Законы менделя и моргана кратко

Обновлено: 05.07.2024

Г. И. Мендель является наиболее известным чешским ученым. Будущий естествоиспытатель родился в Австрийской империи в обычной небогатой крестьянской семье, получив при крещении имя Иоганн.

Природа начала интересовать ребенка с ранних лет, в то время, когда он работал помощником садовника и непосредственно садовником. Некоторое время Мендель учился в институте Ольмюца в философских классах. После этого он 1843 году постригся в монахи и принял новое имя — Грегор.

Значится в биографии ученого и период, когда он учился в Брюннском богословском институте (с 1844 по 1848 год), а после учебы стал священником.

Во время учебы будущий ученый самостоятельно осваивал различные науки. Также он изучал естественную историю в Венском университете.

Непосредственно в Вене ученый стал интересоваться процессами гибридизации, а также статистическим соотношением гибридов. Особое внимание Мендель уделял вопросам, касающимся изменений качественных признаков у растений. В качестве объекта для исследований ученый выбрал горох — это растение можно было без проблем вырастить в саду монастыря.

Первые успехи подтолкнули ученого перенести эксперименты на другие растения и насекомых — он выбрал растение семейства астровых (скрещивал разновидности ястребинки) и пчел (скрещивал разновидности пчел). К сожалению, полученные результаты не были такими же успешными, как в случае с горохом. А все дело было в том, что, как уже известно сегодня, механизм наследования признаков у этих растений и животных не такой, как механизм наследования у гороха.

За этим последовало разочарование Менделя в биологии. Он был назначен настоятелем монастыря и больше не занимался наукой. Однако его заслуги сложно переоценить: именно он нашел и описал статистические закономерности наследования признаков у гибридов.

Кратко рассмотрим законы Менделя. Всего существует три закона Менделя.

Первый закон Менделя

Чтобы облегчить учет результатов исследования, Мендель целенаправленно взял растения, у которых признаки четко различались: цвет и форма семян.

Когда происходило скрещивание разных сортов гороха — с пурпурными и белыми цветками — первое поколение гибридов было представлено растениями с пурпурными цветками. Такие же результаты были получены и при скрещивании гороха с желтыми и зелеными семенами, а также с семенами гладкой и морщинистой формы.

Полученные результаты позволили Менделю сформулировать закон единообразия гибридов первого поколения — 1 закон Менделя.

Вот формулировка первого закона Менделя.

1-й закон Менделя подразумевает, что при скрещивании двух гомозиготных организмов, относящихся к чистым линиям и отличающихся друг от друга одной парой альтернативных проявлений определенного признака, первое поколение гибридов (F1) будет одинаковым и будет нести проявление признака лишь одного из родителей.

Первый закон Мендаля также получил название закона доминирования признаков. Суть его заключается в том, что доминирующий признак получает проявление в фенотипе и подавляет рецессивный признак.

Схема 1-го закона Г. Менделя.

Законы наследственности Г. Менделя

Второй закон Менделя

При последующем исследовании гибридов первого поколения Менделем было обнаружено, что при дальнейшем скрещивании между собой гибридов первого поколения, у гибридов второго поколения будет наблюдаться расщепление признаков — при чем, с устойчивым постоянством.

Формулировка второго закона Менделя выглядит так:

В результате скрещивания двух гетерозиготных потомств первого поколения между собой, можно наблюдать расщепление во втором поколении. Это расщепление имеет определенное числовое соотношение по фенотипу — 3:1, а по генотипу — 1:2:1.

2 закон Менделя также называют законом расщепления, и его суть заключается в том, что рецессивный признак у гибридов первого поколения не пропадает, а только подавляется с последующим проявлением во втором гибридном поколении.

Схема 2-го закона Г. Менделя.

Законы наследственности Г. Менделя

Третий закон Менделя

От 1 и 2 закона Менделя плавно переходим к 3-му.

Первые опыты, проводимые Менделем, были основаны на всего лишь одной паре альтернативных признаков. В этом случае ему уже стало интересно, что будет, если рассмотреть сразу несколько признаков.

В результате признаки стали между собой комбинироваться, что вызвало растерянность у ученого. Однако детальное рассмотрение позволило ученому вывести определенную закономерность расщепления.

Стало понятно, что гибриды первого поколения характеризуются однообразностью, а во втором поколении происходит расщепление признаков по фенотипу в пропорции 9:3:3:1. При чем, вне зависимости от другого признака. 3 закон Менделя получил название закона независимого наследования.

Вот как формулируется закон наследования признаков.

Третий закон наследственности гласит, что при скрещивании двух особей, отличающихся одна от другой по нескольким парам альтернативных признаков (двум и более), происходит независимое наследование генов и соответствующих им признаков, а также комбинирование во всех доступных сочетаниях (как при моногибридном скрещивании).

Вот схема 3-го закона Мендаля.

Законы наследственности Г. Менделя

Все эти законы Грегора Менделя, заложили начало новой науки — генетики. Именно благодаря законам Менделя генетика стала популярной и быстро развивающейся наукой, а само словосочетание pfrjy vtyltkz стало широко известным.


Третий закон Менделя о независимом наследовании нарушается, если гены находятся в одной хромосоме и наследуются сцепленно. Впервые явление сцепленных генов, т.е. расположенных в одной хромосоме, наблюдал генетик Томас Морган. Впоследствии одновременное наследование двух признаков было названо законом Моргана.


Хромосомы

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Хромосома

Рис. 1. Хромосома.

Мендель рассматривал признаки, находящиеся в разных хромосомах. При скрещивании образуются разные комбинации генов, формирующие генотип индивида.

В отличие от закона Менделя закон Моргана применим к генам, находящимся в одной хромосоме.

Закон

Формулировка закона звучит следующим образом: гены, расположенные в одной хромосоме близко друг к другу, образуют группу и наследуются сцеплено. Число сцепленных групп соответствует гаплоидному набору – половине полного набора хромосом. У человека 46 хромосом, т.е. 23 пары, соответственно 23 группы сцепления.

которые читают вместе с этой




Закон Моргана

Рис. 2. Закон Моргана.

Частота наследования зависит от расстояния между генами. Чем ближе находятся гены, образующие группы, тем чаще наследуются сцепленные признаки, т.е. при близком расположении сильнее сила сцепления.

Примеры сцепленного наследования:

  • окраска семян кукурузы сцеплена со структурой их поверхности (гладкая или морщинистая);
  • окраска цветков душистого горошка сцеплена с формой пыльцы;
  • болезни (дальтонизм, гемофилия) сцепленны с Х-хромосомой.

Если гены не сцеплены, то образуется четыре типа гамет AaBb – AB, aB, Ab, ab. При скрещивании гибридов соотношение фенотипов будет 9:3:3:1 (произойдёт расщепление).

При сцепленном наследовании образуется два типа гамет – AB и ab. В этом случае поколение F2 даст потомство с фенотипом 3:1.

Кроссинговер

Закон сцепленного наследования Т. Моргана может нарушаться. Происходит обмен участками генов между гомологичными хромосомами, и образуются новые комбинации генов. Такое явление называется кроссинговером. Нарушение связей происходит в мейозе при конъюгации (I профаза – сближение и соединение). Гомологичные хромосомы обмениваются участками, нарушая сцепленные связи. В этом случае полностью соблюдается третий закон Менделя.

Кроссинговер

Рис. 3. Кроссинговер.

Работа Моргана заключалась в следующем:

  • мушки дрозофилы имеют сцепленные гены – особи с серым телом (A) имеют длинные крылья (B), а особи с чёрным телом (a) – короткие крылья (b);
  • при скрещивании двух особей с генотипом AABB и aabb всё первое поколение (100 %) будет серым с длинными крыльями (AaBb);
  • предполагалось, что при анализирующем скрещивании AaBb с aabb по закону Менделя соотношение фенотипов будет 1:1:1:1 (по 25 %), т.е. AaBb, Aabb, aaBb, aabb, следовательно, гены лежат в разных хромосомах;
  • Морган при анализирующем скрещивании получил два фенотипа – AaBb и aabb, т.к. два признака сцеплены;
  • в соответствии с кроссинговером около 7 % мушек были серые с короткими крыльями или тёмные с длинными крыльями.

Возможность кроссинговера возрастает, если сцепленные гены расположены на значительном расстоянии друг от друга. Чем ниже процент кроссинговера, тем больше вероятность сцепленного наследования.

Что мы узнали?

Из урока 9 класса биологии узнали о строении хромосом и законе Томаса Моргана, связанном с расположением генов. Находящиеся в тесном сцеплении гены наследуются вместе. Связь может нарушаться при кроссинговере – явлении, при котором образуются новые комбинации генов из ранее сцепленных групп.

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.

Содержание:

Закон независимого наследования признаков

Закон единообразия

Порядок проведения эксперимента

Результат

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

Закон расщепления

Порядок проведения эксперимента

Результат


Из-за самостоятельного опыления появились семена желтого и зелёного цвета. А поскольку жёлтый цвет является доминантным признаком, то соотношение семян желтого цвета к зеленому составило 3 к 1.

Разделение, а точнее расщепление родительского типа на два различных, дало название второму закону.

Поэтому строение растений:

Третий закон независимого наследования признаков

Порядок проведения эксперимента

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

желтый цвет и гладкие семена;

желтый цвет и ребристые семена;

зеленый цвет и гладкие семена;

зеленый цвет и ребристые семена.


Таким образом строение растений:

Таким образом соотношение цветов и гладкости: 9-3-3-1.

Заключение

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

При скрещивании гомозиготных родительских форм, отличающихся по одной паре альтернативных признаков, все гибриды первого поколения будут единообразны как по генотипу, так и по фенотипу.

А — жёлтые семена; а — зелёные семена.


Второй закон Менделя

При скрещивании гетерозиготных гибридов первого поколения в потомстве будет наблюдаться преобладание одного из признаков в соотношении 3:1 по фенотипу (1:2:1 по генотипу).


Третий закон Менделя

При скрещивании гомозиготных родительских форм, отличающихся по двум и более парам признаков, во втором поколении будет происходить независимое расщепление данных признаков в соотношении 3:1 (9:3:3:1 при дигибридном скрещивании).



* На данном месте может находиться как доминантный, так и рецессивный ген.

Третий закон Менделя применим только к случаям независимого наследования, когда гены расположены в разных парах гомологичных хромосом. Если гены расположены в одной паре гомологичных хромосом, действительны закономерности сцепленного наследования.

Сцепленное наследование — совместное наследование генов, находящихся в одной хромосоме. При сцепленном наследовании наблюдается явление кроссинговера — перекреста гомологичных хромосом в процессе мейоза и обмен участками между хромосомами.

Закономерности сцепленного наследования были изучены Т. Морганом.

Гены, локализованные в одной хромосоме, занимают определённое место, называемое локусом, и наследуются сцепленно, причем сила сцепления обратно пропорциональна расстоянию между генами.

Гены, расположенные в хромосоме непосредственно друг за другом (вероятность кроссинговера крайне мала), называются сцепленными полностью, а если между ними находится ещё хотя бы один ген, то они сцеплены не полностью, и их сцепление нарушается при кроссинговере в результате обмена участками гомологичных хромосом.

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Читайте также: