Приток жидкости к скважинам конспект

Обновлено: 08.07.2024

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. При постоянной толщине пласта и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока.

Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестает изменяться во времени и поток является установившемся.

Для установившегося плоскорадиального потока однородной жидкости дебит скважины можно определить по формуле:

Q – дебит скважины [л/с], [м 3 /сут], [т/сут] и.т.п. (объем жидкости, поступающий на забой скважины в единицу времени);

k – проницаемость пласта [мкм 2 ](микрометр) 1 мкм 2 = 1 Д = 10 -12 м 2 ;

h – толщина пласта [м];

pк – пластовое давление [Па];

pз – забойное давление в скважине [Па];

μ – вязкость жидкости [Па*с];

Rк – радиус контура питания [м];

rс – радиус контура скважины [м].

Формула, называемая формулой Дюпюи, широко используется для расчета дебита гидродинамически совершенных скважин.

К гидродинамически совершенным скважинам (ГДС) относят скважины с открытым забоем, вскрывшие пласты на всю толщину (рис. а).

Если скважина имеет открытый забой, но вскрыла пласт не на всю толщину, то ее называют гидродинамически несовершенной по степени вскрытия (рис. б).

Скважины, вскрывшие пласт на всю толщину, но соединяющиеся с пластом посредством перфорации, являются гидродинамически несовершенными по характеру вскрытия (рис. в) .

Есть скважины и с двойным видом несовершенства – как по степени, так и по характеру вскрытия (рис. г).

Вблизи ствола гидродинамический несовершенной скважины происходит искажение плоскорадиальной формы потока и возникают дополнительные фильтрационные сопротивления потоку жидкости.

При расчете дебита скважин их гидродинамическое несовершенство учитывается введением в формулу Дюпюи коэффициента дополнительных фильтрационных сопротивлений С.

Величина коэффициента дополнительных фильтрационных сопротивлений зависит от степени вскрытия пласта, плотности перфорации и диаметра перфорационных каналов. Обычно ее определяют, используя графики И.В. Щурова.


Основные понятия о разработке нефтяных и газовых месторождений. Пластовая энергия и силы, действующие в залежи. Природные режимы работы нефтяных и газовых залежей.

Одной из главных целей разработки месторождения является извлечение максимального количества нефти из недр.

Разработка нефтяных и газовых месторождений – это комплекс мероприятий, направленных на обеспечение притока нефти и газа из залежи к забою скважин, предусматривающих с этой целью определенный порядок размещения скважин на площади, очередность их бурения и ввода в эксплуатацию, установление и поддержание определенного режима их работы.

Под режимом работы нефтяных и газовых залежей понимают характер проявления движущих сил, обеспечивающих продвижение нефти в пластах к забоям эксплуатационных скважин.

Залегающие в пластах нефть и газ находятся под действием сил, совокупность которых обусловливает движение нефти, газа и воды в пластах при их разработке, а также характер и интенсивность этого движения.

Силы, действующие в пласте, можно разделить на две группы: силы движения и силы сопротивления, противодействующие движению жидкостей и газа и удерживающие нефть в пластах.

К силам, обусловливающим движение нефти, газа и воды в пластах, относятся следующие:

  • силы, вызываемые напором пластовых контурных вод;
  • силы, вызываемые напором свободного газа, заключенного в газовой шапке;
  • силы, вызываемые расширением сжатого газа, растворенного в нефти;
  • силы, проявляющиеся в результате упругости пластовых водонапорных систем, т.е. упругости жидкости и собственно пород пластов;
  • сила тяжести нефти.

В процессе движения нефти и газа в пласте чаще всего действуют различные виды энергии одновременно. Так, всегда проявляются упругость пород и жидкостей и сила тяжести. Однако в зависимости от геологических условий и условий эксплуатации месторождения превалирует энергия того или иного вида.

К силам сопротивления движения нефти в пласте относятся:

  • внутреннее трение жидкости и газа, связанное с преодолением их вязкости;
  • трение нефти, воды или газа о стенки поровых каналов нефтегазосодержащей породы;
  • межфазное трение при относительном движении жидкости и газа по пласту;
  • капиллярные и молекулярно-поверхностные силы, удерживающие нефть в пласте благодаря смачиванию ею стенок поровых каналов.

Гидравлическое сопротивление движению жидкости и газа по пласту зависит прежде всего от вязкости движущихся жидкостей и газа и от скорости потока. Чем выше скорость потока и выше вязкость, тем больше силы сопротивления.

Виды режимов работы нефтяных и газовых залежей:

- водонапорный (жестководонапорный) режим (рис. а) источником энергии является напор краевых (или подошвенных) вод. Ее запасы постоянно пополняются за счет атмосферных осадков и источников поверхностных водоемов. Отличительной особенностью этого режима является то, что поступающая в пласт вода полностью замещает отбираемую нефть. Контур нефтеносности при этом непрерывно перемещается и сокращается.

Эксплуатация нефтяных скважин прекращается, когда краевые воды достигают забоя тех из них, которые находятся в наиболее высоких частях пласта, и вместо нефти начинает добываться только вода.

При водонапорном режиме давление в пласте настолько велико, что скважины фонтанируют. Но отбор нефти и газа не следует производить слишком быстро, поскольку иначе темп притока воды будет отставать от темпа отбора нефти и давление в пласте будет падать, фонтанирование прекратиться. Коэффициент нефтеотдачи пласта при данном режиме – 0,5…0,8

Коэффициент нефтеотдачи пласта - это доля извлеченной из пласта нефти от ее первоначальных запасов.

- газонапорный режим (или режим газовой шапки)(рис. б) источником энергии для вытеснения нефти является давление газа, сжатого в газовой шапке. Газ, действуя на поверхность газонефтяного контакта, создает давление в нефти, заполняющей поры продуктивного пласта. Чем больше размер газовой шапки, тем дольше снижается давление в ней. Коэффициент нефтеотдачи пласта – 0,5…0,6.

- режим растворенного газа (газовый) (рис. в) основным источником пластовой энергии является давление газа, растворенного в нефти. По мере понижения пластового давления газ из растворенного состояния переходит в свободное. Расширяясь пузырьки газа выталкивают нефть к забоям скважин. Коэффициент нефтеотдачи – самый низкий 0,2…0,4. Причина этого в том, что запас энергии газа часто полностью истощается намного раньше, чем успевают отобрать значительные объемы нефти.

- упруговодонапорный (упругий) режим основным источником пластовой энергии служат упругие силы воды, нефти и самих пород, сжатых в недрах под действием горного давления. Коэффициент нефтеотдачи пласта – может достигать 0,8.

- гравитационный режим (рис. г) проявляется тогда, когда давление в пласте упало до минимума, напор контурных вод отсутствует, газовая энергия полностью истощена. При этом режиме нефть стекает в скважину под действием силы тяжести, а оттуда она откачивается механизированным способом. Коэффициент нефтеотдачи пласта – 0,1 – 0,2.

- смешанный режим - если в нефтяной залежи одновременно действуют различные движущие силы.

При разработке газовых месторождений гравитационный режим и режим растворенного газа отсутствуют.


Естественная пластовая энергия в большинстве случаев не обеспечивает высоких темпов и достаточной полноты отбора нефти из залежи. Это связано с тем, что ее извлечению из пласта препятствует достаточно много факторов, в частности, силы трения, силы поверхностного натяжения и капиллярные силы.

Гост

ГОСТ

Условия притока жидкости и газов в скважину

Приток – это движение газа или жидкости по направлению от большего давления к меньшему.

Такое движение происходит вследствие разности пластового давления (Рпл) и давления у забоев скважин (Рзаб). Разность между этими двумя показателями (Рпл – Рзаб) называют депрессией скважины, причем, чем она выше, тем, соответственно, больше приток.

Для установившегося плоскорадиального потока жидкости дебит скважины можно определить по следующей формуле:

$Q = (2 • п • k • h • (Рп – Рз)) / (ulnR_k / r_c ), $

где, k – проницаемость пласта; h – толщина пласта; Рпл – пластовое давление; Рз – давление на забое скважины; u – вязкость жидкости; Rk – радиус контура питания; rc – радиус контура скважины.

Методы вызовы притока

Вызов притока – это технологический процесс, заключающийся в создании депрессии, под действием которой осуществляется приток флюидов из пласта к скважине, а также ликвидации репрессии на пласт и снижении противоположного давления на забое простаивающей скважины.

Перед освоением скважины, ее оборудуют согласно ее назначению, метода вызова притока, способа эксплуатации. Метод вызова притока зависит от назначения скважины, пластового давления, расположения скважины в пространстве, способа эксплуатации скважины, степени устойчивости коллектора и т.п. В настоящее время используются три основных метода вызова притока:

  • Продавка жидкости сжатым газом.
  • Компрессорный метод.
  • Метод замены жидкости.

Последовательная замена жидкости большой плотности на жидкость меньшей плотности производится с помощью промывки скважины по схеме: буровой раствор с большой плотностью-буровой раствор с меньшей плотностью-воды-нефть-газоконденсат. Компрессорный метод основан на аэрации (газирование, аэрирование) жидкости, которая осуществляется при помощи ввода газа в поток жидкости, что увеличивает расход газа и уменьшает расход жидкости. Вытеснение жидкости при помощи сжатого газа, также известен под названием газлифтный. В процессе пуска скважины создается депрессия, поэтому данный метод не может быть использован при наличии подошвенной воды, верхнего газа или неустойчивых и рыхлых коллекторов.

Готовые работы на аналогичную тему

Технологические режимы эксплуатации нефтяных и газовых скважин

К основным режимам эксплуатации нефтяных и газовых скважин относятся:

  1. Водонапорный режим (нефть).
  2. Газонапорный режим (нефть).
  3. Гравитационный режим (нефть).
  4. Режим растворенного газа (нефть).
  5. Режим постоянной депрессии (газа).
  6. Режим постоянного градиента давления на стенке скважины (газ).
  7. Режим постоянного давления на забое скважины (газ).
  8. Режим постоянного давления на устье скважины (газ).

Водонапорный режим эксплуатации скважины основан на вытеснении и перемещении нефти по капиллярам в пласте, за счет подпора воды. Такой режим может быть упругим и жестким. Газонапорный режим эксплуатации скважин основан на перемещении нефти в капиллярах пласта под давлением газа, который контактирует с ней. Газ размещается в верхней части пласта, тем самым образовывая газовую шапку, где газ находится под высоким давлением. Режим растворенного газа используется на месторождениях, которых отсутствует свободный газ, а к нефтяной части пласта не поступает вода. В этом случае движущей силой является растворенный газ. Он опережает движение потока нефти по капиллярам пласта и частично выносит ее за собой. Гравитационный режим эксплуатации нефтяных скважин используют в том случае, когда пластовая энергия полностью потеряна. Движущей силой в этом случае выступает сила тяжести самой нефти.

Режим постоянной депрессии является самым простым и рекомендован для использования на месторождениях с рыхлыми коллекторами. Регулирование границ раздела вода-газ осуществляется при помощи распределения депрессии по отдельным скважинам, что способствует увеличению газоотдачи. Режим постоянного забойного давления используется на газоконденсатных месторождениях. Для поддержания пластового давления при помощи расчетов определяются и устанавливаются значения забойного давления из условия сокращении потерь газового конденсата. Иногда из-за особенностей потребления газа местными потребителями может возникнуть необходимость в применении режима постоянного устьевого давления. Он также применяется на основе требований транспортировки природного газа по магистральному газопроводу, на трассе которого отсутствует дожимная компрессорная станция или она еще находится на стадии строительства.

При эксплуатации скважины движение пластовой жидкости осуществляется в трех системахпласт-скважина-коллектор, которые действуют независимо друг друга, при этом взаимосвязаны между собой.


Рис. 3.9. Схема добычи нефти из пласта.

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлени­ем на забое скважины. Разность между пластовым и забойным давлением называется депрессией на пласт.

Так, как движение жидкости в пласте происходит с весьма малыми скоростями, то оно подчиняется ли­нейному закону фильтрации - закону Дарси. При постоянной толщине пласта и открытом забое скважины жид­кость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока. Если скважина достаточно продолжительно работает при постоянном забойном давлении, то ско­рость фильтрации и давление во всех точках пласта перестает изменяться во времени и поток является установив­шимся.








Рис. 3.10. Схема плоскорадиального потока в пласте

a) горизонтальное сечение

b) вертикальное сечение

Рис. 3.11 График распределения давле­ния в плоскорадиальном фильтрацион-ном потоке.

Для установившегося плоскорадиального потока однородной жидкости по закону Дарси дебит скважины можно определить по формуле:


где Q - дебит скважины (объем жидкости, поступающей на забой скважины в единицу времени); k - про­ницаемость пласта; h - толщина пласта; Рпл - пластовое давление; Рз забойное давление в скважине; ^ - вязкость жидкости; rk - радиус контура питания скважины (равен половине расстояния между двумя соседними скважина­ми); ie - радиус скважины.

Анализ формулы (3.16) показывает, что на дебит скважины влияют:

1) проницаемость пласта - чем она больше, тем выше дебит скважины;

2) толщина пласта — чем она больше, тем выше дебит скважины;

3) депрессия на пласт - чем больше депрессия, тем выше дебит скважины;

4) вязкость жидкости - чем она больше, тем ниже дебит скважины;

5) отношение радиуса контура питания к радиусу скважины - чем больше это отношение, тем выше де­бит скважины.

Виды гидродинамического несовершенства скважин.

Формула (3.16), называемая формулой Дюпюи справедлива для расчета дебита гидродинамически совер­шенных скважин, к которым относят скважины с открытым забоем, вскрывшие пласты на всю толщину (рис. 3.12, а).










Рис. 3.12. Виды гидродинамического совершенства скважин.

а - совершенная скважина; б - несовершен­ная по степени вскрытия; в несовершенная по характеру вскрытия; г - с двойным видом несовершенства

Если скважина имеет открытый забой, но вскрыла пласт не на всю толщину (рис. 3.12, б), то ее называют гидродинамически несовершенной по степени вскрытия. Скважины, вскрывшие пласт на всю толщину, но соеди­няющиеся с пластом посредством перфорации (рис. 3.12, в), являются гидродинамически несовершенными по ха­рактеру вскрытия. Есть скважины с двойным видом несовершенства - как по степени, так и по характеру вскрытия (рис. 3.12, г).

Вблизи ствола гидродинамической несовершенной скважины происходит искажение плоскорадиальной формы потока и возникают дополнительные фильтрационные сопротивления потоку жидкости.

При расчете дебита скважин их гидродинамическое несовершенство учитывается введением в формулу Дюпюи коэффициента дополнительных фильтрационных сопротивлений С:


Величина коэффициента дополнительных фильтрационных сопротивлений зависит от степени вскрытия пласта, плотности перфорации, длины и диаметра перфорационных каналов.

Формулу (3.17) можно представить с использованием понятия приведенного радиуса скважины Гепр:


Приведенный радиус скважины - это радиус гидродинамически совершенной скважины, которая обеспе­чивает при равных прочих условиях такой же дебит, как гидродинамически несовершенная скважина. Для совер­шенной скважины Гпр=1с, для несовершенных Гпр

Тема 4.

Средневековье: основные этапы и закономерности развития: Эпоху Античности в Европе сменяет Средневековье. С чем связано.

Опасности нашей повседневной жизни: Опасность — возможность возникновения обстоятельств, при которых.

Основные признаки растений: В современном мире насчитывают более 550 тыс. видов растений. Они составляют около.


При эксплуатации скважины движение пластовой жидкости осуществляется в трех системах пласт-скважина-коллектор, которые действуют независимо друг от друга, при этом взаи­мосвязаны между собой.

Рис. 1.1. Схема добычи нефти из пласта.

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. Разность между пластовым и забойным давлением называется депрессией на пласт.


Р = Рпл - Рзаб (1.1)

Так как движение жидкости в пласте происходит с весьма малыми скоростями, то оно подчиняется линейному закону фильтрации - закону Дарси. При постоянной толщине пла­ста и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока. Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестают изменяться во времени и поток является установившимся.

Рассмотрим задачу притока жидкости в скважину в круго­вом пласте, схема которого представлена на рис. 1.2.



Рис. 1.2. К выводу уравнения Дюпюи

Для решения задачи введем следующие допущения:

1. Пласт круговой, в центре которого расположена един­ственная совершенная скважина.

2. Пласт однородный и изотропный постоянной толщины.


3. Процесс течения флюида изотермический = const).

4. Движение жидкости плоскорадиальное и соответствует закону Дарси.

5. В процессе фильтрации отсутствуют любые физические и химические реакции.

Запишем уравнение Дарси:


(1.2)

где Q — объемный расход жидкости, м 3 /с; F — поверхность фильтрации, м 2 ;


— перепад давлений, Па;


— вязкость флюида, Па с;

l — путь течения флюида, м;

к — коэффициент пропорциональности, который учитывает не только среду в которой осуществляется фильтрация, но и все процессы взаимодействия между фильтрующимся флюидом и твердой поверхностью среды, м 2 .

Для схемы рис. 1.2 обозначим:

Rk радиус контура питания (равен половине расстояния между двумя соседними скважинами), м;

rс радиус скважины, м;

h — толщина пласта, м;

Рк — давление на контуре питания, Па;

Рзаб давление на забое скважины, Па.

Выделим мысленно (рис. 1.2) на расстоянии г от оси сква­жины элемент пласта толщиной dr. Перепад давлений на этом элементе обозначим через dP. Поверхность фильтрации для выделенного элемента такова:


Запишем уравнение Дарси для рассматриваемой схемы:



После разделения переменных получим:



Пределами интегрирования для уравнения (1.3) являются: по P: от Рk до Рзаб; по r. от Rк до гс.

Таким образом, имеем:


После интегрирования получаем:



Уравнение (1.5) называется уравнением Дюпюи и описы­вает приток жидкости в скважину для схемы на рис. 1.3 при принятых допущениях.

Как видно из (1.5), распределение давления в пласте во­круг работающей скважины является логарифмическим, что представлено на рис. 1.3.



Рис. 1.3. Распределение давления в пласте вокруг работающей скважины

Давление на контуре питания Рк является пластовым статическим давлением Pплст, в дальнейшем просто Рпл плст статическое пластовое давление — давление, которое суще­ствует в системе до момента отбора продукции, т.е. когда Q = 0). Давление вокруг работающей скважины в любой точке пласта (между давлением на забое скважины и давлением на контуре питания) называется динамическим пластовым давлением Рплдин. Динамическое пластовое давление на стенке скважины будем называть забойным давлением Рза6.
^ 1.2. Виды гидродинамического несовершен­ства скважин

Процесс течения продукции в пористой среде сопровожда­ется определенными фильтрационными сопротивлениями. В призабойной зоне скважины возникают дополнительные филь­трационные сопротивления, связанные, во-первых, с наличием самой скважины и, во-вторых, с конкретным ее исполнением.

Для сравнения скважин между собой и оценки каждой конкретной скважины вводятся понятия гидродинамически совершенной скважины и гидродинамически несовершенных скважин.

На рис. 1.4 приведены схемы гидродинамически совершен­ной и гидродинамически несовершенных скважин.
Рис. 1.4. Схемы гидроди­намически совершенной (а) и гидродинамически несовершенных сква­жин:

б - по степени вскрытия; в - по характеру вскры­тия;

г - по степени и характеру вскрытия:

1 - обсадная колонна;

2 - цементный камень;

3 - перфорационное от­верстие;


4 - перфорационный канал
Под гидродинамически совершенной будем понимать такую скважину, которая вскрыла продуктивный горизонт на всю его толщину h и в которой отсутствуют любые элементы крепи (обсадная колонна, цементный камень, забойные устройства), т.е. скважина с открытым забоем. При течении продукции в такую скважину фильтрационные сопротивления обусловлены только характеристикой продуктивного горизонта и являются минимально возможными (рис. 1.4 а). Большинство реальных скважин относятся к гидродинамически несовершенным. Среди гидродинамически несовершенных скважин выделяют:

1. Несовершенные по степени вскрытия (рис. 1.4 б).

Несовершенными по степени вскрытия называются сква­жины, которые вскрывают продуктивный горизонт не на всю толщину.

2. Несовершенные по характеру вскрытия (рис. 1.4 в).

Несовершенными по характеру вскрытия называются сква­жины, которые вскрывают пласт на всю толщину, но скважина обсажена и проперфорирована.

3. Несовершенные по степени и характеру вскрытия (рис. 1.4 г).

Несовершенными по степени и характеру вскрытия называ­ются скважины, которые вскрывают продуктивный горизонт не на всю толщину и скважина обсажена и проперфорирована.

При расчете дебита скважин их гидродинамическое несо­вершенство учитывается введением в формулу Дюпюи коэффи­циента дополнительных фильтрационных сопротивлений С:



Величина коэффициента дополнительных фильтрационных сопротивлений зависит от степени вскрытия пласта, плотности перфорации, длины и диаметра перфорационных каналов.

Коэффициент дополнительных фильтрационных сопро­тивлений можно представить в виде:

где С1 - коэффициент, учитывающий несовершенство скважины по степени вскрытия. Этот коэффициент учитывает возрастание фильтрационных сопротивлений за счет изменения геометрии течения жидкости. Он будет зависеть от толщины продуктивного пласта h, диаметра скважины по долоту Dc и от относительного вскрытия пласта 8. Коэффициент С1 определя­ется по специальным графикам.



где b - часть толщины продуктивного горизонта, вскрытого скважиной.

С2 - коэффициент, учитывающий несовершенство скважи­ны по характеру вскрытия. Дополнительные фильтрационные сопротивления для таких скважин связаны с изменением геометрии течения продукции вследствие наличия перфора­ционных отверстий и каналов. Он будет зависеть от плотности перфорации (количества отверстий) на один погонный метр п; средней длины перфорационного канала l; диаметра перфо­рационного канала d. Коэффициент С2 также определяется по специальным графикам.
^ 1.3. Коэффициент гидродинамического совер­шенства скважины

Любое гидродинамическое несовершенство скважины при­водит к снижению дебита. В общем случае дебит несовершенной скважины Q hc записывается в виде:


Коэффициентом гидродинамического совершенства сква­жины ф называется отношение дебита несовершенной скважи­ны Q hc к дебиту совершенной скважины Qc, вычисляемому по формуле (1.5).


Учет гидродинамического несовершенства скважины может быть выполнен с использованием понятия приведенного радиу­са скважины rпр. Приведенный радиус скважины - это радиус такой фиктивной совершенной скважины Qфс , дебит которой равен дебиту реальной несовершенной скважины Qрс . Для со­вершенной скважины rпр =rс, для несовершенных rпр ^ 1.4. Оптимальный и потенциальный дебиты скважин

Один из важнейших вопросов в добыче нефти и газа - уста­новление обоснованной величины отбора нефти (газа) как из отдельных скважин, так и из залежи в целом. При прочих равных условиях максимальный дебит скважины можно по­лучить при максимальной депрессии на пласт. Очевидно, что максимальная депрессия будет при Рзаб = 0. Дебит скважины, получаемый при максимальной депрессии, называется потенциальным дебитом.

Однако далеко не во всех скважинах можно добывать нефть

(газ) при потенциальном дебите. Чаще всего задолго до насту­пления максимальной депрессии эксплуатационная обсадная колонна может быть смята внешним давлением. Возможно так­же интенсивное разрушение горной породы, слагающей пласт, при увеличении на него депрессии. Кроме того, при максимальной депрессии нерационально расходуется пластовая энергия вследствие бурного выделения из нефти растворенного газа и проскальзывания его в скважину без дополнительных работ по вытеснению нефти.

По указанным и некоторым другим причинам приходится ограничивать отбор жидкости (газа) из пласта, чтобы получить из пласта наибольшую нефтеотдачу, а сам процесс добычи про­текал бесперебойно, скважины 'не выходили из строя вслед­ствие чрезмерного отбора флюидов.

Следовательно, для каждой скважины в зависимости от условий эксплуатации, которые могут изменяться, существует какой-то оптимальный отбор жидкости. Величина оптималь­ного отбора и является максимальным дебитом для скважины, при котором учитываются геолого-технические и экономиче­ские требования.

Дебит скважины, удовлетворяющий указанным требовани­ям, называют оптимальным дебитом. Оптимальный дебит слу­жит технической нормой добычи нефти (газа) из скважины.

Контрольные вопросы:

1. Условия притока жидкости в скважину.

2. Какие допущения вводятся для вывода формулы Дюпюи.

3. Какие величины входят в формулу Дюпюи?

4. Охарактеризуйте виды гидродинамического несовер­шенства скважин.

Читайте также: