Звуковые колебания источники звука конспект кратко

Обновлено: 07.07.2024

Звук, как мы помним, является упругими продольными волнами. А волны порождаются колеблющимися предметами.

Примеры источников звука: колеблющаяся линейка, один конец которой зажат, колеблющиеся струны, мембрана динамика.

Но не всегда колеблющиеся предметы порождают слышимый ухом звук – если частота их колебаний ниже 16 Гц, то они порождают инфразвук, а если больше 20кГц, то ультразвук.

Ультразвук и инфразвук – с точки зрения физики такие же упругие колебания среды, как и обычный звук, но ухо не способно их воспринять, так как эти частоты слишком далеки от резонансной частоты барабанной перепонки (перепонка просто не может колебаться с такой частотой).

Звуки высокой частоты ощущаются как более тонкие, звуки низкой частоты – как более басовитые.

Если колебательная система совершает гармонические колебания одной частоты, то её звук называется чистым тоном. Обычно источники звука издают звуки сразу нескольких частот – тогда наименьшая частота называется основным тоном, а остальные называются обертонами. Обертона определяют тембр звука – именно из-за них мы легко отличим пианино от скрипки, даже когда основная частота у них одинаковая.

Единица измерения громкости называется сон.

В практических задачах обычно используют величину, называемую уровень громкости или уровень звукового давления. Измеряется эта величина в белах [Б] или, чаще, в децибелах [дБ].

Эта величина логарифмически зависит от звукового давления – то есть увеличение давления в 10 раз увеличивает уровень громкости на 1 дБ.

Звук листания газеты – это примерно 20 дБ, будильник – 80 дБ, звук взлетающего самолёта – это 100-120 дБ (на грани болевых ощущений).

Одно из необычных применений звука (точнее ультразвука) – это эхолокация. Можно издать звук и измерить время, через которое придёт эхо. Чем больше расстояние до препятствия, тем больше будет задержка. Обычно такой способ измерения расстояний используется под водой, но летучие мыши применяют его прямо в воздухе.

Расстояние при эхолокации определяется следующим образом:

2r = vt, где v – скорость звука в среде, t – время задержки до эха, r – расстояние до преграды.

Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание

Добавить интересную новость

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) < echo (Html::a('Войдите', ['/user/security/login'], ['class' =>'']) . ' или ' . Html::a('зарегистрируйтесь', ['/user/registration/register'], ['class' => '']) . ' , чтобы получать деньги $$$ за каждый набранный балл!'); > else < if(!empty(\Yii::$app->user->identity->profile->first_name) || !empty(\Yii::$app->user->identity->profile->surname))< $name = \Yii::$app->user->identity->profile->first_name . ' ' . \Yii::$app->user->identity->profile->surname; > else < $name = ''; >echo 'Получайте деньги за каждый набранный балл!'; > ?>-->

При правильном ответе Вы получите 1 балл

Выберите всего один правильный ответ.

При правильном ответе Вы получите 1 балл

Бэтмен щёлкает пальцами и слышит эхо через 0.1 секунду. Он знает, что скорость звука равна 331 м/с. Каково расстояние до ближайшего препятствия?

Выберите всего один правильный ответ.

При правильном ответе Вы получите 1 балл

В чём измеряется громкость звука?

Выберите всего один правильный ответ.

При правильном ответе Вы получите 1 балл

В чём измеряется уровень громкости звука?

Выберите всего один правильный ответ.

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

281 дн. с момента
до конца учебного года

погода в Ярославле

Сайт имеет мобильную версию. Вы будете автоматически на нее перенаправлены, если зайдете на сайт с мобильного устройства

Источники звука. Звуковые колебания. Характеристики звука

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам удовольствие. Нам приятно слушать человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах , которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Причина звука – вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

КАМЕРТОН - это U-образная металлическая пластина, концы которой могут колебаться после удара по ней. Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии. Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усиления звука. Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора. Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда.

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения, как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой от 16 до 20000 раз в секунду. Такие волны называются звуковыми. Вибрирующее тело может быть твердым, например, струна или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах или жидким, например, волны на воде.

Колебания с частотой меньше 16 Гц называется инфразвуком. Колебания с частотой больше 20000 Гц называются ультразвуком.


Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений (например, в результате колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

Характеристики звука.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В отношении звуковых волн очень важно упомянуть такую характеристику, как скорость распространения.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде — 1500 м/с.

Скорость звука в металлах, в стали — 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Высота, тембр и громкость звука

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

70 дБ – шум пишущей машинки;

80 дБ – шум работающего двигателя грузового автомобиля;

120 дБ – шум работающего трактора на расстоянии 1 м

130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Частота зв уковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разны х источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наиболь шего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окрас ку, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретно го голоса.


Согласно легенде, Пифаго р все музыкальные звуки расположил в ряд, разбив этот ряд на части – октавы, – а

октаву – на 12 частей (7 основных то нов и 5 полутонов). Всего насчитывается 10 октав, обычно при исполнении музыкальных произведений используются 7–8 октав. Звуки частотой более 3000 Гц в качестве музыкальных тонов не используются, они слишком резки и пронзительны.

Железнобитонная плита размером 4 м * 0,5 м * 0,25 м погружена в воду наполовину. какова архимедова сила, действующая сила на нее? плотность воды 1000 кг/м3

Велосипед движется равномерно по окружности радиусом 100 м и делает 1 оборот за 2 мин. Путь и перемещение велосипедиста за 1 мин соответственно равны

1. Классификацию галактик Хаббла часто называют камертонной. Поясните причину такого названия. 2. Определите, какой промежуток времени требуется свету, чтобы пересечь Большое и Малое Магеллановы Облака в поперечнике


На этом уроке мы узнаем, что может являться источником звука. Выясним, какие механические колебания называются звуковыми и почему. Узнаем, какие колебания называются ультразвуковыми и инфразвуковыми и где они применяются. А также познакомимся с некоторыми характеристиками звуковых колебаний.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Звуковые колебания. Источники и характеристики звука"

Среди огромного количества различных колебательных и волновых движений, которые встречаются в природе и технике, особо место в жизни человека занимают звуковые колебания, или просто звуки. Достаточно сказать, что окружающий мир наполнен огромным количеством звуков, которые издают люди, птицы и животные, машины и так далее.

Итак, что же такое звук и как он возникает?

Начнём с того, что раздел физики, в котором изучаются звуковые явления, называется акустикой.

Многочисленные опыты и наблюдения показали, что общим для всех тел, издающих звуки является то, что все они совершают колебательные движения.

Таким образом, звук — это упругие колебания, распространяющиеся в какой-либо среде.

Для примера, возьмём в качестве среды воздух, а в качестве источника звука — камертон, который был изобретён в начале восемнадцатого века английским музыкантом Джоном Шором для настройки музыкальных инструментов. Камертон представляет собой изогнутый металлический стержень на ножке.

Если ударить по камертону молоточком, то можно услышать чистый музыкальный звук, который возникает из-за частых колебаний ветвей камертона, незаметных для глаза. Когда ветвь камертона движется наружу, то она уплотняет ближайшие молекулы воздуха. Образуется слой сжатого воздуха, который стремиться расшириться обратно, уплотняя таким образом другие, соседние молекулы и так далее. Когда же ветвь камертона возвращается обратно, то создаётся разрежённый слой воздуха. Стремясь его заполнить туда устремляются соседние молекулы и разряженный слой воздуха точно также перемещается. Чтобы убедиться, что звучащий камертон действительно колеблется, достаточно поднести к нему лёгкий шарик, который тут же начнёт отскакивать.

Как и в случае колебаний маятника, камертон может сам записать свои колебания. Для этого к ножке камертона крепится тонкая металлическая полоска с остриём, загнутым вниз. При быстром перемещении закопчённой стеклянной пластинки под ветвями камертона остриё оставляет на стекле волнообразную линию, которая по форме очень близка к синусоиде. Следовательно, ножки камертона совершают гармонические колебания.


Однако, как подсказывает нам наш жизненный опыт, не всякое колеблющееся тело издаёт звуки. Так, например, мы не слышим колебания обычного математического маятника. Всё дело здесь в частоте колебаний, которой характеризуется колебательная система. Так, наше ухо способно воспринимать только акустические звуки, то есть колебания, частота которых находится в пределах от шестнадцати до двадцати тысяч герц. А колебания других частот ощущаются нами в основном как вибрации, толчки, удары и тому подобное.

Например, звуковые удары возникают при выстреле или взрыве. А шумы представляют собой последовательность непериодических ударов. Таковы шум ветра в листьях деревьев, скрип и тому подобное.

Колебания с частотой меньше 16 герц называют инфразвуком.

А колебания с частотой более 20 килогерц называют ультразвуком.


Инфразвук и ультразвук не воспринимаются человеческим ухом. Лишь представители живой природы способны на это. Так, учёные обнаружили, что медузы и рыбы воспринимают инфразвуковые волны в диапазоне от 8 до 13 Герц. Многие животные, например, кошки, собаки и летучие мыши могут издавать и воспринимать ультразвуки. Ультразвуки самых высоких частот (до 200 килогерц) способны издавать и воспринимать дельфины.

Широко ультразвук используется и человеком. Например, ультразвуковое исследование применяется для изучения анатомии и мониторинга внутриутробного развития плода.

А для определения глубины водоёма или поиска косяков рыбы используются эхолоты. Это такие приборы, которые излучают ультразвуковые волны и принимают их после отражения. Принцип работы эхолота следующий: излучатель даёт короткие сигналы, которые дойдя до дна отражаются и возвращаются на приёмник. Зная время прохождения сигнала туда и обратно, а также его скорость, легко вычислить глубину моря. Описанный метод называется эхолокацией.


Звуки, окружающие нас, самые разнообразные. Поэтому для характеристики звуков используются такие понятия, как громкость, высота и тембр звука.

Для начала поговорим о громкости звука. Чтобы выяснить от какой характеристики он зависит, обратимся к опыту. Возьмём два камертона и ударим по ним молоточками с разной силой. Чем сильнее мы ударим молоточком по камертону, тем громче будет звук, который мы слышим. Поднеся лёгкий шарик к ветвям камертонов, легко заметить, что, чем громче звучит камертон, тем с большей амплитудой колеблется шарик. Следовательно, камертон, звучащий громче, имеет большую амплитуду колебаний.

Таким образом, громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.


Мы уже показали, что колебания ветвей камертона являются гармоническими. Так вот, звук, который мы слышим, когда его источник совершает гармонические колебания, называется музыкальным или чистым тоном.

Так как большинство звучащих тел создают целый набор звуковых частот, то для описания создаваемых ими звуков принято использовать целый ряд терминов.

Так, например, основным тоном называется звук наименьшей частоты, издаваемый звучащим телом. А обертонами называются звуки более высоких частот, чем основной тон.

Частоты всех обертонов данного звука в целое число раз больше частоты его основного тона. Поэтому их ещё называют высшими гармоническими тонами.


Основной тон голоса человека определяется голосовыми связками: чем они тоньше и короче, тем больше частота колебаний и выше голос. Но неповторимость и красоту голоса создают обертоны, которые возникают при колебаниях не только связок, но и губ, языка.

Если колебания источника звука не являются гармоническими, то на слух звук имеет ещё одно качество, а именно — специфический оттенок, называемый тембром.

Тембр определяет неповторимость звуков человеческих голосов и различных музыкальных инструментов. По различному тембру мы легко распознаем голос человека, звучание струны гитары или пианино, даже если бы все эти звуки имели одну и туже громкость и высоту.


А теперь давайте подумаем: кто в полёте чаще машет крыльями: шмель, муха или комар?


Ответ на этот вопрос достаточно простой. Мы только что сказали, что чем выше высота тона звука, тем большей частотой колебаний он вызван. Мы знаем, что комар при полёте издаёт более высокий тон, чем муха или шмель.

Значит комар и чаще машет крыльями в полёте.

В заключении ещё раз отметим, что слуховой аппарат человека способен распознавать лишь звуки в определённых интервалах громкости и частоты. Если в окружающем пространстве находится очень большое количество шумовых звуков или звуков большой громкости, то говорят об акустическом загрязнении пространства.

Например, если после звонка в классе начинают говорить одновременно практически все находящиеся в нём ученики, то услышать, что говорит даже рядом стоящий человек, достаточно трудно.


Помните, что систематическое воздействие на человека громких звуков (а особенно шумов), очень плохо сказывается на его здоровье.

Читайте также: