Изображение без экрана линзы конспект современные технологии

Обновлено: 29.06.2024

Тип урока: комбинированный, включающий освоение новых знаний, умений, навыков, закрепление и систематизацию ранее полученных знаний.

Организационный момент (2 мин):

  1. приветствие учащихся;
  2. проверка готовности учащихся к уроку;
  3. ознакомление с целями урока (образовательная цель ставится общая,не называя тему урока);
  4. создание психологического настроя:

Мирозданье, постигая,
Все познай, не отбирая,
Что внутри - во внешнем сыщешь,
Что вовне – внутри отыщешь
Так примите ж без оглядки
Мира внятные загадки.

И. Гете

Повторение ранее изученного материала происходит в несколько этапов (26 мин):

  1. Зеркала бывают плоскими, выпуклыми, вогнутыми? (да)
  2. Угол отражения обозначается латинской буквой бетта? (нет)
  3. Отражение бывает зеркальным и диффузным? (да)
  4. Видим ли мы чистое зеркало? (нет)
  5. На границе двух прозрачных сред, световой луч меняет свое направление? (да)
  6. Угол падения всегда больше угла отражения? (нет)
  7. Скорость света в любой среде одинакова и равна 3*10 8 м/с? (нет)
  8. Скорость света в воде меньше скорости света в вакууме? (да)

2. Физический диктант в двух вариантах (4 минуты):

1. Какие явления наблюдают при попадании света на границу раздела двух сред?

  1. часть проходит в другую среду, а часть отражается
  2. свет поглощается
  3. свет рассеивается
  4. свет проходит в другую среду

2. Какое зеркало называют плоским?

  1. с гладкой поверхностью
  2. с зеркальной поверхностью
  3. с прозрачной поверхностью
  4. с плоской поверхностью

3. Какое выражение определяет закон отражения света?

4. Выберите правильное направление преломленного луча при переходе света из стекла в воздух.


5. На границе сред 1 и 2 световой луч АВ изменил свое направление. Назовите угол падения и угол преломления?


6. Угол между падающим лучом и отраженным лучом равен 70 о . Чему равен угол падения?

1. Какое выражение определяет закон преломления света?

2. На границе двух сред световой луч меняет свое направление. Часть света (а в ряде случаев и весь свет) возвращается в первую среду. Как называется данное явление?

  1. отражением света
  2. поглощением света
  3. рассеиванием света
  4. преломлением света

3. Выберите правильное направление преломленного луча при переходе света из воздуха в стекло.


4. На границе сред 1 и 2 световой луч АВ изменил свое направление. Назовите угол падения и угол преломления?


5. Угол падения луча света на зеркальную поверхность равен 70 о . Каков угол между падающим лучом и отраженным лучом?

6. Какое зеркало называют плоским?

  1. с гладкой поверхностью
  2. с зеркальной поверхностью
  3. с прозрачной поверхностью
  4. с плоской поверхностью

После выполнения диктанта учащиеся выполняют взаимопроверку (ответы представлены на доске), за каждый правильный ответ 1 балл:

3. Проведение экспериментов (объяснить опыты необходимо с применением законов геометрической оптики):

Закоптите металлическую ложку до начала урока над пламенем свечи. Затем опустите ложку в сосуд с водой. В таком виде покажите ее участникам урока. Она кажется им серебряной. Затем ложку выньте из воды и вновь покажите. Объясните явление.

Ответ: Из-за копоти поверхность ложки покрыта слоем воздуха, на границе которого с водой происходит полное внутреннее отражение освещающего ложку света.

Стеклянную палочку опускают в пробирку с глицерином. Часть ее погруженная в глицерин, становится невидимой. Почему?

Ответ: Так как показатели стекла и глицерина почти одинаковы, то свет не преломляется на ней и не отражается от нее.

  1. “Природное явление – Мираж”
  2. “Развитие волоконной оптики”

5. Оптика в художественной литературе:

Вопрос: Чем отличаются данные источники света?

Ответ: Солнце излучает электромагнитные волны, а Луна лишь отражает солнечный свет.

Придет в дом - не выгонишь колом,
Пора придет – сам уйдет.
(Солнечный луч)

Попутчица за мною ходит вслед,
Мне от нее ни зла, ни пользы нет.
(Тень)

И языка нет, а правду скажет.
(Зеркало)

Когда небо ниже земли бывает?
(Когда отражается в воде)

Перед нами - вверх ногами,
Пред тобой – вверх головой.
(Отражение в воде)

Подготовка к изучению нового материала (2 мин):

“Линза - слово латинское и означает чечевица. Чечевица – растение, плоды которого похожи на горох, но горошины не круглые,а имеют вид пузатых лепешек. Поэтому все круглые стекла, имеющие такую форму, стали называть - линзами.”

Не так давно мы опубликовали большую подборку оригинальных вещей, с которыми нам так или иначе приходилось сталкиваться при подготовке и сборе информации для обзоров на проекторы и другие современные мультимедийные устройства. Подборка носила скорее шуточно-развлекательный характер, но в её рамках мы упомянули тему современных технологий объемного сверхреалистичного изображения, и обещали рассказать о ней более подробно в отдельном обзоре. Итак, время пришло.

Живые изображения, встраиваемые в нашу повседневную жизнь и неотличимые от реальности постепенно перекочевали из фантастических фильмов в сегодняшний день. Их интеграция сегодня больше всего заметна в сфере рекламы и развлечений. Но постепенно, от инновации к инновации уровень и доступность подобных технических средств становится всё выше. В этом обзоре мы рассмотрим лишь некоторые, наиболее нашумевшие из них.

Аэрозольный экран

Ну и конечно же, начиная рассказ о современных технологиях, мы не могли упустить шанса начать с проекционных технологий. В частности, речь идет так называемом туманном экране (Fogscreen).

Fogscreen(1)

В рамках этой технологии изображение проецируется с помощью проектора, одновременно, на переднюю и заднюю сторону генерируемого тумана. Таким образом, смотрящий может не только видеть объемное и динамическое изображение, но и проходить сквозь него без какого-либо вреда для себя и установки. Туманный экран широко используется в сфере рекламы и маркетинга, а также при организации живых представлений и концертов. С его работой можно ознакомиться в видео чуть ниже.

Автостереоскопический 3D LED-дисплей

Изогнутый автостереоскопический 3D дисплей на фасаде торгового центра Taikoo Li, в китайском городе Чэнду прославился на весь мир благодаря известному видеоролику на YouTube.

Голографический куб

Голокуб (Holocube) также получил широкое распространение в сфере рекламы, ведь эта технология позволяет вывести крайне четкое и красивое изображение, которое ощущается в полной мере объемным и как бы зависшим в пространстве, в рамках небольшого куба.

Голографический куб

Displair

Displair

Однако, несмотря на резвый старт и довольно значимые инвестиции привлеченные стартапом, компания имеет не простую историю, которая официально заканчивается в январе 2014 года.

Более детальный обзор технологии можно посмотреть ниже.

Виртуальная и дополненная реальность

Очевидным продолжением развития технологии объемного изображения стала весьма удачная попытка разработчиков погрузить человека в виртуальную или дополненную реальность. Вероятно, именно эти две технологии продолжат стремительно развиваться и внедряться во все сферы человеческой жизни в ближайшие десятилетия.

Виртуальная реальность уже не удивляет, и стала даже относительно доступной для большинства людей. К примеру, с помощью современных VR шлемов с контроллерами человек может достигнуть максимального погружения, вплоть до потери контакта с окружающей его реальной обстановкой. Что в свою очередь поражает массу развлекательно контента.

А вот дополненная реальность (AR, англ. augmented reality) только набирает темп развития. Технология работает следующим образом. Когда вы видите все тоже, что и в обычной жизни, на реальные объекты проецируются ещё какие-либо дополнительные виртуальные элементы. К примеру, маски в Instagram. В ближайшее время технология обещает взрывной рост и внедрение в массы. Даже Apple приобщилась к этой движухе анонсировав ожидаемую новинку Apple Glass.

Apple Glass

По идее, очки должны будут позволить пользователю взаимодействовать с информационным полем, окружающего человека объектов и явлений. К примеру, можно будет проложить маршрут до необходимой точки в городе, передвигаясь к нему по маркерам, отображаемым в реальном времени, на реальных объектах, как бы подсвечивая нужный маршрут. Что из этого получится, покажет время.

Голографическая связь и гаптоклон

Ну и завершим нашу подборку, на первый взгляд, фантастической разработкой. Представьте, что Вы общаетесь по скайпу, но при этом видите перед собой человека не на мониторе, а в полный рост, стоящим совсем рядом с Вами. Именно к этому идёт компания Microsoft занимающиеся разработкой новой технологии видеосвязи Room2Room. А также ряд иных компаний, который пытаются реализовать технологию наиболее эффективным способом.

Ещё более футористичной идея голографических звонков кажется на фоне развивающейся технологии гаптоклон. Гаптоклон – проект, ориентированный на создание осязаемых тактильных голограмм. Создатели проектора считают, что со временем смогут создать технологию, благодаря которой Вы сможете, скажем, не только увидеть своего собеседника в полной рост, воспользовавшись голографическим телефоном, но и пожать ему руку! Принцип работы подобной технологии пока остается открытым. Одним из вариантов достижения цели может стать использование вспышек лазера, порождающих небольшие пучки плазмы в необходимых местах. Либо системы излучения ультразвука, с параллельным отслеживанием движения человека, что при взаимодействии с виртуальным предметом позволит высчитать силу давления, так если бы это был реальный объект.

голограмма звездные войны

Современный мир не стоит на месте и очень приятно осознавать, что прямо сегодня мы можем наблюдать, как технический и научный прогресс меняют его и наступает будущие. А проекторы и проекционные технологии принимают в этой истории непосредственное участие 😉


На данном уроке мы вспомним, что такое линза; рассмотрим общие принципы построения изображений в тонкой линзе, а так же выведем формулу для тонкой линзы. Узнаем, какой вклад внес Иоганн Кеплер в изучение свойств тонких линз.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Линза. Построение изображения в линзе"

Пою перед тобой в восторге похвалу

Не камням дорогим, ни злату, но СТЕКЛУ.

М.В. Ломоносов

В рамках данной темы вспомним, что такое линза; рассмотрим общие принципы построения изображений в тонкой линзе, а также выведем формулу для тонкой линзы.

Ранее познакомились с преломлением света, а также вывели закон преломления света. Преломлением света называют изменение направления распространения света, возникающее на границе раздела двух прозрачных сред или в толще среды с непрерывно изменяющимися свойствами.

Закон преломления света звучит следующим образом: луч падающий, луч преломленный и перпендикуляр, восставленный к границе раздела двух сред в точке падения луча, лежат в одной плоскости.


Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная относительному показателю преломления второй походу луча среды относительно первой.


Вообще, слово линза — это слово латинское, которое переводится как чечевица. Чечевица — это растение, плоды которого очень похожи на горох, но горошины не круглые, а имеют вид пузатых лепешек. Поэтому все круглые стекла, имеющие такую форму, и стали называть линзами.


Линза Нимруда


Итак, в современном понимании, линзы — это прозрачные тела, ограниченные криволинейными поверхностями. Чаще всего используются сферические линзы, у которых ограничивающими поверхностями выступают сферы или сфера и плоскость. В зависимости от взаимного размещения сферических поверхностей или сферы и плоскости, различают выпуклые и вогнутые линзы.

В свою очередь выпуклые линзы делятся на три вида — плоско выпуклые, двояковыпуклые и вогнуто-выпуклая; а вогнутые линзы подразделяются на плосковогнутые, двояковогнутые и выпукло-вогнутые.


Любую выпуклую линзы можно представить в виде совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к середине линзы, а вогнутую — как совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к краям.

Известно, что если призма будет сделана из материала, оптически более плотного, чем окружающая среда, то она будет отклонять луч к своему основанию. Поэтому параллельный пучок света после преломления в выпуклой линзе станет сходящимся (такие называются собирающими), а в вогнутой линзе наоборот, параллельный пучок света после преломления станет расходящимся (поэтому такие линзы называются рассеивающими).


Для простоты и удобства, будем рассматривать линзы, толщина которых пренебрежимо мала, по сравнению с радиусами сферических поверхностей. Такие линзы называют тонкими линзами. И в дальнейшем, когда будем говорить о линзе, всегда будем понимать именно тонкую линзу.

Для условного обозначения тонких линз применяют следующий прием: если линза собирающая, то ее обозначают прямой со стрелочками на концах, направленными от центра линзы, а если линза рассеивающая, то стрелочки направлены к центру линзы.

Условное обозначение собирающей линзы


Условное обозначение рассеивающей линзы


Теперь вспомним основные линии и точки линзы, которые изучались в курсе физики 8 класса.

Оптический центр линзы — это точка, пройдя через которую лучи не испытывают преломления.

Любая прямая, проходящая через оптический центр линзы, называется оптической осью.

Оптическую же ось, которая проходит через центры сферических поверхностей, которые ограничивают линзу, называют главной оптической осью.

Точка, в которой пересекаются лучи, падающие на линзу параллельно ее главной оптической оси (или их продолжения), называется главным фокусом линзы. Следует помнить, что у любой линзы существует два главных фокуса — передний и задний, т.к. она преломляет свет, падающий на нее с двух сторон. И оба этих фокуса расположены симметрично относительно оптического центра линзы.

Собирающая линза


Рассеивающая линза


Расстояние от оптического центра линзы до ее главного фокуса, называется фокусным расстоянием.

Фокальная плоскость — это плоскость, перпендикулярная главной оптической оси линзы, проходящая через ее главный фокус.

Рассмотрим основные способы построения изображений в тонких линзах.

Собирающая линза


Рассеивающая линза


Во-первых, это лучи, идущие параллельно главной оптической оси, т.к. после преломления в линзе, они проходят через ее главный фокус (или проходят их продолжения).

Из закона обратимости световых лучей следует, что лучи, которые идут к линзе через ее фокус, после преломления будут направлены параллельно главной оптической оси — это второй набор лучей.

И третий набор лучей выбираем исходя из того, что лучи, проходящие через оптический центр линзы, не меняют своего направления.

Приступим непосредственно к построению изображений. Для начала рассмотрим собирающую линзу, фокусы и оптический центр которой заранее известны. Для удобства, расстояние от предмета до линзы будем обозначать маленькой латинской буквой d, а расстояние от линзы до изображения — f.

Построим изображение плоского предмета AB, находящегося на различных расстояниях от линзы.

Для начала рассмотрим случай, когда предмет находится за двойным фокусом линзы.


Т.к. наш предмет перпендикулярен главной оптической оси, то теперь достаточно опустить перпендикуляр из точки B1, чтобы получить вторую точку нашего изображения — точку A1. Но важно помнить, что так можно делать только тогда, когда предмет перпендикулярен главной оптической оси.

Можно было бы использовать и луч BO, проходящий через оптический центр линзы.

Теперь охарактеризуем полученное изображение. Во-первых, оно действительное, так как получилось на пересечении преломленных лучей. Во-вторых, оно перевернутое. В-третьих, как можно видеть из построения, оно уменьшенное.

Аналогичным способом, можно построить и охарактеризовать изображение предмета, находящегося на других расстояниях от линзы:

Между первым и вторым фокусом


В главном фокусе линзы


Между фокусом и линзой.


Обратите внимание, что когда предмет располагается между фокусом и линзой, то преломленные лучи расходятся, а пересекаться будут только их продолжения. Поэтому, в этом случае, изображение предмета будет мнимым, увеличенным, прямыми находится со стороны изображаемого предмета.

При построении изображения действительного предмета в рассеивающей линзе поступают точно также как и в случае с собирающей. Единственное отличие состоит в том, что у рассеивающей линзы фокус мнимый. Поэтому изображение, даваемое рассеивающей линзой, всегда мнимое, уменьшенное, прямое и находится между линзой и ее фокусом со стороны изображаемого предмета.


А что делать, если основание предмета находится на главной оптической оси, но сам предмет не перпендикуляре ней? Как строиться изображение в этом случае?

Для удобства уберем наш предмет, оставив только точку, изображение которой нам надо построить.

Чтобы найти, где образуется изображение нашей точки, проведем два луча: первый луч АО, вдоль главной оптической оси (он проходит через оптический центр линзы, не испытывая преломления), а второй луч, например AK, падающий на линзу в произвольной точке K. Здесь главное помнить, что такой луч, после преломления в линзе, не пойдет через ее главный фокус. Для того чтобы найти дальнейший ход этого луча нам необходимо совершить несколько операций.


Во-первых, проведем побочную оптическую ось, параллельную нашему лучу AK.

Затем начертим заднюю фокальную плоскость в случае собирающей линзы или переднюю — в случае рассеивающей линзы.

Как можно заметить, наша побочная оптическая ось пересеклась с фокальной плоскостью в точке, которую называют побочным фокусом линзы F. Через этот побочный фокус и пойдут все параллельные побочной оптической оси лучи после преломления в собирающей линзе, или их продолжения в рассеивающей, а следовательно, и наш луч AK. Преломленный луч (или его продолжение) пересечет оптическую ось в точке A1,которая и является изображением точки А.

Выведем формулу, которая свяжет три величины — расстояние от предмета до линзы, расстояние от линзы до изображения и фокус линзы. Рассмотрим собирающую линзу, предмет AB и его изображение в этой линзе A1B1.


Из подобия треугольников


Аналогично, из подобия треугольников


Из построений видно, что


Исходя из этого, можно записать, что


Заменив стороны треугольников через введенные ранее величины, и разделив полученное уравнение на расстояние от линзы до изображения, получим формулу тонкой линзы для рассмотренного случая.


В общем же виде, формула тонкой линзы записывается следующим образом:


Величину, равную обратному фокусному расстоянию линзы, выраженному в метрах, называют оптической силой линзы. Она обозначается большой латинской буквой D и измеряется в диоптриях (сокращенно дптр).


Впервые, полученную нами формулу тонкой линзы, вывел Иоганн Кеплер в 1604 году. Он изучал преломления света при малых углах падения в линзах различной конфигурации.

Для практического использования формулы тонкой линзы, нам следует запомнить правило знаков:

для собирающей линзы, действительных источника и изображения, фокусное расстояние, расстояние от предмета до линзы и от линзы до изображения считают положительными;

для рассеивающей линзы, мнимых источника и изображения, фокусное расстояние, расстояние от предмета до линзы и от линзы до изображения считают отрицательными.

Стоит отметить сразу, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей, продолжения которых пересекаются водной точке.

Как можно заметить, чаще всего, изображение, получаемое с помощью тонкой линзы, отличается своими размерами от предмета. Так вот, это различие между размерами предмета и размерами его изображения принято характеризовать линейным (или поперечным) увеличением линзы.

Линейное увеличение линзы — это отношение линейного размера изображения к линейному размеру предмета. Обозначается оно большой греческой буквой G.


Если вернуться к рисунку для вывода формулы тонкой линзы, то можно заметить, что


Тогда можно записать, что линейное увеличение линзы равно отношению расстояния от линзы до изображения к расстоянию от предмета до линзы.


Основные выводы:

– Линзой называется прозрачное тело, ограниченное криволинейными поверхностями.

– Линзы делятся на собирающие и рассеивающие.

– Оптическая сила линзы — величина, обратная ее фокусному расстоянию.

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка , то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке .

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка называется изображением точки .

Если в точке пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке концентрируется энергия световых лучей.

Если же в точке пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга - достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть - расстояние от точки до линзы, - фокусное расстояние линзы. Имеются два принципиально разных случая: f' alt='a>f' /> и (а также промежуточный случай ). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: f' alt='a>f' /> . Точечный источник света расположен дальше от линзы, чем левая фокальная плоскость (рис. 1 ).


Рис. 1. Случай a>f: действительное изображение точки S

Луч , идущий через оптический центр, не преломляется. Мы возьмём произвольный луч , построим точку , в которой преломлённый луч пересекается с лучом , а затем покажем, что положение точки не зависит от выбора луча (иными словами, точка является одной и той же для всевозможных лучей ). Тем самым окажется, что все лучи, исходящие из точки , после преломления в линзе пересекаются в точке и теорема об изображении будет доказана для рассматриваемого случая f' alt='a>f' /> .

Точку мы найдём, построив дальнейший ход луча . Делать это мы умеем: параллельно лучу проводим побочную оптическую ось до пересечения с фокальной плоскостью в побочном фокусе , после чего проводим преломлённый луч до пересечения с лучом в точке .

Теперь будем искать расстояние от точки до линзы. Мы покажем, что это расстояние выражается только через и , т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча .

Опустим перпендикуляры и на главную оптическую ось. Проведём также параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

Но , так что соотношение (4) переписывается в виде:

Отсюда находим искомое расстояние от точки до линзы:

Как видим, оно и в самом деле не зависит от выбора луча . Следовательно, любой луч после преломления в линзе пройдёт через построенную нами точку , и эта точка будет действительным изображением источника

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника пересекаются после линзы в одной точке - его изображении - то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

- луч, идущий через оптический центр линзы - он не преломляется;
- луч, параллельный главной оптической оси - после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2 .


Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка лежит на главной оптической оси, то удобный луч остаётся лишь один - идущий вдоль главной оптической оси. В качестве второго луча приходится брать "неудобный" (рис. 3 ).


Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5 ). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

Теперь разделим обе части этого равенства на a:

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для f' alt='a>f' /> . В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6) . Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что не зависит от расстояния (рис. 1, 2 ) между источником и главной оптической осью!

Это означает, что какую бы точку отрезка мы ни взяли, её изображение будет находиться на одном и том же расстоянии от линзы. Оно будет лежать на отрезке - а именно, на пересечении отрезка с лучом , который пойдёт сквозь линзу без преломления. В частности, изображением точки будет точка .

Тем самым мы установили важный факт: изображением отрезка лужит отрезок . Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить - прямым или перевёрнутым получается изображение.

Собирающая линза: действительное изображение предмета.

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая f' alt='a>f' /> . Здесь можно выделить три характерных ситуации.

1. . Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4 ; двойной фокус обозначен ). Из формулы линзы следует, что в этом случае будет 2f' alt='b>2f' /> (почему?).


Рис. 4.

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах - эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым - чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г - (это заглавная греческая "гамма"):

Из подобия треугольников и получим:

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. . В этом случае из формулы (6) находим, что и . Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5 ).


Рис. 5.a=2f: размер изображения равен размеру предмета

3. 2f' alt='a>2f' /> . В этом случае из формулы линзы следует, что (почему?). Линейное увеличение линзы будет меньше единицы - изображение действительное, перевёрнутое, уменьшенное (рис. 6 ).


Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов - словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая f' alt='a>f' /> нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

Собирающая линза: мнимое изображение точки.

Второй случай: . Точечный источник света расположен между линзой и фокальной плоскостью (рис. 7 ).

Теорема об изображении утверждает, что точка будет одной и той же для всех лучей , исходящих из точки . Мы опять докажем это с помощью трёх пар подобных треугольников:

Снова обозначая через расстояние от до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

Величина не зависит от луча , что и доказывает теорему об изображении для нашего случая . Итак, - мнимое изображение источника . Если точка не лежит на главной оптической оси, то для построения изображения удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8 ).


Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка лежит на главной оптической оси, то деваться некуда - придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9 ).


Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая . Сначала переписываем это соотношение в виде:

а затем делим обе части полученного равенства на a:

Сравнивая (7) и (11) , мы видим небольшую разницу: перед слагаемым стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина , вычисляемая по формуле (10) , не зависит также от расстояния между точкой и главной оптической осью. Как и выше (вспомните рассуждение с точкой ), это означает, что изображением отрезка на рис. 9 будет отрезок .

Собирающая линза: мнимое изображение предмета.

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10 ). Оно получается мнимым, прямым и увеличенным.


Рис. 10. : изображение мнимое, прямое, увеличенное

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло - лупу. Случай полностью разобран. Как видите, он качественно отличается от нашего первого случая f' alt='a>f' /> . Это не удивительно - ведь между ними лежит промежуточный "катастрофический" случай .

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай: . Источник света расположен в фокальной плоскости линзы (рис. 11 ).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости - а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника , расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.


Рис. 11. a=f: изображение отсутствует

Где же изображение точки ? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае - изображение находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч и произвольный луч (рис. 12 ). На выходе из линзы имеем два расходящихся луча и , которые наш глаз достраивает до пересечения в точке .


Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении - о том, что точка будет одной и той же для всех лучей . Действуем с помощью всё тех же трёх пар подобных треугольников:

Величина b не зависит от луча span
, поэтому продолжения всех преломлённых лучей span
пересекутся в точке - мнимом изображении точки . Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10) . В случае их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации f' alt='a>f' /> и .

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника - случай тут, как мы и сказали выше, имеется только один.

Если точка не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой - параллельно главной оптической оси (рис. 13 ).


Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14 ).


Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

а потом разделим обе части полученного равенства на a:

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7) , (11) и (14) можно записать единообразно:

если соблюдать следующую договорённость о знаках:

- для мнимого изображения величина считается отрицательной;
- для рассеивающей линзы величина считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

Рассеивающая линза: мнимое изображение предмета.

Величина , вычисляемая по формуле (13) , опять-таки не зависит от расстояния между точкой и главной оптической осью. Это снова даёт нам возможность построить изображение предмета , которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15 ).

Читайте также: