Ультразвук и его применение конспект по физике

Обновлено: 06.07.2024

Ультразвук представляет волны продольного вида, которые имеют частоту колебаний более 20 КГц. Это больше частоты колебаний, воспринимаемых человеческим слуховым аппаратом. Человек же может воспринимать частоты, находящиеся в пределах 16-20 КГц, они называются звуковыми. Ультразвуковые волны выглядят как череда сгущений и разряжений вещества или среды. Благодаря их свойствам они находят широкое применение во многих областях.

Ультразвук

В ультразвуковой диапазон попадают частоты, начиная от 20 тысяч и до нескольких миллиардов герц. Это колебания высокой частоты, которые находятся за областью слышимости ухом человека. Однако ультразвуковые волны вполне воспринимают некоторые виды животных. Это дельфины, киты, крысы и другие млекопитающие.

По физическим свойствам ультразвуковые волны являются упругими, поэтому они не имеют отличий от звуковых. В результате разница между звуковыми и ультразвуковыми колебаниями весьма условна, ведь она зависит от субъективного восприятия слуха человека и равняется верхнему уровню слышимого звука.

Но наличие более высоких частот, а значит и небольшой длины волны, придает ультразвуковым колебаниям определенные особенности:

  • Ультразвуковые частоты имеют разную скорость перемещения через различные вещества, благодаря чему можно с высокой точностью определять свойство протекающих процессов, удельную тепловую емкость газов, а также характеристики твердого тела.
  • Волны значительной интенсивности обладают определенными эффектами, которые подчиняются нелинейной акустике.
  • При движении ультразвуковых волн со значительной мощностью в жидкостной среде возникает явление акустической кавитации. Данное явление очень важно, ведь в результате создается поле пузырьков, которые образуются из субмикроскопических частиц газа или пара в водной или иной среде. Они пульсируют с некоторой частотой и захлопываются с огромным локальным давлением. Это создает сферические ударные волны, что ведет к появлению акустических микроскопических потоков. Благодаря использованию этого явления ученые научились очищать загрязненные детали, а также создавать торпеды, которые движутся в воде быстрее скорости звука.
  • Ультразвук может быть сфокусирован и сконцентрирован, что позволяет создавать звуковые рисунки. Это свойство с успехом применяется в голографии и звуковом видении.
  • Ультразвуковая волна вполне может выступать в качестве дифракционной решетки.
Свойства
Ультразвуковые волны по своим свойствам схожи со звуковыми волнами, однако у них есть и специфические особенности:
  • Малая длина волны. Даже для низкой границы длина равняется менее нескольких сантиметров. Такой небольшой размер длины приводит к лучевому характеру перемещения ультразвуковых колебаний. Непосредственно рядом с излучателем волна идет в виде пучка, которая приближается к параметрам излучателя. Однако, оказываясь в условиях неоднородной среды, пучок перемещается как луч света. Он также может отражаться, рассеиваться, преломляться.
  • Малый период колебаний, благодаря чему появляется возможность использования ультразвуковых колебаний в виде импульсов.
  • Ультразвук нельзя услышать и он не создает раздражающего эффекта.
  • При воздействии ультразвуковых колебаний на определенные среды можно добиться получения специфических эффектов. К примеру, можно создать локальный нагрев, дегазацию, обеззаразить среду, кавитацию и многие иные эффекты.
Принцип действия
Для создания ультразвуковых колебаний используются различные устройства:
  • Механические, где в качества источника выступает энергия жидкости или газа.
  • Электромеханические, где ультразвуковая энергия создается из электрической.

В качестве механических излучателей могут выступать свистки и сирены, работающие с помощью воздуха или жидкости. Они удобны и просты, однако у них есть свои минусы. Так коэффициент полезного действия у них находится в пределах 10-20 процентов. Они создают обширный спектр частот с нестабильной амплитудой и частотой. Это ведет к тому, что такие устройства невозможно использовать в условиях, когда требуется точность. Чаще всего их применяют в качестве средств сигнализации.

Электромеханические устройства используют принцип пьезоэлектрического эффекта. Его особенность в том, что при образовании электрозарядов на гранях кристалла происходит его сжимание и растягивание. В результате создаются колебания с частотой, зависящей от периода смены потенциала на поверхностях кристалла.

Кроме преобразователей, которые базируются на пьезоэлектрическом эффекте, могут применяться и магнитострикционные преобразователи. Они используются для создания мощного ультразвукового пучка. Сердечник, который выполнен из магнитострикционного материала, размещенный в проводящей обмотке, изменяет собственную длину согласно форме электрического сигнала, поступающего на обмотку.

Применение

Ультразвук находит широкое применение в самых разнообразных областях.

Чаще всего его используют в следующих направлениях:
  • Получение данных о конкретном веществе.
  • Обработка и передача сигналов.
  • Воздействие на вещество.
Так при помощи ультразвуковых волн изучают:
  • Молекулярные процессы в различных структурах.
  • Определение концентрации веществ в растворах.
  • Определение, состава, прочностных характеристик материалов и так далее.
В ультразвуковой обработке часто используется метод кавитации:
  • Металлизация.
  • Ультразвуковая очистка.
  • Дегазация жидкостей.
  • Диспергирование.
  • Получение аэрозолей.
  • Ультразвуковая стерилизация.
  • Уничтожения микроорганизмов.
  • Интенсификация электрохимических процессов.
Воздействием ультразвуковых волн в промышленности производят следующие технологические операции:
  • Коагуляция.
  • Горение в ультразвуковой среде.
  • Сушка.
  • Сварка.

В медицине ультразвуковые волны используются в терапии и диагностике. В диагностике задействуют локационные методы с применением импульсного излучения. К ним относятся ультразвуковая кардиография, эхоэнцефалография и ряд иных методов. В терапии ультразвуковые волны применяются в качестве методов, основанных на тепловом и механическом воздействии на ткани. К примеру, довольно часто во время операций используют ультразвуковой скальпель.

Также ультразвуковыми колебаниями проводится:
  • Микромассаж структур ткани при помощи вибрации.
  • Стимуляция регенерации клеток, а также межклеточного обмена.
  • Увеличение проницаемости оболочек тканей.

Ультразвук может действовать на ткани угнетением, стимулированием или разрушением. Все это зависит от применяемой дозы ультразвуковых колебаний и их мощности. Однако не на все области тела человека разрешается использовать такие волны. Так с определенной осторожностью воздействуют на сердечную мышцу и ряд эндокринных органов. На мозг, шейные позвонки, мошонку и ряд иных органов воздействие вовсе не используется.

Ультразвуковые колебания применяются в случаях, когда невозможно использовать рентген в:
  • Травматологии используется метод эхографии, который с легкостью обнаруживает внутреннее кровотечение.
  • Акушерстве волны применяются для оценки развития плода, а также его параметров.
  • Кардиологии они позволяют обследовать сердечнососудистую систему.
Ультразвук в будущем

На текущий момент ультразвук широко применяется в различных областях, но в будущем он найдет еще большее применение. Уже сегодня планируется создание фантастических для сегодняшнего дня устройств.

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 41. Лекция 41-2. Звуковые волны. Ультразвук и его использование в технике и медицине

Звук - это упругие продольные волны частотой от 20 Гц до 20000 Гц, вызывающие у человека слуховые ощущения.


Источник звука - различные колеблющиеся тела, например туго натянутая струна или тонкая стальная пластина, зажатая с одной стороны.


Как возникают колебательные движения? Достаточно оттянуть и отпустить струну музыкального инструмента или стальную пластину, зажатую одним концом в тисках, как они будут издавать звук. Колебания струны или металлической пластинки передаются окружающему воздуху. Когда пластинка отклонится, например в правую сторону, она уплотняет (сжимает) слои воздуха, прилегающие к ней справа; при этом слой воздуха, прилегающий к пластине с левой стороны, разредится. При отклонении пластины в левую сторону она сжимает слои воздуха слева и разрежает слои воздуха, прилегающие к ней с правой стороны, и т.д. Сжатие и разрежение прилегающих к пластине слоев воздуха будет передаваться соседним слоям. Этот процесс будет периодически повторяться, постепенно ослабевая, до полного прекращения колебаний .

Таким образом колебания струны или пластинки возбуждают колебания окружающего воздуха и, распространяясь, достигают уха человека, заставляя колебаться его барабанную перепонку, вызывая раздражение слухового нерва, воспринимаемое нами как звук.

При распространении звука в атомы и молекулы колеблются вдоль направления распространения волны, значит звук - продольная волна.

ХАРАКТЕРИСТИКИ ЗВУКА

1. Громкость. Громкость зависит от амплитуды колебаний в звуковой волне. Громкость звука определяется амплитудой волны.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;
50 дБ – разговор средней громкости;
70 дБ – шум пишущей машинки;
80 дБ – шум работающего двигателя грузового автомобиля;
120 дБ – шум работающего трактора на расстоянии 1 м
130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

2. Высота тона. Высота звука определяется частотой волны, или частотой колебаний источника звука.

Звуки человеческого голоса по высоте делят на несколько диапазонов:

  • бас – 80–350 Гц,
  • баритон – 110–149 Гц,
  • тенор – 130–520 Гц,
  • дискант – 260–1000 Гц,
  • сопрано – 260–1050 Гц,
  • колоратурное сопрано – до 1400 Гц.


Человеческое ухо способно воспринимать упругие волны с частотой примерно от 16 Гц до 20 кГц. А как мы слыщим?

Слуховой анализатор человека - ухо - состоит их четырех частей:


Наружное ухо

К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

Среднее ухо

Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

Внутреннее ухо

Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

Слуховые проводящие пути

Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд.

Восприятие звука

Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки.
Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение.

Животные в качестве звука воспринимают волны иных частот.


Ультразвук - продольные волны с частотой превышающей 20 000Гц.

Применение ультразвука.

С помощью гидролокаторов установленных на кораблях измеряют глубину моря, обнаруживают косяки рыб, встречный айсберг или подводную лодку.

Ультразвук используют в промышленности для обнаружения дефектов в изделиях.

В медицине при помощи ультразвука осуществляют сварку костей, обнаруживают опухоли, осуществляют диагностику заболеваний.

Биологическое действие ультразвука позволяет использовать его для стерилизации молока, лекарственных веществ, а также медицинских инструментов.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель: изучение особенностей ультразвуковых волн, их применение в целях ускорения производственных процессов с помощью ультразвука.

УЧИТЕЛЬ: Ультразвук – это звуковые волны , имеющие частоту выше воспринимаемых человеческим ухом , обычно, п од ультразвуком понимают частоты выше 20 000 герц .

Хотя о существовании ультразвука известно давно, его практическое использование началось достаточно недавно. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.

Сегодня на конференции мы поговорим об особенностях ультразвуковых волн, их применении в целях ускорения производственных процессов; о влиянии ультразвука на организм человека; применении ультразвука в медицине; проявление ультразвука в природе.

Перед вами выступят специалисты из различных областей науки: физик. медик, физиолог, инженер, биолог.

ФИЗИК. Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения ( киты , дельфины , летучие мыши , грызуны , долгопяты ).

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока — струи газа или жидкости. Вторая группа излучателей — электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

МЕДИК. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях химии и медицины.

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией , ультразвук широко применяется для визуализации состояния внутренних органов человека , особенно в брюшной полости и полости таза .

Помимо широкого использования в диагностических целях, ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.

Ультразвук обладает следующими эффектами:

противовоспалительным, рассасывающим действиями;

анальгезирующим, спазмолитическим действием;

кавитационным усилением проницаемости кожи.

Фонофорез — комбинированный метод лечения, при котором на ткани вместо обычного геля для ультразвуковой эмиссии (применяемого, например, при УЗИ) наносится лечебное вещество (как медикаменты, так и вещества природного происхождения). Предполагается, что ультразвук помогает лечебному веществу глубже проникать в ткани. Фонофорез— сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно — ионов минералов бишофита. Удобство ультрафонофореза медикаментов и природных веществ:

лечебное вещество при введении ультразвуком не разрушается

синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела — 0,2-0,4 Вт/см2., в области грудного и поясничного отдела — 0,4-0,6 Вт/см2).

ФИЗИОЛОГ. Вибрация как производственная вредность представляет собой механические колебательные движения, непосредственной передаваемые телу человека или отдельным его участкам. Вследствие механизации многих видов работ и использования пневматических и электрических инструментов значение её резко возросло, и в настоящее время вибрационная болезнь среди профессиональных заболеваний занимает одно из первых мест. В отношении опасности вибрационной болезни наибольшее значение имеет вибрация с частотой 16-250 Гц. Вибрация в зависимости от её параметров (частота, амплитуда) может оказывать как положительное, так и отрицательное влияние на отдельные ткани и организм в целом. С физиотерапевтической целью вибрацию используют для улучшения трофики, кровообращения в тканях при лечении некоторых заболеваний. Однако производственная вибрация, передаваясь здоровым тканям и органам и имея значительную амплитуду и продолжительность действия, оказывается вредно влияющим фактором.

Заболевание носит общий характер, о чем свидетельствуют быстрая утомляемость, головные боли, головокружение, повышенная возбудимость. Возможны жалобы на боли в области сердца и желудка, повышенную жажду: похудание, бессонницу. Астено-вегетативный синдром сопровождается сердечно-сосудистыми нарушениями: гипотонией, брадикардией, изменениями ЭКГ. При врачебном осмотре могут быть выявлены изменения кожной чувствительности, тремор рук, языка и век.

При воздействии общей вибрации более выражены изменения со стороны центральной нервной системы: жалобы на головокружение, шум в ушах, сонливость, боли в икроножных мышцах. Объективно выявляются изменения ЭЭГ, условных и безусловных рефлексов, ухудшение памяти, нарушение координации движений. Наблюдается возрастание энергозатрат и похудение. Чаще, чем при действии локальной вибрации, выявляются вестибулярные расстройства. В сочетании с шумом вибрация ведет к изменению слуха. При этом характерно ухудшение восприятия звуков не только высоких, но и низких частот. Иногда выявляются зрительные расстройства: изменение цветоощущения, границ поля зрения, снижение остроты зрения. Со стороны сердечно-сосудистой системы наблюдается неустойчивость артериального давления, преобладание гипертонических явлений, а иногда резкое падение артериального давления к концу работы. Возможны случаи спазма коронарных сосудов, развития миокардиодистрофии.

В исследованиях была выявлена очень важная биологическая закономерность. Оказывается, что ослабление внимания наблюдается только при определённых частотах порядка 10-12 Гц, другие же частоты, выше и ниже, но с тем же ускорением, подобных изменений не вызывают. Эта закономерность даёт ключ к выяснению особенностей заболеваний вибрационной болезнью, связанных с той или иной производственной деятельностью. Каждая машина или агрегат генерирует наряду с массой побочных частот (гармоник) одну основную для данной машины. Эта частота и определяет специфику заболеваний.

Если вибрация частотой выше 15 Гц (особенно частотой 60-90 Гц) воздействует на человека вдоль его туловища в направлении вертикальной оси, то острота зрения снижается, способность следить за колебательными движениями объекта утрачивается уже на частотах 1-2 Гц и почти исчезает при 4 Гц. Из этого простого примера видно, какую опасность представляет транспортная вибрация: шоферы, летчики, водители других транспортных средств перестают различать движущиеся объекты.

Частота вибрации, вызванная неровностями дороги и несовершенством наземного транспорта, лежит в диапазоне до 15 Гц, т.е. представляет собой реальную опасность и может послужить причиной аварий.

Вибрация нарушает речь человека. При частотах от 4 до 10 Гц речь искажается, а иногда прерывается. Для сохранения отчетливой и правильной речи нужна специальная тренировка, так как разборчивую речь трудно поддерживать при уровне вибрации 0,3 дБ. Легко понять, как это отражается на связи летчиков и космонавтов с наземными пунктами управления.

У летчиков, шоферов, машинистов возникают те же признаки вибрационной болезни, что и у рабочих. Особенно тяжелыми бывают заболевания у пилотов вертолётов. В полёте возникают низкочастотные колебания, которые плохо гасятся телом человека и разрушающе действуют на весь организм, прежде всего на нервную систему. Нарушения нервной и сердечно-сосудистой деятельности у лётчиков встречаются почти в 4 раза чаще, чем у представителей других профессий, и вибрация здесь играет немалую роль.

БИОЛОГ. Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК . Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Эхолокацию используют для навигации и птицы — жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки — от Панамы на северо-западе до Перу на юге и Суринама на востоке. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щёлкающие звуки, воспринимаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чутким слухом птицы.

Ультразвуковой эхолокацией в воде пользуются китообразные . В рыбной промышленности применяют ультразвуковую эхолокацию для обнаружения косяков рыб. Ультразвуковые волны отражаются от косяков рыб и приходят в приёмник ультразвука раньше, чем ультразвуковая волна, отразившаяся от дна.

Таким образом ультразвук широко применяется в различных областях науки и техники.

1.Агранат, Б.А. Основы физики и техники ультразвука / Б.А. Агранат. - М.: Книга по Требованию, 2012. - 352 c.

2. Хилл, К. Применение ультразвука в медицине. Физические основы: моногр. / К. Хилл. - М.: [не указано], 1989.
3. Шутилов, В.А. Основы физики ультразвука / В.А. Шутилов. - М.: Книга по Требованию, 2012. - 280 c.
4. Эльпинер, И. Е. Биофизика ультразвука / И.Е. Эльпинер. - М.: Главная редакция физико-математической литературы издательства "Наука", 2016 . - 384 c.

Ультразвук — это звуковые волны, которые имеют частоту не воспринимаемые человеческим ухом, обычно, частотой выше 20 000 герц.

В природной среде ультразвук может генерироваться в различных естественных шумах (водопад, ветер, дождь). Многие представители фауны используют ультразвук для ориентирования в пространстве (летучие мыши, дельфины, киты)

Источники ультразвука можно подразделить на две большие группы.

  • Излучатели-генераторы - колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока — струи газа или жидкости.
  • Электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

Наука об ультразвуке относительно молода. В конце 19 века русский ученый – физиолог П. Н. Лебедев впервые провел исследования ультразвука.

Условно можно выделить три направления использования ультразвука:

  • Передача и обработка сигналов
  • Получение с помощью УЗ волн различной информации
  • Воздействие ультразвука на вещество.

В этой статье мы затронем лишь малую часть возможностей применения УЗ.

  • Медицина. УЗ используется как в стоматологии, так и в хирургии, а так же применятся для Ультразвуковых исследований внутренних органов.
  • Очистка с помощью ультразвука. Особенно наглядно это демонстрируется на примере центра ультрозвукового оборудования ПСБ-Галс. В частности можно рассмотреть применение ультразвуковых ванн, которые используются для очистки, смешивания, перемешивания, измельчения, дегазации жидкостей, ускорения химических реакций, экстракции сырья, получения стойких эмульсий и так далее.
  • Обработка хрупких или сверхтвердых материалов. Преобразование материалов происходит посредством множества микроударов

Это только малейшая часть использования ультразвуковых волн. Если вам интересно – оставляйте комментарии и мы раскроем тему более подробно.

Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось - это поможет развитию канала

Мы воспринимаем колебания частой от 20 до 20000 Гц, как звук. Но звук не ограничивается лишь диапазоном частот, который воспринимает человеческое ухо. В зоне с частотами ниже слышимых лежит область инфразвука, а выше - ультразвука.

Ультразвук - упругие колебания среды, волны лежащие в диапазоне выше слышимой области звуков (от 20000 Гц).

Инфразвук - звуковые волны с частотой ниже, чем порог восприятия ухом человека (ниже 20 Гц).

Приведем весь спектр упругих волн в физике:

Ультразвук и инфразвук

Ультразвук и инфразвук в природе

В естественной природе ультразвук и инфразвук распространены так же широко, как слышимый звук.

Например, ультразвук является компонентом спектра многих природных звуков: шум водопада, гром. Ультразвук быстро затухает в воздухе, но хорошо распространяется в жидких средах. Еще один пример - летучие мыши и некоторые грызуны, которые используют ультразвук в процессе охоты и ориентации в темноте. Киты и дельфины также генерируют ультразвуковые сигналы для различных целей: охота, ориентация в мутной воде.

Среди природных источников инфразвука: землетрясения, ураганы, удары молний. Многие животные чувствуют воздействие инфразвука и, фиксируя нарастающий инфразвуковой шум, уходят в укрытие, так как инфразвук - предвестник шторма или бури. Инфразвуковые сигналы в живой природе также используются некоторыми животными для общения: киты, слоны. Инфразвук распространяется на большие расстояния во всех средах и мало подвержен поглощению.

Применение ультразвука и инфразвука

Ультразвук известен людям давно, но лишь сравнительно недавно активно используется в медицине, производстве и научных исследованиях.

Источники получения ультразвука делятся на природные и техногенные. Среди способов получения ультразвука:

  1. Механические - струны, трубы, эластичные пластины.
  2. Термические - импульсный ток и электрические разряды в жидкостях и газах при постоянном повышении температуры.
  3. Отпические - лазер.

Инфразвук находит меньшее практическое применение и обладает негативными последствиями от воздействия на организм. При высоких уровнях инфразвука могут возникать чрезмерная утомляемость, сонливость, агрессия, ощущение давления в ушах. Воздействие инфразвука на человека особенно пагубно, если интенсивность инфразвука высокая. При уровне в 180—190 дБ действие инфразвука смертельно. Тем не менее, чувствительность каждого человека к инфразвуку индивидуальна, а обычные уровни инфразвука в повседневной жизни не могут нанести серьезного вреда здоровью.

Летучая мышь издает ультразвук частотой ϑ = 45 кГц и летит перпендикулярно стене со скоростью v = 6 м/с. Какова частота отраженного ультразвука, который услышит мышь? Скорость звука в воздухе принять равной с = 340 м/с.

Согласно с эффектом Доплера, частота отраженного звука определится соотношением:

Читайте также: