Резонанс конспект по физике

Обновлено: 07.07.2024


Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания и частота

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний - катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний - это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) - это количество колебаний в единицу времени. 1 Герц - это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.


Резонанс на качелях

Суть явления резонанса

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.


Египетский мост в Санкт-Петербурге, разрушившийся из-за резонанса.

Примеры резонанса

Еще один пример наблюдения резонанса, с которым мы сталкиваемся - круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.


Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.


Что такое резонанс

Явление резонанса впервые было описано Галилео Галилеем в 1602 году в работах, посвящённых исследованию маятников и музыкальных струн. В этой области итальянский физик сделал много открытий, которые послужили основой для дальнейшего изучения феномена.

Резонанс в физике — это частотно-избирательный отклик колебательной системы на периодическое воздействие извне, проявляющееся в синхронизации частот колебаний системы с частотой внешнего воздействия, что влечет за собой резкое увеличение амплитуды колебаний этой системы.

Иначе говоря, резонанс — это отклик на некий внешний раздражитель. Представьте, что на тело, находящееся в состоянии покоя или совершающее амплитудные движения определенной частоты, начал оказывать воздействие раздражитель извне с собственной амплитудой и частотой. Если эта внешняя сила просто выведет тело из равновесия, а затем перестанет действовать, то оно какое-то время станет колебаться около своего положения равновесия. Частота этих колебаний является собственной частотой колебаний тела. Если же движение внешнего раздражителя, выводящего тело из равновесия, совпадет с его частотой, то амплитуда тела станет увеличиваться.

Колебания — процесс изменения состояний системы, которые повторяются через определенные промежутки времени.

По отношению к качелям ваши движения являются внешней силой, которая вынуждает их подниматься выше. Причем сила воздействия не так важна. Даже небольшое движение внешней силы при совпадении с частотой системы, может увеличить ее амплитуду. Так, маленькому ребенку удается раскачать взрослого человека, подстроившись под движение качелей.

Качели

Частота колебаний измеряется в герцах (1 Гц) и обозначает количество колебаний в секунду. Например, частота колебаний в 20 Гц говорит о том, что тело совершает 20 колебаний в одну секунду.

Резонировать могут любые упругие физические тела — твердые, жидкие, газообразные. Главным условием резонанса является наличие у тела собственной резонансной частоты.

Виды резонанса

В физике выделяют механический и звуковой резонанс.

Механический резонанс — это абсолютное или неполное совпадение частоты собственных колебаний любой механической системы с частотой изменения электродинамической силы. Механический резонанс бывает полным, если частоты колебаний системы и внешней силы совпадают полностью, либо частичным, когда совпадение неполно. Он основан на переходе потенциальной энергии в кинетическую и обратно.

Наиболее известной резонансной системой являются качели, частоту которых можно рассчитать по формуле:

где g - это постоянная ускорения свободного падения, равная 9,8м/с2, а L — длина от точки подвешивания маятника до центра его масс.

Механические резонансные частоты имеют большое значение при строительстве различных сооружений. Совпадение колебания составных частей объекта с внешними силами может привести к резонансной катастрофе, поэтому при проектировании мостов, зданий, самолетов и других сооружений, инженеры всегда учитывают колебательные частоты ожидаемого движения.

Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.

Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:

  1. Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
  2. Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.

Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.

Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент.
Звучание человеческого голоса также отражается благодаря резонаторам в голосовом аппарате. Звучащим телом является воздух, ограниченный стенками дыхательного тракта. Звук отражается от полостей с твердыми стенками, усиливаясь в несколько раз. Эти полости называются резонаторами.

Плюсы и минусы резонансных явлений

Резонанс является одним из важнейших физический явлений, без которого невозможно представить человеческий мир. Но при этом он имеет как положительные, так и отрицательные последствия.

Плюсы:

  • в музыкальных инструментах придает неповторимое и уникальное звучание таким инструментам, как гитара, скрипка, виолончель и т.д;
  • применяется в устройствах, использующих радиоволны, таких как радиоприемник, телевизор, телефон;
  • используется во всех маятниковых механизмах, включая качели;
  • способ резонансного разрушения применяется для дробления горных пород — при движении дробимого материала силы инерции вызывают напряжение, вынуждающее колебаться материал;
  • используется в медицине (магнитно-резонансное обследование организма);
  • резонансный метод используется в элементах систем вибрационного и геомеханического мониторинга грунтовых сред.

Минусы:

  • необратимые разрушения сооружений во время землетрясения или под воздействием сейсмических волн;
  • разрушительные цунами, образованные от резонансных волн в результате землетрясения;
  • может стать причиной крушения мостов, где внешним раздражителем выступает просто сильный ветер;
  • авиационные двигатели могут вызывать резонансные колебания элементов самолета, приводя к неполадкам и крушениям;
  • вредное влияние на организм человека, например, при прослушивании очень громкой музыки в наушниках;
  • может стать причиной обрыва проводов.

Чтобы нейтрализовать или предотвратить вредное воздействие резонации, применяются специальные меры блокирования. Например, превентивное изменение частоты собственных колебаний.

Примеры резонансных явлений в жизни

В повседневной жизни мы нередко интуитивно применяем явление резонанса, даже не задумываясь о том, что используем правила физики. Например, когда застрявшую в яме машину понемногу раскачивают и начинают толкать в момент ее самостоятельного движения. Таким образом, повышается ее инерция и, следовательно, растет амплитуда колебаний.

Проявление музыкального резонанса можно легко обнаружить во взаимодействии с музыкальным инструментом. К примеру, пропев любую ноту над струнами открытого пианино, вы услышите, что инструмент откликается на пение.

Примером отрицательного резонанса является резкий рост амплитуды колебаний, способный разрушить мост под ногами людей. Подобное катастрофические крушение моста произошло около века назад в Петербурге, когда он начал разваливаться под ногами солдат. Поэтому, проходя по мосту, солдаты перестают маршировать стройным шагом, чтобы частота ударов сапог не могла совпасть с частотой колебания моста.

Мост

Еще один известный пример отрицательного воздействия на мост произошел в Америке в 1940 году. Двухкилометровый Такомский подвесной мост колебался и сгибался на ветру, что, в результате, привело к тому, что он разрушился во время очередной бури спустя четыре месяца эксплуатации.

Если вам интересно узнать о других необычных явлениях физики, обращайтесь к специалистам Феникс.Хэлп за быстрым и актуальным ответом.

Нажмите, чтобы узнать подробности

Цель урока: объяснить, почему большее значение имеют вынужденные колебания, а не свободные; как устанавливаются вынужденные колебания; когда наступает резкое возрастание амплитуды и возникает резонанс.

Тема: Вынужденные колебания. Резонанс.

Цель урока: объяснить, почему большее значение имеют вынужденные колебания, а не свободные; как устанавливаются вынужденные колебания; когда наступает резкое возрастание амплитуды и возникает резонанс.

Образовательная – обеспечить знания учащимися понятия свободных и вынужденных колебаний; объяснить значение вынужденных колебаний; установить происхождение вынужденных колебаний, возникновение резонанса.

Развивающая – формировать понятие о применении и вреде, приносимом резонансом в природе; развивать образное мышление обучающихся; формировать умение работать с книгой.

Воспитывающая – воспитывать сознательное и серьезное отношение к учебному труду; формировать взгляды на развитие природы колебательных процессов и связи с окружающим миром; воспитывать интерес к предмету.

Тип урока: комбинированный.

Методы: словесный, лекция, демонстрационный, объяснительно-иллюстративный

Виды деятельности учащихся: работа с учебником, самостоятельная работа с учебником.

Ход урока.

Орг. момент (приветствие, проверка готовности к уроку, мотивация учебной деятельности, настрой учащихся).

Проверка домашнего задания методом индивидуального опроса.

Что называется механическими колебаниями? (Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени.)

Назовите основные характеристики механических колебаний (Основными характеристиками механических колебаний являются: амплитуда, частота, период.)

Что называется амплитудой колебаний? (Амплитуда — максимальное отклонение от положения равновесия.)

Что называется частотой колебания? (Частота — число полных колебаний, совершаемых в единицу времени.)

Что называется периодом колебаний? (Период — время одного полного колебания)

Как связаны между собой период и частота колебаний? (Период и частота связаны соотношением: ν = 1/Т)

Как происходит преобразование энергии в колебательных системах без трения?

Как силы сопротивления действуют на колеблющееся тело?

Какие колебания являются затухающими?

Изучение новой темы.


Превращение энергии при механических колебаниях.

Рассмотрим процесс превращения энергии на примере колебаний груза на нити (рис 10).

При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня,

следовательно, в точке А маятник обладает потенциальной энергией mgh. При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратится в кинетическую энергию mυ 2 /2. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении от положения равновесия становится равной нулю. При колебательном движении всегда происходят периодические превращения его кинетической и потенциальной энергии.

При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодической внешней силы, то такие колебания называют вынужденными.

Например, родители раскачивают ребенка на качелях, поршень движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины.

Характер вынужденных колебаний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела.

Например, фундамент мотора, на котором он закреплен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.


При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом. Графически зависимость амплитуды вынужденных колебаний от частоты действия внешней силы показана на рисунке 11.

При отсутствии трения амплитуда вынужденных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах амплитуда в установившемся режиме резонанса определяется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.

Резонанс (от латинского слова resonans –дающий отзвук)

Резонансом называется резкое увеличение амплитуды вынужденных колебаний при совпадении частоты свободных колебаний с частотой изменения внешней силы.

Применение резонанса и борьба с ним.

Явление резонанса играет большую роль в ряде природных, научных и производственных процессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Явление резонанса может быть причиной разрушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически действующей силы.

Закрепление.

Вопросы для закрепления.

Какие колебания называются вынужденными? (Колебания, происходящие под действием внешней периодической силы).

Как происходят вынужденные колебания, под действием каких сил? ( Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения.)

Чем отличаются вынужденные колебания от свободных? (В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно.)

Чему при этом равна полная энергия колебательной системы? (Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.)

Как зависит частота вынужденных колебаний от частоты вынуждающей силы? (Частота вынужденных колебаний равна частоте вынуждающей силы.)

Что мы называем явлением резонанса? (В случае, когда частота вынуждающей силы υ совпадает с собственной частотой колебательной системы υ0, происходит резкое возрастание амплитуды вынужденных колебаний — резонанс. )

Из-за чего возникает явление резонанс? (Резонанс возникает из-за того, что при υ = υ0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает положительную работу: энергия колеблющегося тела увеличивается, и амплитуда его колебаний становится большой.)

Какую роль играет явление резонанса?. (Явление резонанса играет большую роль в ряде природных, научных и производственных процессов. )

Приведите примеры явление резонанса. (Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.)


На этом уроке мы выясним, как меняется амплитуда свободных колебаний в реальных условиях и в чём причина этих изменений. Познакомимся с вынужденными колебаниями и узнаем, при каких обстоятельствах они возникают. А также поговорим о явлении резонанса.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Затухающие и вынужденные колебания. Резонанс"

На прошлых уроках мы с вами знакомились с колебательным движением и простейшими колебательными системами — математическим и пружинным маятниками. При этом мы считали, что их колебания являются свободными (то есть происходят только под действием внутренних сил), и подчиняются гармоническому закону.

Напомним, что системы, на которые не действуют внешние силы, — это замкнутые системы. А, мы уже знаем, что в замкнутой системе полная механическая энергия остаётся постоянной и равной той энергии, которую мы изначально ей сообщили. Поэтому свободные колебания — это колебания с постоянной амплитудой. А маятник, выведенный из положения равновесия, должен колебаться вечно!

Колебания с уменьшающейся амплитудой называются затухающими колебаниями. Причём чем больше силы сопротивления движению, тем быстрее прекращаются колебания. Например, в воде колебания затухают гораздо быстрее, чем в воздухе.


Конечно же затухающие колебания нельзя считать свободными, поскольку свободные колебания — это колебания, происходящие с постоянной амплитудой.

— Каким же образом можно добиться того, чтобы колебания не затухали?

Очевидно, что необходимо восполнять потери энергии за каждый период колебаний. Для этого нужно воздействовать на колеблющееся тело периодически изменяющейся силой. Например, если каждый раз подталкивать маятник в такт его колебаниям, то он сможет качаться сколь угодно долго.


Такие колебания, то есть колебания, происходящие под действием внешней периодически изменяющейся силы, называются вынужденными колебаниями.

А периодическая сила, вызывающая такие колебания, называется вынуждающей силой.

Таким образом, колебательная система, на которую действует внешняя периодическая сила, совершает вынужденные колебания, частота которых равна частоте вынуждающей силы. При этом амплитуда вынужденных колебаний при данной частоте вынуждающей силы не изменяется, даже если на систему будут действовать силы сопротивления, так как потери энергии компенсируются работой вынуждающей силы.

Давайте выясним, зависит ли амплитуда вынужденных колебаний от соотношения между частотой вынуждающей силы и собственной частотой колебательной системы. Для этого проведём такой опыт. Подвесим на нитях, прикреплённых к общей перекладине два маятника — маятник один и маятник два, имеющий массу существенно больше.


Длина нити первого маятника постоянна, а длину второго можно изменять, подтягивая свободный конец нити, при этом будет изменяться и его собственная частота колебаний. Если привести в движение маятник большей массы, то он через перекладину будет действовать на маятник один с некоторой вынуждающей силой, изменяющейся с такой же частотой, с какой колеблется маятник два.

Если мы будем уменьшать длину второго маятника частота его колебаний увеличится. При этом увеличится и частота вынуждающей силы, действующей на первый маятник, при этом начнёт увеличиваться и его амплитуда. Увеличение амплитуды будет продолжаться до тех пор, пока длины маятников не станут равными.

Когда длины маятников становятся равными, то есть когда частота вынуждающей силы совпадает с частотой собственных колебаний первого маятника, его амплитуда колебаний резко возрастает. При дальнейшем уменьшении длины маятника два частота вынуждающей силы оказывается больше собственной частоты маятника один и амплитуда его колебаний уменьшается.


Явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы называется резонансом.

Явление резонанса можно продемонстрировать и на таком опыте. Подвесим на рейку несколько маятников разной длины.


Пусть центральный маятник будет массивным, а остальные — лёгкими. Приведём центральный маятник в движение в плоскости, перпендикулярной рейке. Он будет совершать свободные колебания, периодически действуя с некоторой силой на рейку. Рейка будет передавать это воздействие остальным маятникам, которые начнут совершать вынужденные колебания с частотой колебаний массивного маятника.


Обратите внимание, что маятники 2 и 3 останутся почти неподвижными, так как их собственные частоты значительно отличаются от частоты массивного маятника. Амплитуды маятников 4 и 5 будут больше, а маятники 6 и 7, имеющие ту же длину нити, что и массивный маятник, начнут колебаться с очень большой амплитудой, то есть войдут в резонанс с массивным маятником.

В чем причина явления резонанса? Почему растёт амплитуда колебаний, когда частота вынуждающей силы приближается к частоте собственной?



Явление резонанса может быть полезным, поскольку оно позволяет получить даже с помощью малой силы большое увеличение амплитуды колебаний. Например, тяжёлый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

С другой стороны, резонансные явления могут вызвать необратимые разрушения в различных механических системах. Известны случаи, когда вследствие резонанса в воздухе рассыпался на части самолёт, ломались гребные винты у кораблей, разрушалась железная дорога.

Что бы не допустить резонанса, изменяют собственную частоту системы или частоту вынуждающей силы. Для этого, например, поезда переезжают мосты или очень медленно, или с максимальной скоростью, что бы частота ударов колёс о стыки была либо меньше, либо больше собственной частоты колебаний моста. А солдаты, переходя через мост, идут не в ногу, а сбивают шаг. Иначе, если частота их шагов совпадёт с частотой собственных колебаний моста, он может разрушится. Так произошло в 1850 году вблизи города Анже во Франции, когда через мост Бас-Шен, висящий на цепях, проходил отряд солдат. В результате обрушения погибло 226 человек.

Похожий случай произошёл и в Петербурге в январе 1905 года, при переходе кавалерийского эскадрона по Египетскому мосту через реку Фонтанка. По счастливой случайности, никто из людей не погиб.

А 7 ноября 1940 года сильный порыв ветра вызвал резонансные колебания Такомского моста в США, что привело к его разрушению.

В тех случаях, когда резонанс может нанести ущерб, принимают меры к тому, чтобы не допустить его возникновения. Например, многие заводские станки, отдельные части которых совершают периодические движения, устанавливают на массивном фундаменте или амортизаторных пружинах, препятствующих возникновению колебаний всего станка.

На явлении резонанса основано действие частотомера, с помощью которого измеряют частоту колебаний.

Читайте также: