкций и конструкций перекрытий и звукопоглощающих материалов в качестве отделочных, которые определяют интерьерную архитектуру и окончательный внешний вид, а также акустический комфорт в помещении.

Уменьшение уровня воздушного шума осуществляется устройством ограждающих конструкций (стен, перегородок, перекрытий). Звукоизоляционная способность их пропорциональна логарифму массы. Поэтому массивные конструкции обладают большей звукоизоляционной способностью от воздушного шума, чем легкие. Поскольку устройство тяжелых ограждений экономически нецелесообразно, надлежащую звукоизоляцию обеспечивают устройством двухили трехслойных ограждений, часто с воздушными зазорами, которые рекомендуется наполнять пористыми звукопоглощающими материалами. Желательно, чтобы конструктивные слои имели различную жесткость и герметичность, что повышает степень звукоизоляции.

Эффективность ограждающих конструкций оценивают индексом звукоизоляции воздушного шума (усредненным в диапазоне наиболее характерных для жилья частот 100…3000 Гц), а эффективность перекрытий – индексом приведенного ударного шума под перекрытием, измеряемых в дБ. Для ограждающих конструкций индекс звукоизоляции оптимально должен составлять 52…60 дБ. Чем больше индекс изоляции воздушного шума и меньше индекс приведенного ударного шума под перекрытием, тем лучше изоляция.

  • мягкие, полужесткие и жесткие изделия в виде плит, матов (прошивные маты, древесноволокнистые плиты, изделия из пенопластов, полиуретана);
  • засыпки (песок, керамзит, шлак, перлит и др.);
  • рулонные и плиточные покрытия полов (основный и безосновный поливинилхлоридный линолеум, поливинилхлоридные плитки, ковролин).

Однако предпочтение сегодня отдается универсальным звукоизоляционным материалам на основе природного сырья, например изделиям на основе каменной (базальтовой) ваты. Их отличные звукоизоляционные свойства определяет специфическая структура – хаотично направленные тончайшие волокна при трении друг с другом превращают энергию звуковых колебаний в тепловую.

Виды акустических материалов > Звукоизоляционные материалы, Звукопоглощающие материалы, Вибропоглощающие материалы

Согласно ГОСТ Р23499-79, звукоизоляционные материалы и изделия подразделяются на: звукопоглощающие материалы, предназначенные для внутренней облицовки помещений и устройств с целью создания в них требуемого звукопоглощения; звукоизолирующие материалы, предназначенные .

СПОСОБЫ СНИЖЕНИЯ ШУМА

Чтобы повысить звукоизоляцию кирпичной стены всего на 6 дБ (что не очень значительно), необходимо увеличить толщину кладки примерно в 2 раза. Это утверждение справедливо не только для стен.

Звукопоглощающие материалы

Акустические минераловатные плиты АКМИГРАН Этот материал представляет собой звуко­поглощающие плиты, изготавливаемые из гранулированной минеральной ваты с крахмальным связующим путем формования и последующей сушки изделий. Минеральную вату гранулируют и .

ЗВУКОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ ОТ СТРУКТУРНОГО (УДАРНОГО) ШУМА

Для изоляции от ударного шума используют пористые материалы с малым значением модуля упругости, поскольку затухание звуковой волны объясняется тем, что звуковая энергия расходуется на упругие деформации .

Звукоизоляционные работы в многоэтажных домах

Подавляющее большинство квартир, в которых сегодня проживают горожане, построены еще в 60-х – 80-х годах прошлого века. Во время постройки этих зданий звукоизоляции не уделяли должного внимания, и теперь люди вынуждены жить в постоянной .

баннер для сайдбара Вы это искали



Читайте также: