Активная зона реактора кратко

Обновлено: 05.07.2024

Устройство, предназначенное для осуществ­ления управляемой ядерной реакцией называется ядерный реактор.

Ядерный реактор состоит из: ядерного топли­ва, защитной оболочке,ативной зоны, отражателя, регулирующих стержней и теплообменника.

В активной зоне реактора находятся ура­новые стержни (ядерное топливо), регулирующие стержни (поглотители нейтронов) и вода (замедли­тель нейтронов и теплоноситель).

2. В чём заключается управление ядерной реакцией?

Управление ядерной реакцией заключается в поддержании количества образующихся нейтро­нов на одном, постоянном уровне.

3. Для чего нужны регулирующие стержни? Как ими пользуются?

Регулирующие стержни поглощают нейтроны и таким образом они необходимы для управления ядерной реакцией. Это достигается путем ввода или вывода их из активной зоны реактора.

4. Какую вторую функцию (помимо замедления нейтронов) выполняет вода в первом контуре реактора?

Вода в активной зоне реактора также служит для отвода тепла из нее.

5. Какие процессы происходят во втором контуре реактора?

Пар вращает турбину генератора электриче­ского тока, затем конденсируется в конденсаторе, превращается в жидкость,и опять нагреваясь пре­вращается в пар.

6. Какие преобразования энергии происходят при получении электрического тока на атомных электростанциях?

Внутренняя энергия деления ядер урана пе­реходит в кинетическую энергию осколков и про­тонов, затем они попадают в воду и увеличивают ее внутреннюю энергию, она нагревается и превра­щается в пар, который вращает турбину генерато­ра электрического тока сообщая ей кинетическую энергию и наконец генератор вырабатывает элек­трическую энергию.

Реактор

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

Первый реактор

Типы ядерных реакторов

Реактор

Как устроен реактор

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Работа ядерного реактора

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

Реактор

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

ВВЭР-1200

Реактор

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.


Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.


Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово "ядерный". Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.


История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали "Чикагской поленницей".

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.


Первый в мире ядерный реактор

Принцип работы ядерного (атомного) реактора

Приведем ниже схему работы ядерного реактора.


Схема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.


Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.


ТВЭЛы, помещенные в топливную кассету

Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он - кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы.


Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании. Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Мечта современных ядерщиков — энергетика без радиоактивных отходов. Это когда отработанное ядерное топливо перерабатывается и снова становится топливом для реакторов разного типа. Попутно снижается потребность в дорогостоящем обогащении урана, а в итоге получается что-то фантастическое и, условно, вечно работающее.


БН-800 на Белоярской АЭС — один из двух в мире действующих реакторов на быстрых нейтронах. Выведен на номинальную мощность в 2015 году

Под катом — рассказ про устройство классических ядерных реакторов на тепловых нейтронах, принцип работы ядерных реакторов на быстрых нейтронах (в мире их всего два, и оба в России) и замыкание ядерного топливного цикла.

Уверена, это будет интересно тем, кому пришелся по вкусу рассказ про международную стройку 500-мегаваттного термоядерного реактора ITER.

Наш рассказчик — Алексей Германович Горюнов, заведующий кафедрой и руководитель отделения ядерно-топливного цикла инженерной школы ядерных технологий из томского Политеха, который прочитал лекцию про двухкомпонентную энергетику в томской Точке кипения.

Сегодняшний рассказ — о новых технологиях мирного атома: замыкании ядерно-топливного цикла и двухкомпонентной ядерной энергетике.

Но начнем с того, как ядерно-топливный цикл функционирует сейчас.

Классический топливный цикл


MOX (Mixed-Oxide fuel) — ядерное топливо, содержит несколько видов оксидов делящихся материалов (обычно плутония и урана). НАО, САО, ВАО — разные типы радиоактивных отходов. ОЯТ — отработавшее ядерное топливо

Центр современного цикла ядерный реактор на тепловых нейтронах. Он выделен зеленым. В качестве топлива реактор использует уран, обогащенный по изотопу-235. Чтобы его получить, урановую руду извлекают, перерабатывают, а потом проводят долгое и дорогостоящее обогащение.

В больших реакторах, преобладающих в ядерной энергетике, таких как водо-водяной ВВР-1000 или канальный РБМК-1000, отработанное топливо не перерабатывают. Его хранят в бассейнах выдержки реакторов, а потом перевозят на площадку долговременного хранения на базе горно-химического комбината.

Базовый процесс получения топлива дорогой, а сырье — исчерпаемый ресурс, поэтому человечество напряженно решает задачу по замыканию топливного цикла — это когда из ядерных отходов опять производят топливо. Сейчас эта схема существует лишь в небольшом сегменте ядерной энергетики — в транспортных и исследовательских реакторах.

Давайте теперь посмотрим на устройство современных реакторов.

Ядерные реакторы на тепловых нейтронах

Схематично атомную станцию с ядерным реактором на тепловых нейтронах можно представить так:


Далее мы будем говорить о так называемом ядерном острове, куда входит реакторная часть. Рассмотрим, какие реакторы используются в настоящее время, а какие могут быть запущены в ближайшем будущем.



Условная схема ядерной электростанции

Реактор — это устройство, в активной зоне которого осуществляется контролируемая самоподдерживающаяся цепная реакция деления ядер тяжелых элементов, в частности урана-235. Сегодня наиболее распространены водо-водяные энергетические блоки. На картинке — схема как раз такого реактора.


Условная схема электростанции с водо-водяным реактором

Реактор находится в защищенном корпусе и примыкает к отдельному зданию, где размещают традиционные энергетические узлы — турбинный зал и другие, которые есть в обычных теплоэнергетических станциях.

Обычно в реакторах используют четыре нити охлаждения для повышения надежности. Первый контур охлаждения реактора включает сам реактор, а также главные циркуляционные насосы. Их число соответствует количеству нитей охлаждения — четыре. На каждой из нитей охлаждения установлен парогенератор, который отделяет первый контур реактора от второго, содержащего теплоноситель, поступающий в традиционный остров.


Энергетическая установка с реактором ВВР

Общий вид самого реактора:


Стоит отметить, что это корпусной реактор, такая конструкция позволяет достичь высоких показателей по безопасности.

Ядерные реакторы на быстрых нейтронах


Сечение реакции деления ядер изотопов урана, плутония и тория в зависимости от энергии нейтронов

Рисунок наглядно показывает, что для урана-235 и плутония-239 мы можем создать цепную реакцию, используя как тепловые, так и быстрые нейтроны. А уран-238 в левой части графика (где находятся тепловые нейтроны) делиться не будет. В природе же распространен в основном изотоп урана-238, который нельзя напрямую использовать в реакторе на тепловых нейтронах. Урана-235 в природе содержится очень мало, а для получения топлива необходимо проводить дорогостоящее обогащение.

Реактор на быстрых нейтронах позволяет уйти от процедуры обогащения по урану-235. Но технически все не так просто.

В реакторе на тепловых нейтронах, как и в целом во всех современных энергетических установках, в качестве теплоносителя используют воду. Именно она переносит тепловую энергию к турбинам. С ней понятно, как работать, какие использовать конструкционные материалы. Однако из ядерной физики мы знаем, что вода замедляет быстрые нейтроны, появляющиеся при делении ядер.

Поэтому в реакторе на быстрых нейтронах в качестве теплоносителя, как правило, используются жидкие металлы, что существенно усложняет конструкцию.

Здесь приходится решать целый пласт научных и опытно-конструкторских задач, в том числе — разрабатывать новые материалы.

Наиболее вероятная реакция в реакторе на быстрых нейтронах — поглощение нейтрона изотопом урана-238 — показана на схеме ниже.


В результате природный уран-238 преобразуется в изотоп плутония-239, который обладает свойствами деления, схожими с ураном-235. И тут появляется возможность преобразовать почти не делящийся в реакторах на тепловых нейтронах уран-238 в новое ядерное топливо.

Уран-235 и плутоний-239 схожи по своим свойствам. На базе этих ядер мы вполне можем получить цепную реакцию: поглощая как быстрые, так и медленные нейтроны, ядра будут делиться, испуская вторичные, третичные нейтроны и т.д.


Исторически сложилось, что наиболее проработанные на сегодняшний день реакторы на быстрых нейтронах — БН-600 и БН-800.

А Россия — единственная страна в мире, имеющая действующие промышленные ядерные реакторы на быстрых нейтронах.

Их устройство намного сложнее, чем у двухконтурного водо-водяного реактора на тепловых нейтронах, поскольку в качестве теплоносителя используют жидкий натрий с температурой плавления ~98℃.


Схема энергоблока с реактором на быстрых нейтронах

В реакторах с натриевым теплоносителем мы не можем использовать двухконтурную схему, где первый контур заполнен натрием, а второй — водой, поскольку случайное взаимодействие облученного натрия с водой приведет к особо тяжелым последствиям. В ходе реакции этих двух веществ выделяется взрывоопасный водород, и в случае взрыва нейтрализовать фонящий натрий будет крайне проблематично. Поэтому используют трехконтурную схему. Первый контур — натриевый (на рисунке он показан красным в центре реактора), потом теплообменник и еще один (промежуточный) натриевый контур (желтый цвет), позволяющий снизить степень облучения натрия, и только в третьем контуре используется вода, установлена турбина, тепловые части и остальное оборудование. Три контура усложняют как эксплуатацию реактора, так и управление им.

Следующий шаг — БРЕСТ

Конструкция этого реактора обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого появления нейтронов, приводящего к цепным реакциям (разгона реактора по мощности).


Цель замыкания — постепенно исключить часть цепочки, связанную с добычей урана его обогащением, а также повторно использовать ядерные отходы.

Двухкомпонентная ядерная энергетика

Двухкомпонентная энергетика — это решение задачи по уменьшению количества обогащенного природного урана, необходимого для работы всех этих реакторов. Она еще не достигла пика своего развития — это то, чем будет заниматься поколение сегодняшних школьников.

В настоящее время в реакторах на быстрых нейтронах мы начинаем нарабатывать делящиеся элементы, которые впоследствии позволят загружать сюда топливо, не обогащенное по урану-235.

БН-600 и БН-800 уже работают на так называемом МОКС-топливе (MOX — Mixed-Oxide fuel) — смеси, включающей оксиды плутония-239 и урана. Причем реакторы могут работать как на топливе, обогащенном по урану-235 — и в этом случае нарабатывать плутоний-239, — так и на плутонии.



Частично замкнутый цикл использования ядерного топлива

На базе Опытно-демонстрационного центра в Северске, а в будущем и завода ФТ-2 в Железногорске, есть хранилище отработанного ядерного топлива. Сейчас на финальной стадии разработки находится технология, которая позволит переработать топливо после реактора ВВР и вернуть из него в цикл уран и плутоний. Задачу переработки решают весьма интересно: уран и плутоний не разделяют, а передают на производство в смешанном виде. В итоге мы получаем тепловыделяющие сборки для реакторов, содержащие регенерированный уран и плутоний, а также добавленный туда природный уран, обогащенный по изотопу-235.

Конечно, полного замыкания ядерно-топливного цикла здесь нет, но этот подход позволяет снизить затраты на обогащение.

Кроме того, делящиеся элементы, которые мы будем извлекать из отработанного в реакторах ВВР топлива, пойдут на топливные циклы быстрых реакторов.

Сейчас уже отработана схема загрузки в реактор БН-800 МОКС-топлива, содержащего плутоний-239 и уран-238, его путь на рисунке ниже показан красной линией.


Схема подразумевает использование отработанного ядерного топлива (ОЯТ) из реактора ВВЭР совместно с оксидным топливом с ураном-235 после реакторов БН. В ходе переработки мы выделяем смесь плутония и урана, которая идет на изготовление МОКС-топлива. А отработанное МОКС-топливо перерабатывают вместе с топливом после реактора РБМК.

Получается, что мы начинаем с обычной загрузки реакторов оксидным топливом на базе урана-235 и постепенно, нарабатывая плутоний-239 в быстром реакторе, вытесняем его МОКС-топливом.

Мы не сможем сразу перейти с традиционных реакторов на быстрые, потому что для каждого реактора на быстрых нейтронах придется построить инфраструктуру по переработке топлива, которая в первое время не будет загружена, ведь реакторы должны наработать топливо, которое впоследствии будет перерабатываться. А в схеме выше заложен плавный переход от существующих реакторов к быстрым. Эта схема подразумевает наработку плутония на реакторе БН-800. В перспективе должны появиться более мощные и более рентабельные установки — БН-1200, которые воплотят двухкомпонентность нашей ядерной энергетики на ближайшее десятилетие и стратегию того же Росатома.

Но интереснее то, что происходит в проекте БРЕСТ. Реактор такого типа с электрической мощностью 300 МВт уже начали возводить в Северске. Вокруг него построят комплекс, который позволит решать задачи регенерации топлива, т.е. все процессы в рамках замыкания топливного цикла будут сосредоточены в одном месте.


На начальном этапе будет нужна подпитка природным или обедненным ураном, как отмечено на картинке. Не имея нужного объема плутония, мы можем, как и в предыдущей схеме, стартовать, используя комбинированное топливо, и постепенно нарабатывать плутоний, переходя на замкнутый цикл.

На этот реактор возлагают большие надежды: упомянутый выше естественный контур защиты не позволяет разогнать его до тяжелых аварий. Но здесь придется столкнуться с рядом проблем. Задачи, связанные с наработкой плутония, уже в какой-то степени решали. А вот переработка ядерного топлива после быстрых реакторов — вопрос открытый. Здесь нужно обеспечить короткую выдержку топлива: оно горячее и с высоким радиационным фоном. Нужно создавать новые технологические процессы, отрабатывать их на стендах и внедрять.

Если задача по замыканию ядерного топливного цикла будет решена, то в масштабах жизни человека мы получим практически неисчерпаемый источник энергии.

Параллельно необходимо довести до конца решение задачи по выводу отходов из цикла без нарушения естественного радиационного баланса Земли. Проектируемый топливный цикл должен обеспечить возврат ровно того же количества радиации, которое мы извлекли. Теоретически эта задача просчитана и может быть решена. Дело за практикой.

В отличие от прошлого века, когда необходимо было получить ядерное оружие и заодно ядерную энергетику любой ценой, а экономику никто не просчитывал, сейчас задача состоит в том, чтобы все было энергоэффективно, экономически целесообразно и с обеспечением естественной безопасности. И кто-то это все должен делать. Так что спецы по данному и смежным направлениям без работы не останутся.

Читайте также: