Закон преломления волн кратко

Обновлено: 04.07.2024

ПРЕЛОМЛЕ́НИЕ ВОЛН, из­ме­не­ние на­прав­ле­ния рас­про­стра­не­ния волн в не­од­но­род­ной сре­де, обу­слов­лен­ное за­ви­си­мо­стью фа­зо­вой ско­ро­сти вол­ны от ко­ор­ди­на­ты. П. в. мо­жет рас­смат­ри­вать­ся как не­за­ви­си­мое от ди­фрак­ции волн яв­ле­ние толь­ко в рам­ках при­ме­ни­мо­сти лу­че­во­го опи­са­ния вол­но­вых про­цес­сов (см. Гео­мет­ри­че­ская аку­сти­ка , Гео­мет­ри­че­ская оп­ти­ка ). Раз­ли­ча­ют П. в. на пло­ской или плав­но изо­гну­той (в мас­шта­бе длин волн) гра­ни­це раз­де­ла од­но­род­ных сред и П. в. в плав­но не­од­но­род­ной (в мас­шта­бе дли­ны вол­ны) сре­де (в этом слу­чае П. в. на­зы­ва­ют реф­рак­ци­ей волн ).

Физика

Электродинамика

Магнитное поле

Механические колебания

Электромагнитные колебания

Механические волны

Электромагнитные волны

Оптика

Геометрическая оптика

Задачи на сферическое зеркало

Линза

Волновая оптика

Основы теории относительности

Основы квантовой физики

Излучения и спектры

Световые кванты

Атомная физика

Ядерная физика

Физика элементарных частиц

Открытие позитрона. Античастицы

Современная физическая картина мира

Современная физическая картина мира

Строение Вселенной

Строение Вселенной

Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд


Преломление волны на границе двух сред с разной скоростью ее распространения. Граница сред - бледная еле заметная прямая линия, проходящая слева снизу вправо вверх, примерно под 20° к горизонтали; пунктирная линия - нормаль к границе; левая красная стрелка и штриховая линия, ее продолжающая, соответствуют направлению распространения первоначальной (падающей) волны, правая красная стрелка - преломленной волны (обе стрелки изображают волновой вектор волны до и после преломления).

Преломле́ние (рефра́кция) — явление изменения пути следования светового луча (или других волн), возникающее на границе раздела двух прозрачных (проницаемых для этих волн) сред или в толще среды с непрерывно изменяющимися свойствами. Преломление свойственно для многих видов излучения различной природы, например, электромагнитных и звуковых волн.

Преломление практически любых волн подчиняется закону Снелла (лишь бы длина волны не была настолько большой по сравнению с преломляющим объектом, что дифракция практически полностью замаскировала бы преломление, а среды были изотропными - что очень часто бывает на практике).

Тесно связано с преломлением такое явление, как отражение от границы прозрачных сред. В каком-то смысле это две стороны одного и того же явления. Так, например, явление полного внутреннего отражения связано с тем, что преломленной волны, которая бы удовлетворяла закону преломления для некоторых углов падения не находится, и волне приходится целиком отражаться.

Для каждого конкретного типа волн и сред имеются определенные соотношения, связывающие интенсивность падающей, преломленной и отраженной волны в зависимости от угла падения.

Физика явления


Преломление возникает, когда скорость движения волн в контактирующих средах различается (см. показатель преломления). В этом случае полное значение скорости волны должно быть разным по разные стороны границы раздела сред. Однако скорость движения гребня волны вдоль границы должна быть для обеих "половинок" волны одинаковой (ведь на границе не может быть резкого разрыва). Из геометрических соображений получается, что скорость движения гребня вдоль линии, наклоненной к направлению распространения волны под углом , выраженная через скорость гребня, измеренную в направлении распространения волны , будет

~v_\alpha = v / sin \alpha.

(Это ясно из того, что за то же время, пока волна пройдет в направлении своего распространения, то есть перпендикулярно гребню, расстояние, равное катету треугольника, вдоль наклонной линии она пройдет за это время расстояние, равное гипотенузе, а отношение этих расстояний, равное синусу угла, и даст отношение скоростей). См. также рисунки.

Тогда, записав для волны во второй среде то же самое и приравняв скорость вдоль границы раздела, получим

~v_1 / sin \alpha = v_2 / sin \beta,

~v_1 = c / n_1, v_2 = c / n_2

что эквивалентно закону Снелла, если учесть, что .


Для синусоидальной волны, характеризуемой частотой и волновым вектором, перпендикулярным (в изотропной среде, которая здесь и рассматривается) направлению распространения волны, такие же соображения дают понять, что составляющая волнового вектора, параллельная границе раздела, должна быть одинаковой до и после прохождения этой границы, что приводит к тому же выводу. (См. верхний рисунок).

Дополнительно интересно заметить, что волновой вектор фотона равен вектору его импульса, деленному на постоянную Планка, и это дает возможность дополнительной физической интерпретации закона преломления в терминах сохранения компоненты импульса вдоль границы.

В итоге на границе раздела двух контактирующих сред наблюдается преломление луча света, качественно сводящееся к тому, что углы к нормали к границе падающего и преломленного луча отличаются друг от друга, т.е. луч изламывается - преломляется.

Полное преломление

Если на поверхность раздела падает вертикально поляризованная волна под углом Брюстера, то будет наблюдаться эффект полного преломления - отраженная волна будет отсутствовать.

Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление - свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда - читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет - во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

Закон преломления (частный случай).

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. 1 .


Рис. 1. Преломление луча на границе "воздух–среда"

В точке падения проведён перпендикуляр (или, как ещё говорят, нормаль) к поверхности среды. Луч , как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью - углом падения. Луч - это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной , которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла , а для воды . Вообще, у любой среды ; показатель преломления равен единице только в вакууме. У воздуха , поэтому для воздуха с достаточной точностью можно полагать в задачах (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход "воздух–среда").

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:

Поскольку из соотношения (1) следует, что , то есть - угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: . И вот оказывается,что

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы . (1) и (2) :

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме . Приняв это во внимание и глядя на формулу . (3) , делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

Обратимость световых лучей.

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2 ) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.


Рис. 2. Преломление луча на границе "среда–воздух"

Раз геометрическая картинка не изменилась, той же самой останется и формула (1) : отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол - углом преломления.

В любом случае, как бы ни шёл луч - из воздуха в среду или из среды в воздух - работает следующее простое правило. Берём два угла - угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

Закон преломления (общий случай).

Пусть свет переходит из среды 1 с показателем преломления в среду 2 с показателем преломления . Среда с большим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 3 ). В этом случае угол падения больше угла преломления: .


Рис. 3.

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4 ). Здесь угол падения меньше угла преломления:


Рис. 4.

Оказывается, оба этих случая охватываются одной формулой - общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

Нетрудно видеть, что сформулированный ранее закон преломления для перехода "воздух–среда" является частным случаем данного закона. В самом деле, полагая в формуле (4) , мы придём к формуле (1) .

Вспомним теперь, что показатель преломления - это отношение скорости света в вакууме к скорости света в данной среде: . Подставляя это в (4) , получим:

Формула (5) естественным образом обобщает формулу (3) . Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

Полное внутреннее отражение.

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление - полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света , испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 5 ).


Рис. 5. Полное внутреннее отражение

Луч падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч ) и частично отражается назад в воду (луч ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.

Угол падения луча больше. Этот луч также разделяется на два луча - преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч будет тусклее, чем луч (то есть получит меньшую долю энергии), а отражённый луч - соответственно ярче, чем луч (он получит большую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая - преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения , которому отвечает угол преломления . В данной ситуации преломлённый луч должен был бы пойти параллельно поверхности воды, да идти уже нечему - вся энергия падающего луча целиком досталась отражённому лучу .

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение - все такие лучи целиком отражаются назад в воду. Угол называется предельным углом полного отражения.

Величину легко найти из закона преломления. Имеем:

Так, для воды предельный угол полного отражения равен:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности - вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

Читайте также: