Термоядерные реакции применение ядерной энергии конспект

Обновлено: 07.07.2024

Раздел ОГЭ по физике: 4.4. Ядерные реакции. Ядерный реактор. Термоядерный синтез

Превращение ядер одного элемента в ядра другого элемента происходит не только в процессе радиоактивного распада. Такое превращение может происходить при взаимодействии ядер элементов друг с другом или с такими частицами, как альфа-частицы, электроны, протоны, нейтроны. Превращение исходного атомного ядра при взаимодействии с какой-либо частицей в другое ядро, отличное от исходного, называют ядерной реакцией.

Силы притяжения, связывающие протоны и нейтроны в ядре, называются ядерными силами. Свойства ядерных сил:

  1. зарядовая независимость – ядерное (сильное) взаимодействие между двумя протонами, двумя нейтронами или между протоном и нейтроном одинаково;
  2. короткодействующий характер – ядерные силы быстро убывают с расстоянием; радиус их действия порядка 10 –15 м;
  3. насыщаемость – ядерные силы могут удерживать друг возле друга в ядре ограниченное количество нуклонов; с ростом числа нуклонов ядра становятся менее стабильными.

Энергия, которая необходима для полного расщепления ядра на отдельные нуклоны, называется энергией связи.

Измерения показали, что масса покоя ядра М всегда меньше суммы масс покоя нуклонов (протонов и нейтронов), входящих в состав, на величину Δm, называемую дефектом массы: Δm = (Zmp + Nmn) – М.

Энергия связи атомного ядра Есв равна произведению дефекта масс на квадрат скорости света: Есв = Δmс 2 .

Массу ядер удобно выражать в атомных единицах массы: 1 а.е.м. = 1,67 • 10 –27 кг.

Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом. При записи ядерных реакций используются законы сохранения заряда и массового числа (числа нуклонов).

Например, осуществлена ядерная реакция , в результате которой получен изотоп натрия и некоторая частица, которую нужно определить. Находим сумму массовых чисел в левой части уравнения. Она равна 26. Вычитаем из этого числа массовое число изотопа натрия: 26 – 22 = 4. Следовательно, массовое число неизвестной частицы равно 4. Определяем зарядовое число: сумма зарядовых чисел в левой части равенства равна 13, следовательно, зарядовое число неизвестной частицы 13 – 11 = 2. Таким образом, массовое число образовавшейся в результате реакции частицы 4, а зарядовое число 2. Это — альфа-частица. Уравнение имеет вид:

Ядерный реактор

Термоядерный синтез

Термоядерный синтез — это разновидность ядерной реакции. В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких — это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает. На Земле же термоядерные реакции можно провести лишь в специальных установках (импульсные системы, квазистационарные системы, токамак, торсатрон).

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях — можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (тяжёлый водород, обозначается символами D и 2 H — стабильный изотоп водорода с атомной массой, равной 2) и тритий (сверхтяжёлый водород, обозначается символами T и 3 H — радиоактивный изотоп водорода), а в более отдалённой перспективе гелий-3 и бор-11.

Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X. Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция).

Термоядерные реакции

Масса покоя ядра урана больше суммы масс покоя осколков, на которые делится ядро.
Для легких ядер дело обстоит как раз наоборот.
Так, масса покоя ядра гелия значительно меньше суммы масс покоя двух ядер тяжелого водорода, на которые можно разделить ядро гелия.

Это означает, что при слиянии легких ядер масса покоя уменьшается и, следовательно, должна выделяться значительная энергия.
Подобного рода реакции слияния легких ядер могут протекать только при очень высоких температурах.
Поэтому они называются термоядерными.

Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре.

Для слияния ядер необходимо, чтобы они сблизились на расстояние около 10 -12 см, т. е. чтобы они попали в сферу действия ядерных сил.
Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено лишь за счет большой кинетической энергии теплового движения ядер.

Энергия, которая выделяется при термоядерных реакциях в расчете на один нуклон, превышает удельную энергию, выделяющуюся при цепных реакциях деления ядер.
Так, при слиянии тяжелого водорода — дейтерия — со сверхтяжелым изотопом водорода — тритием — выделяется около 3,5 МэВ на один нуклон.
При делении же урана выделяется примерно 1 МэВ энергии на один нуклон.

Термоядерные реакции играют большую роль в эволюции Вселенной.
Энергия излучения Солнца и звезд имеет термоядерное происхождение.
По современным представлениям, на ранней стадии развития звезда в основном состоит из водорода.
Температура внутри звезды столь велика, что в ней протекают реакции слияния ядер водорода с образованием гелия.
Затем при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют решающую роль в эволюции химического состава вещества во Вселенной.
Все эти реакции сопровождаются выделением энергии, обеспечивающей излучение света звездами на протяжении миллиардов лет.

Осуществление управляемых термоядерных реакций на Земле сулит человечеству новый, практически неисчерпаемый источник энергии.
Наиболее перспективной в этом отношении реакцией является реакция слияния дейтерия с тритием:


В этой реакции выделяется энергия 17,6 МэВ.
Поскольку трития в природе нет, он должен вырабатываться в самом термоядерном реакторе из лития.

Экономически выгодная реакция, как показывают расчеты, может идти только при нагревании реагирующих веществ до температуры порядка сотен миллионов кельвин при большой плотности вещества (10 14 —10 15 частиц в 1 см 3 ).
Такие температуры могут быть в принципе достигнуты путем создания в плазме мощных электрических разрядов.
Основная трудность на этом пути состоит в том, чтобы удержать плазму столь высокой температуры внутри установки в течение 0,1 — 1 с.

Никакие стенки из вещества здесь не годятся, так как при столь высокой температуре они сразу же превратятся в пар.
Единственно возможным является метод удержания высокотемпературной плазмы в ограниченном объеме с помощью очень сильных магнитных полей.
Однако до сих пор решить эту задачу не удалось из-за неустойчивости плазмы.
Неустойчивость приводит к диффузии части заряженных частиц сквозь магнитные стенки.

На этой установке удалось получить плазму температурой 1,3 • 10 7 К.
Однако проблема ее удержания еще не решена.

Помимо энергетического преимущества, при термоядерных реакциях не образуются радиоактивные отходы, т. е. не надо решать проблемы загрязнения окружающей среды.

В настоящее время существует уверенность в том, что рано или поздно термоядерные реакторы будут созданы.

Ученые нашей страны достигли больших успехов в создании управляемых термоядерных реакций.
Эти работы были начаты под руководством академиков Л. А. Арцимовича и М. А. Леонтовича и продолжаются их учениками.

Пока же удалось осуществить лишь неуправляемую реакцию синтеза взрывного типа в водородной (или термоядерной) бомбе.

Осуществление управляемых термоядерных реакций способно решить энергетическую проблему человечества.
Неуправляемые термоядерные реакции в водородных бомбах могут человечество уничтожить.

Применение ядерной энергии

Применение ядерной энергии для преобразования ее в электрическую впервые было осуществлено в нашей стране в 1954 г.
В г. Обнинске была введена в действие первая атомная электростанция (АЭС) мощностью 5000 кВт.
Энергия, выделяющаяся в ядерном реакторе, использовалась для превращения воды в пар, который вращал затем связанную с генератором турбину.

Развитие ядерной энергетики

По такому же принципу действуют введенные в эксплуатацию Нововоронежская, Ленинградская, Курская, Кольская и другие АЭС.
Реакторы этих станций имеют мощность 500-1000 МВт.

Атомные электростанции строятся прежде всего в европейской части страны.
Это связано с преимуществами АЭС по сравнению с тепловыми электростанциями, работающими на органическом топливе.
Ядерные реакторы не потребляют дефицитного органического топлива и не загружают перевозками угля железнодорожный транспорт.
Атомные электростанции не потребляют атмосферный кислород и не засоряют среду золой и продуктами сгорания.
Однако размещение АЭС в густонаселенных областях таит в себе потенциальную угрозу.

В реакторах на тепловых (т. е. медленных) нейтронах уран используется лишь на 1—2%.
Полное использование урана достигается в реакторах на быстрых нейтронах, в которых обеспечивается также воспроизводство нового ядерного горючего в виде плутония.
В 1980 г. на Белоярской АЭС состоялся пуск первого в мире реактора на быстрых нейтронах мощностью 600 МВт.

Ядерной энергетике, как и многим другим отраслям промышленности, присущи вредные или опасные факторы воздействия на окружающую среду.
Наибольшую потенциальную опасность представляет радиоактивное загрязнение.
Сложные проблемы возникают с захоронением радиоактивных отходов и демонтажем отслуживших свой срок атомных электростанций.
Срок их службы около 20 лет, после чего восстановление станций из-за многолетнего воздействия радиации на материалы конструкций невозможно.

АЭС проектируется с расчетом на максимальную безопасность персонала станции и населения.
Опыт эксплуатации АЭС во всем мире показывает, что биосфера надежно защищена от радиационного воздействия предприятий ядерной энергетики в нормальном режиме эксплуатации.
Однако взрыв четвертого реактора на Чернобыльской АЭС показал, что риск разрушения активной зоны реактора из-за ошибок персонала и просчетов в конструкции реакторов остается реальностью, поэтому принимаются строжайшие меры для снижения этого риска.

Ядерные реакторы устанавливаются также на атомных подводных лодках и ледоколах.

Ядерное оружие

Неуправляемая цепная реакция с большим коэффициентом увеличения нейтронов осуществляется в атомной бомбе.

Для того чтобы происходило почти мгновенное выделение энергии (взрыв), реакция должна идти на быстрых нейтронах (без применения замедлителей).
Взрывчатым веществом служит чистый уран или плутоний .

Чтобы мог произойти взрыв, размеры делящегося материала должны превышать критические.
Это достигается либо путем быстрого соединения двух кусков делящегося материала с докритическими размерами, либо же за счет резкого сжатия одного куска до размеров, при которых утечка нейтронов через поверхность падает настолько, что размеры куска оказываются надкритическими.
То и другое осуществляется с помощью обычных взрывчатых веществ.

При взрыве атомной бомбы температура достигает десятков миллионов кельвин.
При такой высокой температуре очень резко повышается давление и образуется мощная взрывная волна.
Одновременно возникает мощное излучение.
Продукты цепной реакции при взрыве атомной бомбы сильно радиоактивны и опасны для жизни живых организмов.

Атомные бомбы применили США в конце Второй мировой войны против Японии.
В 1945 г. были сброшены атомные бомбы на японские города Хиросима и Нагасаки.

В термоядерной (водородной) бомбе для инициирования реакции синтеза используется взрыв атомной бомбы, помещенной внутри термоядерной.

Нетривиальным решением оказалось то, что взрыв атомной бомбы используется не для повышения температуры, а для сильнейшего сжатия термоядерного топлива излучением, образующимся при взрыве атомной бомбы.

В нашей стране основные идеи создания термоядерной бомбы были выдвинуты после Великой Отечественной войны А. Д. Сахаровым.

С созданием ядерного оружия победа в войне стала невозможной.
Ядерная война способна привести человечество к гибели, поэтому народы всего мира настойчиво борются за запрещение ядерного оружия.

Физика атомного ядра. Физика, учебник для 11 класса - Класс!ная физика

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

План-конспект урока

1.Предмет: ФИЗИКА

2. Класс: 11

3.Тема и номер урока в теме: Физика атомного ядра(16 урок)

5.Цель урока: познакомиться с протеканием термоядерной реакции и применением ядерной энергетики .

6. Планируемые результаты:

-предметные : ученик узнает о реакции слияния легких ядер при очень высокой температуре, о роли термоядерной реакции в эволюции Вселенной;

ученик познакомится с реакцией взаимодействия дейтерия и трития водорода.

- метапредметные:

регулятивные : ученик самостоятельно ставит цели и планирует пути достижения; распределяет своё время;

ученик оценивает свои возможности достижения цели;

коммуникативные: ученик полно и точно выражает свои мысли; организовывает и планирует учебное взаимопонимание с учителем и сверстниками;

познавательные: ученик даёт определения понятиям, ученик получает возможность познакомиться с важностью применения неисчерпаемого источника энергии порядка 17 МэВ;

-личностные : ученик получит возможность для формирования устойчивой учебно – познавательной мотивации, готовности к самообразованию и самовоспитанию.

7.Тип урока: урок получения нового знания.

8.Формы работы учащихся : индивидуальная, фронтальная.

Структура и ход урока

I. Организационный момент

-проверка готовности учащихся к уроку;

II . Актуализация знания

В начале этого занятия нужно повторить изученный материал, который будет необходим нам для изучения нового материала.

Что такое ядерный реактор? (Устройство, в котором осуществляется управляемая реакция деления ядер)

Что используется в ядерных реакциях, работающих на естественном уране? (Применяются замедлители нейтронов)

Что называют критической массой? (Критическая масса - наименьшая масса делящегося вещества, при которой ещё может протекать цепная ядерная реакция)

Чему равна критическая масса для чистого (без замедлителя) урана ? (Около 50 кг)

До какого значения удалось снизить критическую массу, применяя замедлители нейтронов и отражающую нейтроны оболочку из бериллия? (До 250 г)

Как осуществляется управление ядерными реакторами? (Дистанционно с помощью ЭВМ)

Кем был запущен первый ядерный реактор в нашей стране? (Физиками под руководством Игоря Васильевича Курчатова 25 декабря в 1946 году)

III . Мотивирование к учебной деятельности

Возможны два принципиально различных способа освобождения ядерной энергии: деление тяжелых ядер и слияние легких ядер (термоядерный синтез).

При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа A. Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A

Рис. 1.1. Зависимость удельной энергии связи ядра от массового числа

IV . Самоопределение деятельности. Целеполагание. Формулировка темы урока.

Попробуйте сформулировать цель урока.

Можно ли получить энергию, используя лёгкие ядра? Что скорее всего должно происходить?

Всё это вы узнаете сегодня на этом уроке.

V . Построение проекта выхода из затруднения

Более подробно изучите тему по учебнику (с.320-324) и найдите ответы на следующие вопросы:

Что можно сказать о массе покоя при делении лёгких ядер? ( Масса покоя ядра гелия значительно меньше суммы масс покоя двух ядер тяжелого водорода, на которые можно разделить ядро гелия.)

При каких температурах происходит слияние лёгких ядер? ( Слияния легких ядер могут протекать только при очень высоких температурах.)

Что такое термоядерная реакция? ( Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре.)

Что необходимо для слияния ядер и как можно преодолеть кулоновское отталкивание ядер? ( Для слияния ядер необходимо, чтобы они сблизились на расстояние около 10 -12 см, кулоновское отталкивание ядер может быть преодолено за счет большой кинетической энергии теплового движения ядер.)

Во сколько раз при слиянии дейтерия с тритием выделяется больше энергии, чем при делении урана (В 3,5 раза)

Какое происхождение имеет энергия излучения Солнца и звёзд? (Они имеют термоядерное происхождение)

Чем сопровождаются термоядерные реакции? (Все эти реакции сопровождаются выделением энергии)

Какая реакция является перспективной реакцией неисчерпаемого источника энергии? (управляемая термоядерная реакция слияния дейтерия с тритием: + )

Какая энергия в этой реакции выделяется? (17,6 МэВ)

Когда может происходить, при каких условиях и в чём трудность на этом пути? ( может идти только при нагревании реагирующих веществ до температуры порядка сотен миллионов кельвин при большой плотности вещества (10 14 —10 15 частиц в 1 см 3 ). Такие температуры могут быть в принципе достигнуты путем создания в плазме мощных электрических разрядов и трудность в удержании плазмы столь высокой температуры внутри установки в течение 0,1—1 с)

Как можно удержать плазму? (с помощью очень сильных магнитных полей, но решить эту задачу не удалось из-за неустойчивости плазмы)

Какое ещё кроме энергетического преимущества есть при термоядерных реакциях?( не образуются радиоактивные отходы, т. е. не надо решать проблемы загрязнения окружающей среды.)

Какую реакцию удалось осуществить? (удалось осуществить лишь неуправляемую реакцию синтеза взрывного типа в водородной (или термоядерной) бомбе.)

Где и когда и какой мощности была введена в действие первая АЭС в нашей стране? (в 1954 г. в г. Обнинске была введена в действие первая атомная электростанция (АЭС) мощностью 5000 кВт.)

Какие ещё введены АЭС в нашей стране? (Нововоронежская, Ленинградская, Курская, Кольская и другие АЭС)

Какие преимущества АЭС? ( Ядерные реакторы не потребляют дефицитного органического топлива и не загружают перевозками угля железнодорожный транспорт, не потребляют атмосферный кислород и не засоряют среду золой и продуктами сгорания.)

Где и когда пуск первого в мире реактора на быстрых нейтронах мощностью 600 МВт? (В 1980 г. на Белоярской АЭС)

Какая опасность присуща ядерной энергетике? ( Вредные или опасные факторы воздействия на окружающую среду, радиоактивное загрязнение, проблемы с захоронением радиоактивных отходов и демонтажем отслуживших свой срок атомных электростанций, срок службы которых около 20 лет)

С чем связан риск разрушения активной зоны реактора? (Из-за ошибок персонала и просчетов в конструкции реакторов остается реальностью)

Где ещё применяется ядерная энергия? (Ядерные реакторы устанавливаются также на атомных подводных лодках и ледоколах, в ядерном оружии: неуправляемая цепная реакция с большим коэффициентом увеличения нейтронов осуществляется в атомной бомбе)

Что служит взрывчатым веществом в атомной бомбе? ( Взрывчатым веществом служит чистый уран или плутоний )

Что происходит при взрыве? (При взрыве атомной бомбы температура достигает десятков миллионов кельвин. При такой высокой температуре очень резко повышается давление и образуется мощная взрывная волна. Одновременно возникает мощное излучение. Продукты цепной реакции при взрыве атомной бомбы сильно радиоактивны и опасны для жизни живых организмов.)

Где применили атомные бомбы США в 1945 году? (Бомбы были сброшены на японские города Хиросима и Нагасаки)

Что используется в водородной бомбе? ( Для инициирования реакции синтеза используется взрыв атомной бомбы, помещенной внутри термоядерной.)

Кем были выдвинуты идеи создания термоядерной бомбы в нашей стране? (А. Д. Сахаровым после Великой Отечественной войны)

VI . Первичное закрепление.

Вам теперь предстоит выполнить практическое задание по уравнениям ядерных реакций:

VII I. Рефлексия учебной деятельности на уроке (итог).

Учитель подводит итоги урока, акцентирует внимание на конечных результатах учебной деятельности. Выставляет оценки за урок.

Учитель предлагает учащимся продолжить предложение:

Теперь я могу…

Я затруднялся…

Мне понравилось…

I Х. Домашнее задание (учитель даёт пояснение к выполнению домашней работы)

Масса покоя ядра > суммы масс оск олков, оставши хся после деления я дер тяжелых элементов.

Масса покоя ядра дер, из которых об разуются ядра легких элементов.

При синтезе легких ядер, масса покоя уменьшает ся, при этом выделяется больш ое количество эне ргии.

Слияние легких ядер может происхо дить при очень высоких температурах , поэтому они и полу чили

Термоядерный синтез – это реакция слияния легки х ядер при очень высоких температурах.

Чтобы произошло слияние ядер надо уменьшить расстояние между ними до 10 - 14м, чтобы между ядрами

начали действовать силы. Ку лоновское отталкивание между положительн о заряженными протонами

препятству ет этому процессу. Его прео долевают за счет кинетических энерги й нуклонов.

Энергия, выделяющаяся при синтезе легких яд ер ≈ в 3,5 раза больше энергии, выделя ющейся при

Цепных реакций делени я в природе не наблюдается, в то время как термоядерн ые реакции играют

Это энергия излучени я Солнца и звезд. При рождении звезды она состоит из водорода с большо й

температурой внутри, при которой идут реакции синтеза с образованием новых ядер гелия. Ядра гелия

превращаются затем в ядра более тяж елых элементов.

С середины 20 века ученые разных стран пытаются осуществить у правляемую термоядерную реакци ю,

которая дала бы нов ый неисчерпаем ый источник эн ергии для решения всех энергетиче ских проблем.

Наиболее перспекти вной считается реакция слия ния дейтерия с тритием, при которой выделяется 17,6

Устройство, называемое токомак, на котором возможен ( так считают ученые) управляемый термоядерный

синтез, начали создавать в нашей стр ане под рук оводством академиков Арцимовича и Леонтовича в

Пока же удалось осущес твить только неуправляем ую термоядерную реа кцию – это водородная бомба,

которая дает боле е мощный взрыв п о сравнению с атом ной бомбой.

Неуправляемый синтез вз рывного типа в водородных бомбах может погубить нашу цивилизацию, если

выяснять отношения ме жду странами будут с их помощью .

2) Почему синтез легких ядер, обеща ет быть эконо мически более выгодным, чем цепная реакция ра спада?

3) Какова роль т ермоядерного синтеза в эволюции В селенной?

4) Записать наиболее п ерспективну ю реакцию термоя дерного синтеза.

5) Какие проблемы ч еловечества над еются решить ученые с осу ществлением терм оядерного синтез а?


Каким способом можно получить ядерную энергию? Какая реакция называется термоядерной? На эти и другие вопросы можно получить ответы, прочитав нашу статью.

Что такое термоядерная реакция?

Ядерную энергию можно получить двумя способами: делением тяжелых ядер и синтезом (слиянием) легких ядер. Для слияния легких ядер необходимо, чтобы они сблизились на расстоянии около 10 в минус 12 см, так как ядерные силы действуют на очень маленьких расстояниях. Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено за счет большой кинетической энергии теплового движения ядер. Следовательно, подобные реакции могут протекать только при очень высоких температурах. Ядерный синтез, происходящий в разогретом веществе, называют термоядерным (термоядерная реакция).


Рис. 1. Термоядерная энергия.

Термоядерные реакции, идущие в недрах звезд, играют очень важную роль в эволюции Вселенной. Они – источник ядер химических элементов, которые синтезируются из водорода в звездах.

Уникальная особенность термоядерных реакций как источника энергии – это очень большое энерговыделение на единицу массы реагирующих веществ, примерно в 10 миллионов раз больше, чем в химических реакциях. Вступление в синтез одного грамма изотопов водорода эквивалентно сгоранию 10 тонн бензина. Поэтому ученые давно стремятся овладеть этим гигантским источником энергии. В принципе мы умеем уже сейчас получать энергию в результате реакции термоядерного синтеза. Нагреть вещество до звездных температур можно, используя энергию атомного взрыва. Так устроена водородная бомба – самое страшное оружие современности, в которой взрыв ядерного запала приводит к мгновенному нагреву смеси дейтерия с тритием и последующему термоядерному взрыву.

На Солнце в качестве основного источника энергии выступают реакции протон-протонного цикла, когда из четырех протонов рождается одно ядро гелия. Энергия, которая выделяется в процессе синтеза, уносится образующими ядрами, нейтронами, нейтрино и квантами электромагнитного излучения.

Солнце

Рис. 2. Солнце.

Условия термоядерного синтеза

Ученые стараются найти способы применения мирного, управляемого термоядерного синтеза. Какие же условия должны быть для этого выполнены?

Прежде всего необходимо нагреть термоядерное горючее до температуры, когда реакции синтеза могут происходить с заметной вероятностью. Но этого мало. Необходимо, чтобы при синтезе выделялось больше энергии, чем затрачивается ее на нагрев вещества, или, что еще лучше, чтобы рождающиеся при синтезе быстрые частицы сами поддерживали требуемую температуру горючего. Для этого нужно, чтобы вступающее в синтез вещество было надежно теплоизолировано от окружающей холодной среды, то есть чтобы время остывания, или, как говорят, время удержания энергии, было достаточно велико.

Требования к температуре и времени удержания зависят от используемого горючего. Легче всего осуществить синтез между тяжелыми изотопами водорода – дейтерием и тритием. При этом в результате реакции получается ядро гелия и нейтрон. Глядя на эту формулу становится ясно, какая энергия выделяется при термоядерной реакции:

Пример термоядерной реакции

Рис. 3. Пример термоядерной реакции.

Дейтерий имеется на Земле в огромных количествах в морской воде. Тритий же в природе отсутствует. Сегодня его получают искусственно, облучая в ядерных реакторах нейтронами литий.

Что мы узнали?

Если говорить кратко, то термоядерная реакция – это реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии. В данной статье рассматриваются условия термоядерного синтеза и особенности термоядерных реакций.

Читайте также: