Предел функции в точке конспект

Обновлено: 05.07.2024

В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.

Понятие предела

В математике принципиально важным является понятие бесконечности, обозначаемое символом ∞ . Его следует понимать как бесконечно большое + ∞ или бесконечно малое - ∞ число. Когда мы говорим о бесконечности, часто мы имеем в виду сразу оба этих ее смысла, однако запись вида + ∞ или - ∞ не стоит заменять просто на ∞ .

Запись предела функции имеет вид lim x → x 0 f ( x ) . В нижней части мы пишем основной аргумент x , а с помощью стрелочки указываем, к какому именно значению x 0 он будет стремиться. Если значение x 0 является конкретным действительным числом, то мы имеем дело с пределом функции в точке. Если же значение x 0 стремится к бесконечности (не важно, ∞ , + ∞ или - ∞ ), то следует говорить о пределе функции на бесконечности.

Предел бывает конечным и бесконечным. Если он равен конкретному действительному числу, т.е. lim x → x 0 f ( x ) = A , то его называют конечным пределом, если же lim x → x 0 f ( x ) = ∞ , lim x → x 0 f ( x ) = + ∞ или lim x → x 0 f ( x ) = - ∞ , то бесконечным.

Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.

Что такое предел функции

В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.

Число A является пределом функции f ( x ) при x → ∞ , если последовательность ее значений будет сходиться к A для любой бесконечно большой последовательности аргументов (отрицательной или положительной).

Запись предела функции выглядит так: lim x → ∞ f ( x ) = A .

При x → ∞ предел функции f ( x ) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).

Запись выглядит как lim x → ∞ f ( x ) = ∞ .

Докажите равенство lim x → ∞ 1 x 2 = 0 с помощью основного определения предела для x → ∞ .

Решение

Начнем с записи последовательности значений функции 1 x 2 для бесконечно большой положительной последовательности значений аргумента x = 1 , 2 , 3 , . . . , n , . . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 n 2 > . . .

Мы видим, что значения будут постепенно уменьшаться, стремясь к 0 . См. на картинке:

Далее мы запишем то же самое, но для бесконечно большой отрицательной последовательности.

x = - 1 , - 2 , - 3 , . . . , - n , . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 - n 2 > . . .

Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:

Ответ: Верность данного в условии равенства подтверждена.

Вычислите предел lim x → ∞ e 1 10 x .

Решение

Начнем, как и раньше, с записи последовательностей значений f ( x ) = e 1 10 x для бесконечно большой положительной последовательности аргументов. Например, x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → + ∞ .

e 1 10 ; e 4 10 ; e 9 10 ; e 16 10 ; e 25 10 ; . . . ; e 100 10 ; . . . = = 1 , 10 ; 1 , 49 ; 2 , 45 ; 4 , 95 ; 12 , 18 ; . . . ; 22026 , 46 ; . . .

Мы видим, что данная последовательность бесконечно положительна, значит, f ( x ) = lim x → + ∞ e 1 10 x = + ∞

Переходим к записи значений бесконечно большой отрицательной последовательности, например, x = - 1 , - 4 , - 9 , - 16 , - 25 , . . . , - 10 2 , . . . → - ∞ .

e - 1 10 ; e - 4 10 ; e - 9 10 ; e - 16 10 ; e - 25 10 ; . . . ; e - 100 10 ; . . . = = 0 , 90 ; 0 , 67 ; 0 , 40 ; 0 , 20 ; 0 , 08 ; . . . ; 0 , 000045 ; . . . x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → ∞

Поскольку она тоже стремится к нулю, то f ( x ) = lim x → ∞ 1 e 10 x = 0 .

Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными ­ – отрицательных.

Ответ: lim x → ∞ e 1 10 x = + ∞ , п р и x → + ∞ 0 , п р и x → - ∞ .

Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.

Число B является пределом функции f ( x ) слева при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются меньше a ( x n a ).

Такой предел на письме обозначается как lim x → a - 0 f ( x ) = B .

Теперь сформулируем, что такое предел функции справа.

Число B является пределом функции f ( x ) справа при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются больше a ( x n > a ).

Этот предел мы записываем как lim x → a + 0 f ( x ) = B .

Мы можем найти предел функции f ( x ) в некоторой точке тогда, когда для нее существуют равные пределы с левой и правой стороны, т.е. lim x → a f ( x ) = lim x → a - 0 f ( x ) = lim x → a + 0 f ( x ) = B . В случае бесконечности обоих пределов предел функции в исходной точке также будет бесконечен.

Теперь мы разъясним данные определения, записав решение конкретной задачи.

Докажите, что существует конечный предел функции f ( x ) = 1 6 ( x - 8 ) 2 - 8 в точке x 0 = 2 и вычислите его значение.

Решение

Для того чтобы решить задачу, нам потребуется вспомнить определение предела функции в точке. Для начала докажем, что у исходной функции имеется предел слева. Запишем последовательность значений фукнции, которая будет сходиться к x 0 = 2 , если x n 2 :

f ( - 2 ) ; f ( 0 ) ; f ( 1 ) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 , 667 ; 2 , 667 ; 0 , 167 ; - 0 , 958 ; - 1 , 489 ; - 1 , 747 ; - 1 , 874 ; . . . ; - 1 , 998 ; . . . → - 2

Поскольку приведенная последовательность сводится к - 2 , мы можем записать, что lim x → 2 - 0 1 6 x - 8 2 - 8 = - 2 .

Далее докажем наличие предела справа: запишем аргументы в последовательности, которая будет сходиться к x 0 = 2 , если x n > 2 :

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Значения функции в этой последовательности будут выглядеть так:

f ( 6 ) ; f ( 4 ) ; f ( 3 ) ; f 2 1 2 ; f 2 3 4 ; f 2 7 8 ; f 2 15 16 ; . . . ; f 2 1023 1024 ; . . . = = - 7 , 333 ; - 5 , 333 ; - 3 , 833 ; - 2 , 958 ; - 2 , 489 ; - 2 , 247 ; - 2 , 124 ; . . . , - 2 , 001 , . . . → - 2

Данная последовательность также сходится к - 2 , значит, lim x → 2 + 0 1 6 ( x - 8 ) 2 - 8 = - 2 .

Мы получили, что пределы с правой и левой стороны у данной функции будут равными, значит, предел функции f ( x ) = 1 6 ( x - 8 ) 2 - 8 в точке x 0 = 2 существует, и lim x → 2 1 6 ( x - 8 ) 2 - 8 = - 2 .

Вы можете увидеть ход решения на иллюстрации (зеленые точки– последовательность значений, сходящаяся к x n 2 , синие – к x n > 2 ).

Ответ: Пределы с правой и левой стороны у данной функции будут равными, значит, предел функции существует, и lim x → 2 1 6 ( x - 8 ) 2 - 8 = - 2 .

Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Предел функции в точке"

· познакомиться с понятием непрерывной функции;

· познакомиться с понятием предел функции в точке;

· рассмотреть примеры использования данных понятий для решения задач.

Прежде чем приступить к изучению нового материала, давайте выполним упражнение.


Давайте посмотрим на графики некоторых функций.


Вроде бы на всех трёх графиках изображена одна и та же кривая. Но, если мы внимательно посмотрим на эти графики, то увидим, что они отличаются своим поведением в точке x = a.

Для функции, график которой изображён на первом рисунке значение f(a) не существует, функция в указанной точке не определена. Для функции, график которой изображён на втором рисунке значение f(a) существует, но оно отличается от, казалось бы, естественного значения b. Наконец, для функции, график которой изображён на третьем рисунке, значение f(a) существует, и оно равно b.

Таким образом, перед нами графики различных функций, если же точку x = a исключить из рассмотрения, то функции совпадут: при x a графики одинаковы.

Для всех трёх случаев можно использовать одну и ту же запись:


Раньше мы с вами встречались с понятием непрерывная функция, но давали его чисто интуитивно. Если мы видели, что график функции – непрерывная линия, то такую функцию мы называли непрерывной.

Теперь давайте дадим точное определение непрерывной функции.

Определение.

Функцию y = f(x) называют непрерывной в точке x = a, если выполняется условие:


Функцию y = f(x) называют непрерывной на промежутке X, если она непрерывна в каждой точке этого промежутка.

Давайте перечислим известные нам непрерывные функции.


Опять же, свойства непрерывности этих функций мы давали, опираясь на их графики. Теперь давайте сформулируем чёткое правило:

Если выражение f(x) составлено из рациональных, иррациональных, тригонометрических выражений, то функция y = f(x) непрерывна в любой точке, в которой определено выражение f(x).

Давайте рассмотрим несколько примеров.



Рассмотрим ещё один пример.


Для вычисления предела в точке, можно сформулировать теорему, аналогичную тем, которые мы формулировали для вычисления предела последовательности и предела функции на бесконечности.


Давайте вернёмся к рассмотренным примерам и решим их, используя сформулированную теорему.

Рассмотрим функцию, график которой изображён на рисунке:

Для заданного случая предел функции y = f ( x ) при стремлении \(x\) к \(a\) равен \(b\). Записывают: lim x → a f ( x ) = b .

Эта запись отражает следующее: при выборе значений аргумента наиболее близко к значению \(x=a\), соответствующие значения функции приближаются всё ближе к предельному значению \(b\).

То есть f ( x ) ≈ b при \(x\), попадающем в достаточно малую окрестность точки \(a\). Причём, чем меньшая окрестность выбирается, тем точнее приближённое равенство.

Обратим внимание, что сама точка \(x=a\) при этом не рассматривается.

Функцию y = f ( x ) называют непрерывной в точке \(x=a\) , если выполняется соотношение:

lim x → a f ( x ) = f ( a ) .

То есть функция y = f ( x ) является непрерывной в точке \(x=a\), если предел функции y = f ( x ) при \(x\), стремящемся к \(a\), равен значению функции в точке \(x=a\).

Функцию y = f ( x ) называют непрерывной на промежутке \(X\), если она непрерывна в каждой точке промежутка.

Функция y = f ( x ) , составленная из рациональных, иррациональных, тригонометрических и обратных тригонометрических выражений , является непрерывной в любой точке области определения.

Что будем изучать:

1. Что такое предел функции в точке.
2. Определение непрерывной функции.
3. Обобщение знаний о непрерывных функциях.
4. Свойства предела.
5. Примеры.

1) Что такое предел функции в точке?

Ребята, давайте посмотрим на три графика функции, приведенные ниже:


На первый взгляд, графики выглядят совершенно одинаково, но давайте внимательнее посмотрим на наши графики. Посмотрим внимательно на значения функции y=f(x) в точке а.

На Рис1. изображен график непрерывной функции. Значение нашей функции в точке a f(a)=b.

На Рис2. изображен график с так называемой выколотой точкой, значения нашей функции в точке а не существует, посмотрите внимательно на график, наше значение как будто взяли и выкололи.

На Рис3. изображен график значение, которого в точке а существует, но где то отдельно от всего графика, f(a) – расположена выше нашего графика.

На наших рисунках изображены графики трех разных функций. Если мы не будем рассматривать точку а, то графики функций совпадают. При x а графики совершенно одинаковые.

Все случаи описанные для наших рисунков, на математическом языке записывается как:

Предел функции в точке

Читается как: предел функции y=f(x) при x стремящимся к а равен b.

Теперь давайте постараемся понять, что же написано выше. Если значения аргумента функции y=f(x) подбирать все ближе к числу а (если из а вычитать подобранные значения аргумента, то результатом будет число практически равное нулю), то соответствующие значения функции будут все ближе и ближе к b (если из b вычитать полученные значения функции, то результатом будет число практически равное нулю). При этом стоит заметить, что саму точку а не учитываем.

Предел функции

Посмотрим опять на первый график: Можно заметить что:

Формула функции


График функции на нашем рисунке непрерывен. Тогда, давайте напишем определение непрерывной функции:

Определение непрерывной функции.

Тождество

Определение. Функцию y=f(x) называют непрерывной в точке x=a, если выполняется тождество:

Функцию y=f(x) называют непрерывной в точке x=a, если предел функции при x стремящимся к а, равен значению функции в точке x=a.

Функция непрерывна на отрезке [a,b], если она непрерывна в каждой точке нашего отрезка.

Обобщение знаний о непрерывных функциях.

Полезно: В курсе высшей математики или математическом анализе, существует ряд теорем и утверждений которые доказывают, что все функции, которые мы с вами рассматривали в ранних курсах алгебры являются непрерывными, мы с вами интуитивно и с помощью графиков понимали, что функция непрерывна. Давайте обобщим изученное, важным утверждением:

Если выражение f(x) составлено из рациональных, иррациональных и тригонометрических выражений, то функция y=f(x) непрерывна в любой точке, в которой определенно выражение f(x).

Свойства функции

Функция

Если f(x)=b a g(x)=c то выполняются следующие свойства:

Предел функции

Примеры:
А) Найти предел функции:
Решение:
Наша функция непрерывна в точке x=2, тогда воспользуемся определением непрерывности функции в точке, которое говорит что если функция непрерывна в точке, то предел функции в этой точке равен значению функции в этой же точке.


Б) Найти предел функции:
Решение:

Давайте посмотрим не обращается ли знаменатель нашей функции при x=π/2 в нуль:

Знаменатель не равен нулю, тогда наша функция непрерывна в точке . Воспользуемся определением непрерывной функции и посчитаем предел нашей функции:

Ответ: -1/3

Предел


В) Найти предел функции:

Подставим x=2 в знаменатель нашей дроби, получили 0, но на ноль делить нельзя. Давайте внимательно посмотрим на числитель нашей дроби.

x 2 - 4 = (x - 2)(x + 2)


Сократим нашу дробь

Тогда получаем:

y= x+2 непрерывна точке x=2, тогда воспользуемся определением непрерывности
Ответ: 4

Г)Найти предел функции:

Предел функции

Решение:

Предел функции

Область определения функции

Наша точка x=2 не попадает в область определения, тогда предел функции не существует.
Ответ: Не существует.

Найти предел


Д) Найти предел функции:

Решение:

Корни уравнения

Подставим x=1 в знаменатель нашей дроби, получили 0, но на ноль делить нельзя. Давайте найдем корни квадратного уравнения в числители и воспользуемся теоремой Виета.

Ответ: -1


Е) Построить график функции y=f(x), которая обладает следующими свойствами:
1)Область определения – множество действительных чисел.

Читайте также: