Законы распространения света кратко

Обновлено: 03.07.2024

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:


Закон преломления был экспериментально установлен голландским ученым Виллебрордом Снелиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:


Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:


Рис 3.1.1 иллюстрирует законы отражения и преломления света.


Законы отражения и преломления: γ = α; n1 sin α = n2 sin β.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n2 1 – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух (n = 1,5) критический угол равен αпр = 42°, для границы вода–воздух (n = 1,33) αпр = 48,7°.


Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.


Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Геометрическая оптика. Основные законы геометрической оптики

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Закон отражения света, основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Закон преломления света, базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления.

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2 :

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Геометрическая оптика. Основные законы геометрической оптики

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной.

В условиях перехода света из одной среды, уступающей в оптической плотности другой ( n 2 n 1 ) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р . Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2 ).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 1 .

При условии, что второй средой будет воздух ( n 2 ≈ 1 ) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

Геометрическая оптика. Основные законы геометрической оптики

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Практическое применение явления полного отражения

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3 ).

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Практическое применение явления полного отражения

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.


1. В основе явления распространения света лежат три закона: закон прямолинейного распространения света, закон отражения света и закон преломления света.

Закон прямолинейного распространения света: в однородной среде свет распространяется прямолинейно. Однородная среда — это среда, состоящая из одного и того же вещества, например, воздух, вода, стекло, масло и пр. Наблюдать прямолинейное распространение света можно в затемненной комнате, в которую через небольшое отверстие проникает луч света.

Следствием прямолинейного распространения света является то, что свет не проникает за экраны, ширмы и другие преграды. Однако если преграда очень мала, например, если это волос, тонкая нить и т.п., то за неё свет будет проникать, т.е. свет в определённых условиях
свет отклоняется от прямолинейного распространения.

Прямолинейное распространение света объясняет образование тени от предметов. На рисунке 97 показано распространение света от точечного источника.


Точечный источник — это такой источник, размеры которого малы по сравнению с расстоянием от него до наблюдателя. На рисунке видно, что на экране образуется чёткая
тень предмета.

На рисунке 98 показано распространение света от протяжённого источника.


В этом случае на экране образуются область тени и область полутени. Тень — область, в которую свет не попадает, в область полутени свет попадает от одной части источника света.

Зная, как образуется тень, можно объяснить солнечные и лунные затмения.

2. Если среда, в которой распространяется свет неоднородная, т.е. свет падает на границу раздела двух сред, то свет изменяет направление распространения. На границе раздела двух сред происходят три явления: отражение света от границы раздела сред, преломление и поглощение веществом (рис. 99).


На рисунке 99 АО — падающий луч, ОВ — отражённый луч, ОС — преломлённый луч; угол (​ \( \alpha \) ​ между падающим лучом и перпендикуляром к границе раздела сред — угол падения луча, угол ​ \( \beta \) ​ между отражённым лучом и перпендикуляром к границе раздела сред — угол отражения, угол ​ \( \gamma \) ​ между преломлённым лучом и перпендикуляром к границе раздела сред — угол преломления.

При изменении угла падения изменяется угол отражения, но при этом отражение света подчиняется закону отражения:

  • угол отражения света равен углу падения ​ \( (\beta=\alpha) \) ​,
  • лучи падающий и отражённый, а также перпендикуляр, восставленный к границе раздела двух сред, лежат в одной плоскости.

Из закона отражения света следует, что падающий и отражённый лучи обратимы.

Если свет отражается от гладкой поверхности, то отражение называется зеркальным. В этом случае, если на поверхность падают параллельные лучи, то отражённые лучи тоже будут параллельными (рис. 100).


Если параллельные лучи падают на шероховатую поверхность, то отражённые лучи будут направлены в разные стороны. Это отражение называют рассеянным или диффузным.

3. На рисунке 101 приведено построение изображения в плоском зеркале. Как показывают опыт и построение изображения предмета в плоском зеркале на основе закона отражения:


  • плоское зеркало дает прямое изображение предмета;
  • изображение имеет те же размеры, что и предмет;
  • расстояние от предмета до зеркала равно расстоянию от зеркала до изображения.

Иными словами предмет и его изображение симметричны относительно зеркала.

Изображение предмета в плоском зеркале является мнимым. Мнимое изображение — это такое изображение, которое формируется глазом. В точке ​ \( S’ \) ​ собираются не сами лучи, а их продолжение, энергия в эту точку не поступает.

4. Изменение направления распространения света при переходе в другую среду называют преломлением света.

Эксперименты свидетельствуют о том, что при увеличении угла падения увеличивается угол преломления. Из опытов также следует, что соотношение углов падения и преломления зависит от оптической плотности среды.

Оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света, тем меньше оптическая плотность среды. Так, оптическая плотность воздуха меньше, чем стекла, масла и пр., поскольку скорость света в этих средах меньше, чем в воздухе.

Явление преломления света подчиняется следующим закономерностям:

  • если свет переходит из среды оптически менее плотной в среду оптически более плотную, то угол преломления меньше угла падения ​ \( (\gamma ​;
  • если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения \( (\gamma>\alpha) \) ;
  • лучи падающий и преломлённый, а также перпендикуляр, восставленный к границе раздела двух сред, лежат в одной плоскости.

При переходе света из одной среды в другую его интенсивность несколько уменьшается. Это связано с тем, что свет частично поглощается средой.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке изображены точечный источник света ​ \( L \) ​, предмет ​ \( K \) ​ и экран, на котором получают тень от предмета. При мере удаления предмета от источника света и приближения его к экрану (см. рисунок)


1) размеры тени будут уменьшаться
2) размеры тени будут увеличиваться
3) границы тени будут размываться
4) границы тени будут становиться более чёткими

2. Размеры изображения предмета в плоском зеркале

1) больше размеров предмета
2) равны размерам предмета
3) меньше размеров предмета
4) больше, равны или меньше размеров предмета в зависимости от расстояния между предметом и зеркалом

3. Луч света падает на плоское зеркало. Угол между падающим лучом и отражённым увеличили на 30°. Угол между зеркалом и отражённым лучом

1) увеличился на 30°
2) увеличился на 15°
3) уменьшился на 30°
4) уменьшился на 15°

4. Какое из изображений — А, Б, В или Г — соответствует предмету MN, находящемуся перед зеркалом?


5. Предмет, расположенный перед плоским зеркалом, приблизили к нему на 5 см. Как изменилось расстояние между предметом и его изображением?

1) увеличилось на 5 см
2) уменьшилось на 5 см
3) увеличилось на 10 см
4) уменьшилось на 10 см

6. Предмет, расположенный перед плоским зеркалом, удалили от него так, что расстояние между предметом и его изображением увеличилось в 2 раза. Во сколько раз увеличилось расстояние между предметом и зеркалом?

1) в 0,5 раза
2) в 2 раза
3) в 4 раза
4) в 8 раз

7. Чему равен угол падения луча на границе вода — воздух, если известно, что угол преломления равен углу падения?

8. Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред. Какое из направлений 1-4 соответствует преломлённому лучу?


9. Свет распространяется из масла в воздух, преломляясь на границе раздела этих сред. Па каком рисунке правильно представлены падающий и преломлённый лучи?


10. Световой луч падает на границу раздела двух сред. Скорость света во второй среде


1) равна скорости света в первой среде
2) больше скорости света в первой среде
3) меньше скорости света в первой среде
4) используя один луч, нельзя дать точный

11. Для каждого примера из первого столбца подберите соответствующее физическое явление из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) отражение света
2) преломление света
3) дисперсия света
4) отражение звуковых волн
5) преломление звуковых волн

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу

1) угол преломления равен углу падения, если оптическая плотность двух граничащих сред одинакова
2) чем больше показатель преломления среды, тем больше скорость света в ней
3) полное внутреннее отражение происходит при переходе света из среды оптически более плотной в среду оптически менее плотную
4) угол преломления всегда меньше угла падения
5) угол преломления всегда равен углу падения

Раздел физики, посвященный изучению природы света, законов его распространения и взаимодействия с веществом называется физической оптикой.

Оптическое излучение (излучение с длинами волн от 1нмдо 1мм(УФ, видимая и ИК области спектра) представляет собой единство двух процессов – волнового и квантового. Такие явления, как интерференция, дифракция и поляризация, могут быть объяснены волновой природой света, а фотоэффект (люминесценция, атомные и молекулярные спектры) – квантовой теорией.

При распространении света происходит его усиление в одних точках пространства и ослабление в других в результате наложения двух или нескольких волн (интерференция), а также отклонение его от прямолинейного пути, когда на его пути встречаются препятствия соизмеримые с длиной волны (дифракция).

Однако, многие оптические явления, в частности действие большого числа оптических приборов, можно рассматривать исходя из представления о световых лучах как направлениях распространения энергии, которые является нормалями к волновой поверхности. Т.о. световой луч, есть абстрактное математическое понятие, а геометрическая оптика является частным случаем физической оптики (D>>l и l®0).

Геометрическая оптика – раздел физической оптики, в котором рассматривается распространение света без учета его волновых свойств и электромагнитной природы.

В приближении геометрической оптики предполагают, что длиной волны света можно пренебречь, и под лучом понимают узкую световую трубку. Такое представление упрощает рассмотрение ряда явлений, но является приближенным, поскольку луч (в таком понимании) расплывается в пространстве.

Основные выводы геометрической оптики создают необходимый математический аппарат для проектирования и расчета оптических систем.

1. Закон прямолинейного распространения света:распространение света между двумя точками в однородной (n = const) и изотропной среде осуществляется по прямой линии.

На основе закона объясняют явления солнечных и лунных затмений, геодезические и астрономические измерения, образование теней и полутеней.

Закон неприменим для лучей, проходящих через малое отверстие, край диафрагмы или любой задерживающий экран, где проявляется явление дифракции, а также, если среда является неоднородной.

2. Закон независимости распространения света: отдельные лучи и пучки, встречаясь, друг с другом и пересекаясь, не оказывают взаимного влияния. Явление интерференции не учитывают.

Закон справедлив для лучей, выходящих из различных центров излучения; не применим для лазерного излучения.

3. Закон преломления: на границе прозрачных сред луч, падающий и преломленный, вместе с нормалью к поверхности в точке падения луча лежат в одной плоскости, а отношение синуса угла падения лучей к синусу угла преломления для двух данных оптических сред есть величина постоянная (рис. 1.1).

Это отношение называется относительным показателем преломлениядвух сред.

Оптическая среда – это прозрачная среда с точно известным значением показателя преломления и средней дисперсии. Среда с большим показателем преломления называется средой оптически более плотной, а с меньшим – оптически менее плотной.

Все оптические среды характеризуются абсолютным показателем преломления (или просто показателем преломления) n, представляющим собой отношение синуса угла падения к синусу угла преломления при переходе луча из вакуума в данную среду.

Показатель преломления вакуума равен единице, а показатель преломления воздуха мало отличается от единицы nв=1,00027.

Читайте также: