Коррозия металлов 11 класс конспект урока

Обновлено: 05.07.2024

На уроке используются фронтальные и индивидуальные формы работы с учащимися. Основными педагогическими технологиями данного проекта урока являются технологии проблемного и разноуровневого обучения, ИКТ, технологии здоровьесбережения.

Цель урока: познакомить учащихся с процессом разрушения металлов – коррозией и определить способы защиты от неё.

Задачи урока:

  • повторить вопрос о нахождении металлов в природе, устройство и работу гальванического элемента;
  • дать представление о коррозии и её механизме;
  • познакомить с разными видами коррозии по характеру разрушения;
  • дать понятие о способах защиты металлов от коррозии.

План урока

Этап урока

Краткое содержание

I. Организационный этап.

Приветствие учителя и учащихся

II. Актуализация знаний. Подготовка к изучению нового материала.

Повторение ранее изученного материала (беседа):

а) нахождение металлов в природе,

б) металлы – восстановители.

III. Изучение нового материала.

Изучение материала по плану:

3) Механизмы протекания химической и электрохимической коррозии металлов (рассказ с использованием схем, самостоятельная работа учащихся по составлению в тетради схемы-конспекта)

а. механизм и условия химической коррозии

б. механизм и условия электрохимической коррозии (объяснение по схеме, выполнение заданий учащимися, демонстрация результатов эксперимента).

IV. Основные выводы по уроку, закрепление изученного материала.

Выполнение заданий на первичное усвоение материала: ученики со средним уровнем подготовленности выполняют тест; сильные учащиеся работают по индивидуальным заданиям на объяснение механизма коррозии.

Дифференцированное домашнее задание.

Ход урока

I этап урока - Организационный.

II этап урока – Актуализация знаний учащихся. Подготовка к изучению нового материала.

  • Учитель проводит фронтальную беседу с учащимися по следующим вопросам (примерные ответы учащихся приведены курсивом):

- Какие металлы встречаются в природе и в каком состоянии? (благородные металлы встречаются в свободном состоянии, остальные - в виде различных соединений).

Т.е. существует две формы металлов: Ме 0 - восстановленная, Ме n+ - окисленная.

- Какой процесс наблюдается при получении металлов из их соединений? (процесс восстановления металлов, что можно отразить в виде схемы: Ме n+ + n ē = Ме 0 ).

На проведение процесса восстановления металлов из их соединений затрачивается энергия.

- Какое состояние наиболее выгодно и более устойчиво для металлов? (в виде соединений, в виде положительно заряженных ионов).

III этап урока – Изучение нового материала.

(Примерный рассказ учителя).

Следует подчеркнуть, что коррозия – это самопроизвольный процесс разрушения металлов в окружающей среде под действием ее условий. С точки зрения химии коррозия – это окислительно-восстановительный процесс, при котором происходит окисление металла: Ме 0 - n ē = Ме n+ . Внешне это проявляется, как вы уже поняли и знаете, в виде ржавчины, оксидных плёнок и др.

Но разрушению подвергаются металлы по-разному.

- по механизму (т.е. как протекает, в каких условиях)

  • химическая –разрушение металлов при непосредственном контакте со средой (например, нагревание пластинки из меди и ее почернение на воздухе – газовая коррозия; коррозия в присутствии нефти, бензина и т.д., т.е. в среде неэлектролита);
  • электрохимическая – разрушение металлов в растворах, где есть катодные и анодные процессы.

До 80% коррозия протекает в атмосфере, остальное - в почве, жидкостях; под напряжением.

- по видам разрушений выделяют общую или сплошную коррозию (равномерную и неравномерную) и местную (точечную, пятнами, язвами, межкристаллитную).

  • Учитель дает пояснения о механизмах коррозии и объясняет их по схемам на слайдах (слайды 6, 7, 8, 9 презентации):

При химической коррозии идет окисление металла без возникновения цепи электрического тока. Это обычный процесс окисления металлов в среде неэлектролита (например, разрушение стали в газовой среде при высоких температурах /доменная печь/). Механизм напоминает работу гальванического элемента. Демонстрация видеофрагмента и объяснение по схеме (образование ржавчины (Рисунок 1)) (слайды 7, 8 презентации).

Электрохимическая коррозия происходит в результате действия множества микро- и макрогальванических элементов, возникающих приконтакте металлов, в присутствии примесей, в сплавах. Объяснения по схеме (коррозия железа при контакте с медью) (слайд 9 презентации).

  • Фронтальная работа учащихся класса с заданиями. Ответы учащихся на вопросы заданий (окисление железа при контакте его с оловом (Рисунок 2), окисление цинка (Рисунок 3)) (слайды 10, 11 презентации).
  • Учитель демонстрирует результаты предварительно поставленных опытов (приложение 1) и проводит фронтальную беседу с классом.

Коррозия будет возрастать, если поверхность металла имеет щели, зазубринки, пыль, примеси и др., при различных атмосферных условиях. Рассмотрите коррозию железа в … (приложение 1 к уроку). Где процесс протекает быстрее и чем вы это объясните?

Каким образом можно предотвратить коррозию металлов? Или хотя бы уменьшить её действие на металлы?

IV этап урока - Основные выводы по уроку, закрепление изученного материала.

  • Учащиеся под руководством учителя формулируют выводы по уроку.

- Итак, сегодня мы познакомились с новым для вас процессом разрушения металлов. Что это за процесс?

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МБОУ Большекуликовская СОШ

Моршанский район Тамбовская область

Урок химии в 11 классе

«Коррозия металлов

Учитель химии:

Прохорская Т.Н.

п. Центральный 2017 год

Тип урока: повторение и углубление знаний

Технология: урок комбинированный

Цель: Сформировать понятие о коррозии металлов, рассмотреть классификацию и причины коррозионных процессов, изучить способы защиты металлов от коррозии.

Образовательные:

1)Расширить представление учащихся о коррозии металлов, её видах и способов защиты от неё.

2)Подвести учащихся к осознанию практической значимости знаний о коррозии, способах защиты, посредством ознакомления с областями применения этих знаний.

3)Создать условия для развития умений анализировать результаты демонстрационного эксперимента, практических умений в работе с реактивами.

Развивающие :

1)Развивать познавательный интерес к урокам химии, используя компьютерные технологии.

2)Предоставить возможность учащимся определиться в возможности применения знаний, т.е. научиться, практически, защищать металлы от коррозии в быту.

Воспитательные:

1)Воспитывать бережное отношение к окружающей среде.

2)Формировать умения работать в коллективе, считаться с мнением всей группы и отстаивать корректно свое мнение.

Пробирки с заранее подготовленными (за 2 дня) образцами эксперимента по изучению условий коррозии -

пробирка №1 - раствор хлорида натрия +ж.гвоздь

пробирка №2 - раствор гидроксида натрия +ж.гвоздь.

пробирка №3 - раствор хлорида натрия +ж.гвоздь обвитый медной пров.

пробирка №4 раствор хлорида натрия +ж.гвоздь +цинк

пробирка №5- медная пластина + раствор хлорида натрия;

Образцы металлических изделий и сплавов, с разными способами защиты металла от коррозии.

Форма организации учебной деятельности : фронтальная, групповая, индивидуальная.

Организационный момент

Приветствие, настрой на работу

Проверка знаний учащихся

1. Пользуясь электрохимическим рядом напряжений металлов, приведите не менее двух примеров реакций, характеризующих химические свойства металлов и их соединений, по схемам:

2. Напишите уравнение реакций, с помощью которых можно осуществить следующие превращения:

Сульфат алюминия → хлорид алюминия → гидроксид алюминия → оксид алюминия → алюминат калия.

Ответ : А l2(SO4)3 + 3BaCl2 = 2AlCl3 +3BaSO4

2AlCl3 + 3NaOH = 3NaCl + Al(OH)3

2Al(OH)3 = Al2O3 +H2O

Al2O3 +2KOH =2KAlO2 + H2O.

1. Пользуясь электрохимическим рядом напряжений металлов, приведите не менее двух примеров реакций, характеризующих химические свойства металлов и их соединений, по схемам:

2. Напишите уравнение реакций, с помощью которых можно осуществить следующие превращения:

(Выполняет на доске).

Изучение нового материала

Постановка учебной задачи

Учитель : Сегодня мы с Вами продолжаем говорить о металлах, их общих свойствах. Тема, которую мы будем рассматривать, волновала человечество издавна, как только оно начало применять металлические изделия.

На слайде представлены следующие изображения: (Слайд № 2 -6 ) .

Как часто вы встречаетесь с явлением разрушения металлов?

А как называется это явление? (ржавление, коррозия)

Итак, мы сегодня изучаем процесс коррозии металлов .

Вред, наносимый коррозией, огромен. А чтобы победить противника, его нужно хорошо знать

Цель урока: сформировать представление о коррозии металлов как самопроизвольном окислительно-восстановительном процессе, ее последствиях, причинах, механизме и способах защиты металлов от коррозии Слайд № 8

Понятие о коррозии : Слайд 9

Коррозия - это процесс самопроизвольного разрушения металлов и сплавов под влиянием внешней среды

( от лат. corrosio разъедание).

Сущность коррозии Слайд 10

Переход металла в ионное состояние

Ме - ne à Me

Виновники коррозии:

Вода, оксиды серы, углерода, азота, кислород воздуха, электролиты, микроорганизмы и др.

Древнегреческий историк Геродот ( V в. до н. э.) и древнеримский ученый Плиний старший ( I в. н.э.) упоминают о применении олова для защиты железа от ржавчины.

В Х I Хв. Г.Деви и М.Фарадей изучают электрохимическую коррозию.

В 1830г. Швейцарский ученый Де ла Рив сформулировал первую теорию коррозии.

В начале 30хг.ХХв. А.Н.Фрумкин изучал амальгамы металлов.

В 1935г. А.И.Шултин и Я.В.Дурдин сформулировали теорию электрохимической коррозии.

Информационная страница.

1 - Каковы последствия коррозии нам сообщит группа №1 . Слайд 13-18

В результате коррозии уменьшается прочность, блеск, снижается электропроводность, возрастает трение между деталями.

Чтобы найти методы защиты металлов и сплавов от коррозии, необходимо исследовать это явление.

Знакомство с видами коррозии. Коррозия многолика. Слайд 19 - 23

Классификация видов коррозии

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

Коррозия в неэлектролитах;

Коррозия в электролитах;

Коррозия блуждающим током.

По условиям протекания коррозионного процесса различаются следующие виды:

Коррозия при неполном погружении;

Коррозия при полном погружении;

Коррозия при переменном погружении;

Коррозия при трении;

Коррозия под напряжением.

По характеру разрушения :

Сплошная коррозия, охватывающая всю поверхность:

Локальная (местная) коррозия, охватывающая отдельные участки:

Главная классификация производится по механизму протекания процесса .

Различают два вида:

Химическая Электрохимическая

Происходит в не проводящей Происходит в токопроводящей

электрический ток среде. Такой вид среде (в электролите) с

коррозии проявляется в случае возникновением внутри системы

взаимодействия металлов с сухими электрического тока. Условия

газами или жидкостями – для электрохимической

(бензином, керосином и др.) 1) контакт двух металлов;

2) наличие электролита.

Выяснения условий протекания коррозии.

Химическая коррозия Слайд 24 -25

Химическая коррозия металлов — это разрушение металла окислением его в окружающей среде при контакте с газами и электролитами без возникновения электрического тока в системе.

Этот вид коррозии наблюдается в процессе обработки металлов при высоких температурах.

Протекают окислительно-восстановительные химические реакции.

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные плёнки. Если плёнки прочные, плотные и хорошо связаны с металлом, то они защищают металл от дальнейшего разрушения ( у Zn , Al , Cr , Ni , Sn , Pb и др.). Если плёнка рыхлая ( как у Fe ), то она не защищает металл от дальнейшего разрушения.

Наиболее распространенным видом химической коррозии является газовая коррозия, проистекающая в сухих газах при полном отсутствии влаги. Газообразное вещество окружающей среды реагирует с металлом на поверхности металлического изделия и образует с ним соединения.

Учитель: Железо под воздействием O2 , H2О и ионов водорода постепенно окисляется. Этот процесс является окислительно-восстановительным, где металл является восстановителем. Коррозия железа может быть описана упрощенным уравнением

Fe(OH) 3 и является ржавчиной. Содержащиеся в воздухе CO2 и SO2 могут взаимодействовать с водой, с образованием кислот, при диссоциации которых образуются ионы Н + , также окисляющие атомы металлов: Fe 0 + 2H +  Fe 2+ + H 2 0

Проведем такой опыт Опыт № 1.

Взяли 2 пробирки, в 1 поместили очищенный железный гвоздь, налили в пробирки водопроводной воды, так, чтобы вода покрывала гвоздь только наполовину.

Во вторую налили кипяченой воды так, чтобы вода покрывала гвоздь только наполовину.

В 1 пробирке часть гвоздя над водой покрылась ржавчиной больше, чем под водой.

Во 2 – коррозия - меньше

В этом опыте мы выяснили роль кислорода воздуха в коррозии железа.

Вывод: кислород является одним из агрессивных факторов коррозии .

Электрохимическая коррозия Слайд 26 -27

Электрохимическая коррозия — это разрушение металла в среде электролита с возникновением внутри системы электрического тока.

Процесс происходит при соприкосновении двух металлов или на поверхности металла, содержащего включения.

Более активный металл (анод) разрушается.

Скорость коррозии тем больше, чем сильнее отличаются металлы по своей активности (чем дальше друг от друга они расположены в ряду напряжений)

Опытным путём установили, что металл быстрее окисляется ионами водорода, если он находится в контакте с менее активным металлом.

При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый, коррозионный элемент. В ней происходит медленное растворение металлического материала с отрицательным окислительно-восстановительным потенциалом.

Большие неприятности связаны с хлоридом натрия (в некоторых странах используют отход производства – хлорид кальция), разбрасываемым в зимнее время на дорогах и тротуарах для удаления снега и льда. В присутствии солей они плавятся, и образующиеся растворы стекают в канализационные трубопроводы. Соли и особенно хлориды являются активаторами коррозии и приводят к ускоренному разрушению металлов, в частности транспортных средств и подземных коммуникаций.

Экспериментальная страница Группа учащихся заранее закладывает опыты, ведут за ними наблюдения, фиксируют их Цель: Исследовать влияние сред, контактов металлов на скорость коррозии

Практическая часть.

При использовании металлических материалов очень важен вопрос о скорости их коррозии. Для того, что бы убедиться, мы решили провести опыт в различных средах и с различными металлами. Для проведения опыта мы приготовили 5 стаканов и 5 железных гвоздей.

1й пробирка – заполнили поваренной соли и опустили в него гвоздь.

2й стакан – заполнили гидроксидом натрия и опустили в него гвоздь.

3й стакан – заполнили поваренной солью, к гвоздю прикрепили медную проволоку и опустили в стакан.

4й стакан - заполнили поваренной солью, к гвоздю прикрепили предварительно зачищенную наждачной бумагой цинковые пластинки и опустили в стакан.

5й стакан - заполнили водопроводной водой с поваренной солью, добавили в раствор гидроксид натрия и опустили в него железный гвоздь.

Итоги опыта :

1й стакан – железо слабо прокорродировало, в чистой воде коррозия идет медленнее, так как вода слабый электролит. В данном случае мы наблюдаем химическую коррозию.

2й стакан – химическая коррозия. Но здесь скорость коррозии гораздо выше, чем в первом случае, следовательно, хлорид натрия увеличивает скорость коррозии.

3й стакан – железный гвоздь в контакте с медной проволокой опущен в раствор хлорида натрия. Скорость коррозии очень велика, образовалось много ржавчины. Следовательно, хлорид натрия – это сильнокоррозионная среда для железа, особенно в случае контакта с менее активным металлом – медью.

4й стакан – так же наблюдается коррозия цинка, железный гвоздь остается без изменений.

5й стакан – железный гвоздь опущен в раствор хлорида натрия, к которому добавили гидроксид натрия. Коррозия железа в данном случае отсутствует.

А (+) на железе на меди К(-)

Выводы: Мы убедились на опыте, что коррозию железа можно уменьшить помощью гидроксида натрия. Он замедляет процесс коррозии, а гидроксид анионы являются ингибиторами, то есть замедлителями коррозии. Из наблюдений можно сделать вывод, что для протекторной защиты можно использоватьцинк, так как железо не разрушается при контакте с ним.

Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел или покрытием другими металлами. В трудах древнегреческого историка Геродота ( V век до н.э.) уже упоминается о применении металла олова для защиты железа от коррозии.

Один из наиболее распространенных способов защиты металлов от коррозии — нанесение на их поверхность защитных пленок: лака, краски, эмали . Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги.

В производстве широко используют химическое нанесение металлических покрытий на изделия: цинк, олово, хром, никель.

Ингибиторы коррозии металлов. Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Известно, что дамасские мастера для снятия окалины и ржавчины пользовались растворами серной кислоты с добавками пивных дрожжей, муки, крахмала. Эти примеси были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате чего растворялись лишь окалина и ржавчина.

Пассивация металлов – образование на поверхности металла плотной оксидной плёнки. Еще в 1836 г. знаменитый английский химик М. Фарадей высказал предположение, что причиной пассивации является образование на поверхности металла плотной оксидной пленки. В свое время на это предположение не обратили должного внимания. Лишь через 100 лет эти взгляды возродил и развил известный русский ученый В.А. Кистяковский. После него этот взгляд на пассивацию оформился в виде теории. Согласно ей при пассивации на поверхности металла образуется сплошная и плотная оксидная (реже хлоридная, сульфатная, фосфатная) пленка толщиной в несколько десятков нанометров.

Нанотехноло́гия. Самовосстанавливающийся газопровод

Электрохимическая защита способствует снижению износа стальных газопроводов от коррозии. Нанометалл способен самовосстанавливаться, кородирующее место постоянно пополняется металлом газопровода, который равномерно изымается со всей протяжённости трубы.

Закрепление

1. Что же такое коррозия?

2. При каких условиях коррозия протекает интенсивно?

4 . Задача 1. Что случилось со знаменитой Кутубской колонной?

Уже полтора тысячелетия стоит на одной из площадей Дели железная колонна высотой 8 метров, диаметром 65 см, весом 6.5 тонн. И, несмотря на жаркий климат Индии, на ней нет ни единого ржавого пятнышка. Чем это можно объяснить?

Ответ. Это объясняется тем, что колонна сделана из чистого (метеоритного) железа. А чистое железо не ржавеет.

Задача 2. В 20-е годы ХХ в. с одним американским миллионером произошла неприятная история. По его заказу была построена роскошная яхта “Зов моря”. Для обшивки корпуса яхты использовался сплав никеля с медью, известный под названием монель-металл. Этот сплав отличался чрезвычайно высокой стойкостью во многих агрессивных средах, в том числе и в морской воде. Другие детали корпуса судна были изготовлены из специальных нержавеющих сталей, т.е. материалов, содержащих железо. Но когда яхту спустили на воду, она полностью вышла из строя. Объясните, что послужило причиной гибели яхты.

Ответ: Причиной была контактная коррозия. Днище яхты было обшито медно-никелевым сплавом, а рама руля, киль и другие детали изготовлены из стали. Когда яхта была спущена на воду. Возник гигантский гальванический элемент, состоящий из катода- днища, стального анода и электролита – морской воды. В результате судно затонуло, ни сделав ни одного рейса.

Задача 3. В III до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса.

Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лет и рухнул во время землетрясения.

Ответ. У Колосса Родосского бронзовая оболочка была смонтирована на железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился.

Домашнее задание § 18, с 221-227,
№ 15 – 20, с. 259 (запишите схемы гальванических элементов)

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению видов коррозии, особенностям химической и электрохимической коррозии, методам защиты металлических изделий от коррозионного разрушения.

Анодное покрытие – способ защиты металлического изделия от коррозии, когда защищаемый металл покрывается металлическим покрытием из более активного металла.

Газовая коррозия – разрушение металла в среде агрессивных газов (кислорода, оксида серы, хлороводорода) обычно при высоких температурах.

Гальванокоррозия – вид электрохимической коррозии, при которой два контактирующих металла в среде электролита образуют коррозионный гальванический элемент с возникновением электрического тока между металлами.

Жидкостная коррозия – разрушение металла в жидкостях, не проводящих электрический ток (органические растворители, нефтепродукты).

Ингибиторы – вещества, вводимые в коррозионную среду, в результате чего снижается её окисляющая способность.

Катодная защита – способ защиты металла от коррозии, когда защищаемое металлическое изделие подсоединяется к отрицательному полюсу внешнего источника электрического тока.

Катодное покрытие – способ защиты металла от коррозии, когда металлическое изделие покрывается тонким слоем из менее активного металла.

Коррозия – разрушение металла в результате окислительно-восстановительных реакций между металлом и окружающей средой

Осушение – удаление из окружающей среды влаги для предотвращения возникновения коррозии.

Протекторная защита – способ защиты металла от коррозии, когда к защищаемому металлическому изделию присоединяют кусок другого, более активного металла.

Химическая коррозия – разрушение металла в среде, не проводящей электрический ток.

Электрокоррозия – вид электрохимической коррозии, возникающей в среде электролита под действием внешнего электрического поля.

Электрохимическая коррозия – разрушение металла в среде электролита при контакте двух металлов с образованием коррозионного элемента и возникновением электрического тока.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

2. Рудзитис, Г.Е. Химия. 10 класс: учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Коррозия и её виды

Коррозия металлов – процесс разрушения металлического изделия в результате окислительно-восстановительной реакции металла с окружающей средой. В зависимости от механизма различают два вида коррозии: химическую и электрохимическую. Химическая коррозия происходит в среде, не проводящей электрический ток. К этому виду коррозии относится газовая коррозия, в результате которой металл разрушается под действием агрессивных газов: кислорода, оксида серы, хлороводорода. Газовая коррозия обычно происходит при высоких температурах. Другой вид химической коррозии – жидкостная коррозия, которая возникает в агрессивных жидкостях, не проводящих электрический ток, например, в органических растворителях или нефтепродуктах.

Электрохимическая коррозия происходит в среде электролитов, которые хорошо проводят электрический ток. Различают два вида электрохимической коррозии: гальванокоррозия и электрокоррозия. Гальванокоррозия возникает в месте контакта двух металлов, наличия в металле примесей, разной температуры на соседних участках металлов, разной концентрации электролитов в среде, контактирующей с металлом и в случае разной концентрации кислорода на соседних участках металла. Например, в чугуне примеси углерода и карбида железа играют роль катода, на котором происходит восстановление молекулярного кислорода в присутствии паров воды: 2Н2О + О2 + 4е → 4ОН-, а железо становится анодом и окисляется.

4Fe(ОН)2↓ + 2Н2О + О2 → 4Fe(ОН)3↓, Fe(OH)3 + nH2O → Fe2O3·xH2O (ржавчина).

Если в атмосфере присутствует большое количество кислых газов (СО2, SO2, NO2), то при растворении их в воде образуются кислоты. В кислой среде коррозия идет ещё интенсивнее. В присутствии кислорода на катоде образуется вода, а в бескислородной среде выделяется водород.

На аноде: Fe0 – 2е → Fe2+;

На катоде: О2 + 4Н+ + 4е → 2Н2О

или в бескислородной среде: 2Н+ + 2е → Н20↑.

Ионы железа образуют соли с кислотными остатками образовавшихся при растворении газов кислот. В дальнейшем под действием кислорода воздуха, соли двухвалентного железа окисляются до солей трёхвалентного железа.

Электрокоррозия возникает под действием на металл электрического тока от внешнего источника постоянного тока. Часто она происходит под действием блуждающих токов от рельсов электротранспорта, от плохо изолированных опор линий электропередач. Участок, на который попадает ток от внешнего источника, заряжается отрицательно и становится катодом. На нём происходит восстановление элементов среды. А соседний участок становится анодом, на нём металл окисляется.

Факторы, увеличивающие скорость коррозии

Возникновение коррозионного гальванического элемента увеличивает скорость коррозии. При контакте двух металлов более активный металл отдает электроны менее активному. Возникает электрический ток. Активный металл растворяется и в результате реакции со средой, и за счет передачи электронов менее активному металлу. Принятые электроны менее активный металл отдает в окружающую среду, таким образом, окисление активного металла и восстановление компонентов окружающей среды происходит быстрее. Скорость коррозии зависит от количества кислорода, который контактирует с металлом. Железный гвоздь, погруженный в воду на половину своей длины, разрушается быстрее всего, так как доступу кислорода ничего не препятствует. Гвоздь, полностью погруженный в воду, разрушается медленнее, так как количество кислорода, участвующего в реакции, ограничивается скоростью растворения кислорода в воде. В пробирке, где сверху воды налили масло, коррозия идет медленнее всего, так как масло препятствует поступлению кислорода в воду.

Методы защиты металлов от коррозии

Одним из распространённых методов защиты металлов от коррозии является нанесение защитных покрытий. Покрытия бывают металлическими и неметаллическими. Если металлическое изделие покрыто слоем более активного металла, покрытие называют анодным. Если покрытие изготовлено из менее активного металла, оно называется катодным. Неметаллические покрытия – это различные эмали, лаки, краски, резиновые, битумные и полимерные покрытия. По отношению к железу анодными покрытиями будут цинковые, хромовые, алюминиевые покрытия. Эти покрытия защищают металл даже в случае появления царапин или трещин. Так как покрытие изготовлено из более активного металла, оно является анодом по отношению к защищаемому металлу и будет разрушаться. Защищаемое металлическое изделие разрушаться не будет. Катодные покрытия обычно делают из малоактивных металлов. Это никель, олово, свинец, медь, серебро, золото. Из-за низкой активности такие металлы слабо подвергаются воздействию коррозии, но в случае нарушения покрытия, возникнет коррозионный элемент, в котором анодом станет защищаемое металлическое изделие. Оно начнет разрушаться. Защитные оксидные покрытия на поверхности металла можно создать путем химической обработки концентрированной азотной кислотой (пассивация алюминия, хрома), концентрированным раствором щелочи и горячего масла (воронение), фосфорной кислотой и её кислыми солями (фосфатирование).

Эффективным, но дорогим методом защиты металлов от коррозии является введение в сплав антикоррозионных легирующих добавок: хрома, никеля, молибдена, титана. Для повышения стойкости к коррозии в кислой среде в сплав добавляют кремний.

К методам электрохимической защиты относятся протекторная и катодная защита. Протекторная защита предусматривает закрепление на защищаемом изделии пластин из активного металла: цинка, алюминия, магния. Попадая в агрессивную среду, протектор становится анодом, начинает разрушаться, а металлическое изделие, являясь катодом, не разрушается до полного разрушения протектора. Катодная защита производится путём подсоединения защищаемого металлического изделия к отрицательному полюсу внешнего источника постоянного электрического тока. В результате защищаемый металл приобретает отрицательный заряд и становится катодом. В качестве анода используют вспомогательный кусок металла (железный лом, старый рельс), который заземляют.

Важным направлением предотвращения коррозии металлов является снижение агрессивности окружающей среды. Для этого проводят осушение почвы, воздуха. В жидкие среды добавляют ингибиторы – вещества, реагирующие с окислительными компонентами среды и снижающие скорость коррозии. Для борьбы с блуждающими токами проводят надёжную изоляцию токопроводящих конструкций, организацию бесстыкового пути.

Предотвращение потерь металла от коррозии позволит не только сберечь тонны металла, но и предотвратить аварии на производстве и транспорте, сберечь человеческие жизни.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Расчёт массы металла, предохраняемого от разрушения за счёт нанесения защитных покрытий

Условие задачи: В результате атмосферной коррозии толщина стального изделия уменьшается на 0,12 мм/год. Потерю какой массы стального изделия плотностью 7750 кг/м 3 и площадью 10 м 2 можно предотвратить путем нанесения лакокрасочного покрытия, которое сохраняет свои защитные свойства в течение 4 лет? Ответ запишите в виде целого числа в килограммах.

Шаг первый: необходимо перевести скорость коррозии из мм/год в м/год.

Для этого скорость коррозии умножим на 10 -3 :

0,12·10 -3 = 1,2·10 -4 (м/год).

Шаг второй: Найдём объём слоя металла, который может быть разрушен коррозией за 1 год. Для этого толщину слоя разрушенного в течение года металла умножим на площадь стального изделия:

1,2·10 -4 ·10 = 1,2·10 -3 (м 3 /год).

Шаг третий: Найдём массу вычисленного объёма металла.

Для этого объём металла умножим на его плотность:

1,2·10 -3 ·7750 = 9,3 (кг/год).

Шаг четвёртый: Найдём массу металла, которая могла бы разрушиться за 4 года. Для этого массу сохранённого за год металла умножим за 4 года:

9,3·4 = 37,2 (кг). Округляем до целого числа, получаем 37 (кг).

2. Расчёт массы металла, разрушенного в результате коррозии

Условие задачи: Через железную решётку, предохраняющую от попадания в канализацию крупного мусора, проходит 20 м 3 воды в сутки. Содержание кислорода в воде 1 % от объёма воды. Какая масса железа окислится за 6 месяцев использования решётки, если на окисление металла расходуется 60% содержащегося в воде кислорода? Ответ записать в килограммах в виде целого числа.

Шаг первый: найдём объём кислорода, который содержится в 20 м 3 воды.

Для этого разделим 20 м 3 на 100:

20 : 100 = 0,2 (м 3 /сутки) = 200 (л/сутки)

Шаг второй: Найдём объём кислорода, который проходит в воде через решётку в течение 6 месяцев.

Для этого объём кислорода, проходящий через решетку в сутки, умножим на 30 дней и на 6 месяцев:

200·30·6 = 36000 (л).

Шаг третий: Найдём объём кислорода, который расходуется на окисление железа. Для этого умножим найденный объём кислорода на 60 и разделим на 100:

(36000·60) : 100 = 21600 (л).

Шаг четвёртый: Запишем уравнение реакции взаимодействия железа с кислородом в нейтральной среде:

Шаг пятый: Найдём массу железа, окисленного 21600 л кислорода.

Для этого составим пропорцию с учётом того, что масса 1 моль железа равна 56 г/моль, а 1 моль газа в нормальных условиях занимает 22,4 л.


С помощью этого видеоурока учащиеся познакомятся с различными видами коррозии и способами защиты от неё.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Коррозия металлов"

Металлы и сплавы имеют ряд ценных свойств и имеют широкое применение, но с течением времени их свойства могут изменяться из-за отрицательного воздействия окружающей среды.

Коррозия (от. лат. corrosio – разъедание) – это самопроизвольно протекающий процесс разрушения металлов в результате взаимодействия их с окружающей средой.


Коррозияэто необратимый процесс, она наносит огромный ущерб экономике, потому что в результате коррозии металлы становятся менее прочными и менее пластичными, нарушается герметичность труб и аппаратов, что может привести к утечке нефти, бензина, газа или к порче продуктов питания.

Все металлы – восстановители, явление коррозии – это проявление восстаногвительных свойств металлов.

Различают два вида коррозии: химическую и электрохимическую. Химичекую коррозию вызываю вещества-неэлекторлиты, она протекает в сухих газах при повышенной температуре и не сопрровождается возникновением электрического тока. Такой газовой коррозии подвергаются металлы при термической обработке. Например, нагретые до высокой температуры детали из железа и его сплавов (вращающиеся валы, шестерни и т.д.) могут реагировать с газообразными компон6ентами атмосферы (O2, O3, H2S, SO2, NO2). При этом возможны самые различные процессы химической коррозии железа:

В составе природного газа возможна примесь – сероводород, который вступает в реакцию с металлической трубой, по которой транспортируют газ, сопла ракетных двигателей взаимодействуют с окислителем топлива, детали нефтедобывающих конструкций взаимодействуют с нефтью и продуктами её пераработки.

Наличие в воздухе газообразных галогенов или галогенововдородов (например, на химических производствах) ускоряет процесс химической коррозии железа и его сплавов.

В результате химической коррозии образуются, как правило, оксидные плёнки, в тех местах, где было соприкосновение металла с агрессивной средой.


Например, на поверхности щелочных и щелочноземельных металлов в процессе окисления кислородо воздуха образуются толстые рыхлые оксидные плёнки, через которые проникает кислород, поэтому они не защищают металл от коррозии. А на поверхности таких металлов, как алюминий, цинк, хром, никель и других металлов, образуются сплошные тонкие оксидные плёнки, которые защищают металл от окружающей среды.

Поэтому имеено такие металлы используют как легирующие добавки к сталям и для нанесения защитных покрытий на изделия, работающие в условиях газовой коррозии.

Химичекая коррозия протекает также в таких неэлектролитах, как бензин, керосин, сероуглерод и других. Поэтому также наблюдается коррозия бензобаков, нефтепроводов, нефтехимического оборудования.


Электрохимическая коррозия протекает в растворах электролитов: кислоты, основания, соли, морская и речная вода, влажная почва, и сопровождается возникновением электрического тока.

Приведём несколько примеров. Известно, что химически чистые металлы устойчивы к воздействию внешней среды. Так, если враствор соляной кислоты поместить химически чистый цинк, то сначала реакция протекает быстро, а потом замедляется. Это происходит из-за того, что ионы цинка переходят в раствор и скапливаются на поверхности металла, препятствуя проникновению катионов водорода к поверхности металла. Кроме этого, в кристаллической решётке цинка накапливаются электроны, которые затрудняют переод ионов цинка в раствор.


Если цинк будет находится в контакте с медью, то растворение цинка ускорится, так как медь менее активный металл, чем цинк и с соляной кислотой не взаимодействует, поэтому в кристаллической решётке меди электроны не накапливаются, при этом свободные электроны цинка переходят на поверхность меди и восстанавливают ионы водорода.

Поэтому данная корозия и называется электрохимической, потому что наряду с химическими процессами протекакют и электрические (перенос электронов от одного металла к другому).


В результате концентрации избыточных электронов на поверхность меди цинк снова окисляется и его ионы переходят в раствор.

Таким образом, усиление коррозии цинка в контакте с медью объясняется возникновением гальваническго элемента, в котором роль анода принадлежит цинку, а роль катода – меди.

Как правило, роль анода выполняет более активный металл, на аноде происходит окисление металла:

На катоде, наоборот, частицы окислителя принимают электроны, которые поступают с катода. Роль катода выполняют менее активные металлы или примесные включения.

Например, если частицы оксителя это ионы водорода, то на катоде идёт следующий процесс:

В нейтральной среде в качестве окислителя выступает растворённый кислород:

Таким образом, в кислой среде преобладает процесс восстановления водорода, а если среда щелочная или нейтральная, то окислитель кислород.

Процесс коррозии железа и его сплавов называется ржавлением. Чаще всего мы встречаемся с атмосферной коррозией, вызванной присутствием кислорода и паров воды. Продукт процесса коррозии железа – ржавчина – не имеет определённого состава.


Под действием окружающей среды разрушается не только железо и его сплавы, но и другие металлы, как серебро и медь.

Всем известно, что сос временем серебро темнеет, из-за образования чёрного сульфида серебра (I), который образуется за счёт присутствия в атмосфере даже следов сероводорода.

Если в атмосфере присутствуют следы озона, то серебрянные изделия также чернеют из-за образования оксида серебра (I).


Все типичные металлы в главных подгруппах I и II групп ПСХЭ Д.И. Менделеева имеют малую коррозионную стойкость. Металлы побочной подгруппы I группы – стойкие. Это Cu, Ag, Au. Металлы побочной подгруппы II группы более устойчивы, так как на их поверхности под действием кислорода внешней среды образуются прочные оксидные плёнки, металлы III группы, главной подгруппы, как Al, защищён оксидной плёнкой, которая обладает высокими защитными свойствами, однако может разрушаться в кислотах и щелочах.

Металлы IV группы, главной подгруппы Sn и Pb стойки к коррозии, покрыты прочной оксидной плёнкой.

Металлы V, VI, VII, VIII групп побочных подгрупп способны к пассивации, обладают большой коррозионной стойкостью, но наибольшей устойчивостью обладают металлы VIII группы, побочной подгруппы Os, Ir, Pt.

То есть, такие металлы, как золото и платина, являются малоактивными, поэтому в меньшей мере подвержены коррозии, их так и называют – благородные металлы, они не теряют свой блеск даже в агрессивной атмосфере.

Из неблагородных металлов высокой коррозионной стойкостью обладает титан и сплавы на его основе. Например, титановые изделия сохраняли свои свойства в течении 10 лет пребывания в морской воде.

Материальные потери, которые приносит коррозия очень велики. Ежегодно четверть выплавляемого во всём мире железа уничтожается коррозией. Поэтому необходимы определённые способы защиты от неё.

Существуют различные способы защиты от коррозии. Один из распространённых способов – это легирование металлов, то есть получение сплавов, устойчивых к коррозии, как нержавеющая сталь.

Для защиты от коррозии используются защитные покрытия. Это могут быть неметаллические покрытия (лаки, краски, эмали, плёнки из масел и нефтепродуктов), химические (фосфатные, оксидные, нитридные), а также металлические (оцинковывание, никелирование, хромирование, меднение, золочение, лужение – покрытие оловом), проводят обработку среды (нагревание воды для уменьшения растворимости газов, пропускание воды через железную стружку для удаления кислорода или используя сульфит натрия), осуществляют химическое покрытие (оксидирование, азотирование, науглероживание поверхности, добавление ингибиторов коррозии: соли органических кислот, фосфаты, силикаты, карбонаты и др.)

Например, металл цинкуют в водной среде, в случае работы с серной кислотой металл покрывают свинцом, белая жесть применяется для консервирования.

Различают такие металлические покрытия, как катодные и анодные.

Если защищаемый металл покрыт менее активным металлом, то это катодное покрытие. Для железа катодным покрытием служит оловянное. При нарушении целостности катодного покрытия железо разрушается, а олово остаётся защищённым.


На аноде происходит окисление атомов железа, а на катоде в кислой среде происходит восстановление ионов водорода.

В нейтральной среде (влажный воздух, вода) на аноде окисляются атомы железа, а на катоде восстанавливается кислород. В растворе при этом образуется гидроксид железа (II), который окисляется затем кислородом до гидроксида железа (III).

Анодное покрытие – это покрытие защищаемого металла более активным металлом. Для железа – это цинковое прокрытие. При нарушении этого анодного покрытия анод – цинк разрушается, а катод – железо – остаётся защищённым. В качестве активного металла используют магний, алюминий, цинк.

Протекторная защита заключается в том, что к защищаемой металлической конструкции присоединяют протекторы из более активного металла.


В этом гальваническом элементе протектор выполняет рол анода, а защищаемый металл – роль катода. Протектор разрушается и защищает тем самым металл. В качестве протектора выступают цинк, магниевые сплавы. Протекторым способом защищают трубопроводы и ёмкости, которые находятся по землёй, коруса морских судов и карабельные винты.

Ещё один способ защиты от коррозиии – это создание шлифованных поверхностей, чтобы не задерживалась влага и лучше образовывалась оксидная плёнка, так как поверхностный слой становится однородным. А такж используют такой метод, как пассивация металлов, то есть изготовление сплавов с добавлением металлов: Ni, Al, Mn, Mo, W, V, имеющих защитные оксидные плёнки.


Таким образом, процесс взаимодействия металлов и сплавов с компонентами окружающей среды, в результате которого происходит разрушение металлов, назвается коррозией.

Различают химическую и электрохимическую коррозию. В случае электрохимической коррозии всегда образуется электрический ток, наблюдается разрушение более активного металла, который выступает в роли анода, а менее активный металл – в роли катода.


Скорость коррозии зависит от от восстановительной способности контактирующих металлов. Чем сильнее он6и отличаются по восстановительной способности, тем больше скорость реакции. Существуют различные методы защиты от коррозии: использование различных покрытий, а также использование металлов более активных, чем защищаемый металл.

Читайте также: