Закон бойля мариотта кратко

Обновлено: 02.07.2024

Первый газовый закон был открыт анг­лийским ученым Р. Бойлем в 1662 г. при исследовании упругости воздуха.

Между дав­лением и объемом данной массы газа при постоянной температуре существует обратная зависимость: p ~ 1 / V .

Немного позже, в 1676 году француз­ский ученый Э. Мариотт независимо от Р. Бойля обобщенно сформулировал газо­вый закон, который теперь называют законом Бойля-Мариотта. По его утверждению, если при определенной температуре данная масса газа занимает объем V1 при давлении p1 , а в другом состоянии при этой же температуре его давление и объем рав­няются p2 и V2 , то справедливо соотно­шение:

Закон Бойля-Мариотта: если при постоянной темпе­ратуре происходит термодинамический про­цесс, вследствие которого газ переходит из одного состояния ( p1 и V1 ) в другое ( p2 и V2 ), то произведение давления на объем данной массы газа при постоянной температуре яв­ляется постоянным: pV = const .

\[ pV = const (при T = const) \]

где p — давление, V — объем, T — термодинамическая температура (изотермический процесс).

Закон Бойля-Мариотта устанав­ливает соотношение между дав­лением и объемом газа для изотермических процессов: при постоянной температуре объем V данной массы газа обратно пропорциональный его давлению P .

Термодинамический процесс, который про­исходит при постоянной температуре, на­зывается изотермическим (от гр. isos — рав­ный, therme — теплота). Графически на коор­динатной плоскости pV он изображается гиперболой, которая называется изотермой . Разным температурам отвечают разные изотермы — чем выше температура, тем выше на координатной плоскости pV находится гипербола ( T2>T1 ). Очевидно, что на координатной плоскости рТ и VT изо­термы изображаются прямыми, перпендику­лярными оси температур.

Учеными, изучающими термодинамиче­ские системы, было установлено, что из­менение одного макропараметра системы ве­дет к изменению остальных. Например, по­вышение давления внутри резинового шари­ка при его нагревании вызывает увеличение его объема; повышение температуры твердо­го тела ведет к увеличению его размеров и т. п.

Эти зависимости могут быть довольно сложными. Поэтому сначала рассмотрим су­ществующие связи между макропараметра­ми на примере простейших термодинами­ческих систем, например для разреженных газов. Экспериментально установленные для них функциональные зависимости между фи­зическими величинами называют газовыми законами.

Рис. 1.5. Опыт Р. Бойля

Первый газовый закон был открыт анг­лийским ученым Р. Бойлем в 1662 г. при исследовании упругости воздуха. Он взял длинную согнутую стеклянную трубку, за­паянную с одного конца, и начал наливать в нее ртуть до тех пор, пока в коротком колене не образовался небольшой закрытый объем воздуха (рис. 1.5). Затем доливал ртуть в длинное колено, изучая зависимость между объемом воздуха в запаянном конце трубки и давлением, созданным ртутью в левом колене. Предположение ученого о том, что между ними существует опреде­ленная зависимость, подтвердилось. Срав­нивая полученные результаты, Бойль сформу­лировал следующее положение:

между дав­лением и объемом данной массы газа при постоянной температуре существует обратная зависимость: p ~ 1 / V.

Эдм Мариотт (1620—1684). Француз­ский физик, изучавший свойства жид­костей и газов, столкновения упругих тел, колебания маятника, естественные оптические явления. Установил зави­симость между давлением и объемом газов при постоянной температуре и объяснил на ее основании разные при­менения, в частности, как найти высоту местности по показаниям барометра. До­казал увеличение объема воды при ее замерзании.


Роберт Бойль

Бойль запирал ртутью немного воздуха в закрытом конце изогнутой трубки (рис. 3-2, а) а затем сжимал этот воздух, понемногу добавляя ртуть в открытый конец трубки (рис. 3-2, б). Давление, испытываемое воздухом в закрытой части трубки, равно сумме атмосферного давления и давления столбика ртути высотой h (h — высота, на которую уровень ртути в открытом конце трубки превышает уровень ртути в закрытом конце). Полученные Бойлем данные измерения давления и объема приведены в табл. 3-1. Хотя Бойль не предпринимал специальных мер для поддержания постоянной температуры газа, по-видимому, в его опытах она менялась лишь незначительно. Тем не менее Бойль заметил, что тепло от пламени свечи вызывало значительные изменения свойств воздуха.

Зависимость объема образца газа от давления

Анализ данных о давлении и объеме воздуха при его сжатии

Таблица 3-1, которая содержит экспериментальные данные Бойля о взаимосвязи давления и объема для атмосферного воздуха, расположена под спойлером.

Экспериментальные данные Бойля о взаимосвязи давления и объема для атмосферного воздуха

Экспериментальные данные Бойля о взаимосвязи давления и объема для атмосферного воздуха

После того как исследователь получает данные, подобные приведенным в табл. 3-1, он пытается найти математическое уравнение , связывающее между собой две зависящие друг от друга величины, которые он измерял. Один из способов получения такого уравнения заключается в графическом построении зависимости различных степеней одной величины от другой в надежде получить прямолинейный график. Общее уравнение прямой линии имеет вид:

где х и у — связанные между собой переменные, а a и b — постоянные числа. Если b равно нулю, прямая линия проходит через начало координат.

Графическое представление экспериментальных данных Бойля

На рис. 3-3 показаны различные способы графического представления данных для давления Р и объема V, приведенных в табл. 3-1. Графики зависимости Р от 1/К и зависимости V от 1/Р представляют собой прямые линии, проходящие через начало координат. График зависимости логарифма Р от логарифма V также является прямой линией с отрицательным наклоном, тангенс угла которого равен — 1. Все эти три графика приводят к эквивалентным уравнениям:

Каждое из этих уравнений представляет собой один из вариантов закона Бойля-Мариотта, который обычно формулируется так: для заданного числа молей газа его давление пропорционально объему, при условии что температура газа остается постоянной.

Кстати, наверняка вам стало интересно, почему закон Бойля-Мариотта назван двойным именем. Это произошло так, потому что этот закон независимо от Роберта Бойля, который открыл его в 1662 году, был переоткрыт Эдмом Мариоттом в 1676 году. Вот так вот.

Когда взаимосвязь между двумя измеряемыми величинами проста до такой степени, как в данном случае, ее можно установить и численным способом. Если каждое значение давления Р умножить на соответствующее значение объема V, нетрудно убедиться, что все произведения для заданного образца газа при постоянной температуре оказываются приблизительно одинаковыми (см. табл. 3-1). Таким образом, можно записать, что

Уравнение (З-Зг) описывает гиперболическую зависимость между величинами Р и V (см. рис. 3-3,а). Для проверки того, что построенный по экспериментальным данным график зависимости Р от V действительно соответствует гиперболе, построим еще дополнительный график зависимости произведения P·V от Р и убедимся, что он представляет собой горизонтальную прямую линию (см. рис. 3-3,д).

Бойль установил, что для заданного количества любого газа при постоянной температуре взаимосвязь между давлением Р и объемом V вполне удовлетворительно описывается соотношением

Формула из закона Бойля-Мариотта

Для сопоставления объемов и давлений одного и того же образца газа при различных условиях (но постоянной температуре) удобно представить закон Бойля-Мариотта в следующей формуле:

где индексы 1 и 2 соответствуют двум различным условиям.

Пример 4. Доставляемые на плато Колорадо пластмассовые мешочки с пищевыми продуктами (см. пример 3) часто лопаются, потому что воздух, находящийся в них, при подъеме от уровня моря на высоту 2500 м, в условиях пониженного атмосферного давления, расширяется. Если предположить, что внутри мешочка при атмосферном давлении, соответствующем уровню моря, заключено 100 см 3 воздуха, какой объем должен занимать этот воздух при той же температуре на плато Колорадо? (Допустим, что для доставки продуктов используются сморщенные мешочки, не ограничивающие расширение воздуха; недостающие данные следует взять из примера 3.)

Решение
Воспользуемся законом Бойля в форме уравнения (3-5), где индекс 1 будем относить к условиям на уровне моря, а индекс 2 — к условиям на высоте 2500 м над уровнем моря. Тогда Р1 = 1,000 атм, V1 = 100 см 3 , Р2 = 0,750 атм, а V2 следует вычислить. Итак,

Закон Бойл это то, что выражает связь между давлением, оказываемым газом или на него, и объемом, занимаемым им; поддерживая постоянную температуру газа, а также его количество (количество молей).

Этот закон вместе с законом Шарля, Гей-Люссака, Шарля и Авогадро описывает поведение идеального газа; в частности, в закрытом контейнере, подверженном изменениям объема под действием механической силы.


Изображение выше кратко суммирует закон Бойля-Мариотта.

Фиолетовые точки представляют молекулы или атомы газа, которые сталкиваются с внутренними стенками контейнера (слева). При уменьшении доступного пространства или объема контейнера, занимаемого этим газом, увеличивается количество столкновений, что приводит к увеличению давления (справа).

Это показывает, что давление P и объем V газа обратно пропорциональны, если контейнер герметично закрыт; в противном случае более высокое давление будет равно большему расширению контейнера..

Если построить график V относительно P, с данными V и P по осям Y и X, соответственно, будет наблюдаться асимптотическая кривая. Чем меньше V, тем больше увеличение P; то есть кривая будет расширяться до высоких значений P на оси X.

Конечно, температура остается постоянной; но если бы один и тот же эксперимент был проведен при разных температурах, относительные положения этих кривых V против P изменились бы на декартовой оси. Изменение было бы еще более очевидным, если бы оно было нанесено на трехмерную ось с постоянной Т на оси Z.

  • 1 История закона Бойля
    • 1.1 История вопроса
    • 1.2 Эксперимент с ртутью
    • 1.3 Эдм Мариотт
    • 1.4 Усиление закона
    • 4.1 Паровые машины
    • 4.2 Sip напитки
    • 4.3 Дыхательная система
    • 5.1 Эксперимент 1
    • 5.2 Эксперимент 2

    История закона Бойля

    фон

    Поскольку ученый Галилео Галилей выразил уверенность в существовании пустоты (1638), ученые начали изучать свойства воздуха и частичных пустот.

    Англо-ирландский химик Роберт Бойль начал свое исследование свойств воздуха в 1638 году, узнав, что немецкий инженер и физик Отто фон Герике построил воздушный насос.

    Эксперимент с ртутью

    С самого начала Бойль хотел изучить эластичность воздуха, качественно и количественно. Залив ртуть через открытый конец J-образной трубки, Бойл пришел к выводу, что воздух в коротком плече трубки сжался под давлением ртути..

    результаты

    Чем больше количество ртути, добавленной в трубку, тем больше давление на воздух и тем меньше его объем. Бойл получил отрицательный график экспоненциального типа объема воздуха в зависимости от давления.

    Хотя, если вы нанесете объем воздуха против обратной величины давления, у вас будет прямая линия с положительным наклоном.

    В 1662 году Бойль опубликовал первый физический закон, который был дан в форме уравнения, которое указывало на функциональную зависимость двух переменных. В этом случае давление и объем.

    Бойл отметил, что существует обратная зависимость между давлением, оказываемым на газ, и объемом, занимаемым этим газом, причем это соотношение относительно справедливо для реальных газов. Большинство газов ведут себя как идеальные газы при умеренном давлении и температуре.

    С более высокими давлениями и более низкими температурами отклонения от поведения реальных газов идеалов стали более заметными.

    Эдм Мариотт

    Французский физик Эдме Мариотт (1620-1684) независимо открыл тот же закон в 1679 году. Но он был достоин показать, что объем меняется в зависимости от температуры. Вот почему это называется Закон Мариотта или Закон Бойля и Мариотта.

    Усиление закона

    Даниэль Бернулли (1737) усилил закон Бойля, указав, что давление газа создается воздействием частиц газа на стенки контейнера, в котором он находится..

    В 1845 году Джон Уотерстон опубликовал научную статью, в которой он сосредоточил внимание на основных принципах кинетической теории газов..

    Позднее Рудольф Клаузиус, Джеймс Максвелл и Людвиг Больцман консолидировали кинетическую теорию газов, которая связывает давление, оказываемое газом, со скоростью частиц газа в движении.

    Чем меньше объем контейнера, содержащего газ, тем больше частота ударов частиц, которые его образуют, к стенкам контейнера; и, следовательно, чем больше давление, оказываемое газом.

    Из чего состоит этот закон??

    Эксперименты, проведенные Бойлем, указывают на наличие обратной зависимости между объемом, занимаемым газом, и давлением, оказываемым на него. Тем не менее, вышеупомянутое соотношение не является полностью линейным, как показано графиком изменения объема в соответствии с давлением, приписанным Бойля.

    В законе Бойля указывается, что объем, занимаемый газом, обратно пропорционален давлению. Также указано, что произведение давления газа на его объем является постоянным.

    Математическое выражение

    Чтобы добраться до математического выражения закона Бойля-Мариотта, начнем с:

    Где это указывает, что объем, занимаемый газом, обратно пропорционален его давлению. Тем не менее, существует константа, которая определяет, насколько обратно пропорциональны эти отношения.

    Где k - постоянная пропорциональности. Очистка у вас есть:

    Произведение давления газа на его объем является постоянным. то:

    И из этого можно сделать вывод, что:

    Последнее является окончательным выражением или уравнением для закона Бойля.

    Для чего это? Какие проблемы решает закон Бойля??

    Паровые машины


    Закон Бойля-Мариотта распространяется на эксплуатацию паровых двигателей. Это двигатель внешнего сгорания, который использует преобразование тепловой энергии из количества воды в механическую энергию..

    Вода нагревается в герметически закрытом котле, и произведенный пар оказывает давление в соответствии с законом Бойля-Мариотта, который вызывает увеличение объема цилиндра при нажатии поршня..

    Линейное движение поршня преобразуется во вращательное движение за счет использования системы кривошипов и кривошипов, которые могут приводить в движение колеса локомотива или ротор электрического генератора..

    В настоящее время альтернативный паровой двигатель является малоиспользуемым двигателем, поскольку он был заменен электродвигателем и двигателем внутреннего сгорания в транспортных средствах..

    Потягивая напитки

    Всасывание безалкогольного напитка или сока из бутылки через пластиковую трубку связано с законом Бойля-Мариотта. Когда воздух всасывается из трубки с помощью рта, происходит снижение давления внутри трубки.

    Этот перепад давления облегчает движение жидкости вверх в трубке, что позволяет ей проглатываться. Этот же принцип работает при извлечении крови с помощью шприца.

    Дыхательная система


    Закон Бойля-Мариотта тесно связан с функционированием дыхательной системы. Во время фазы вдоха происходит сокращение диафрагмы и других мышц; например, внешние межреберные, которые производят расширение грудной клетки.

    Это вызывает снижение внутриплеврального давления, которое вызывает расширение легких, что приводит к увеличению объема легких. Поэтому внутрилегочное давление снижается в соответствии с тем, что указано в законе Бойля-Мариотта..

    Когда внутрилегочное давление ниже атмосферного, атмосферный воздух поступает в легкие, что приводит к повышению давления в легких; выравнивание его давления с атмосферным давлением и завершение фазы вдоха.

    Впоследствии мышцы вдоха расслабляются, а мышцы выдоха сокращаются. Кроме того, происходит легкая эластическая ретракция, явление, которое вызывает уменьшение объема легких с последующим повышением внутрилегочного давления, что может быть объяснено законом Бойля-Мариотта..

    Увеличивая внутрилегочное давление и становясь больше атмосферного давления, воздух поступает из легких внутрь атмосферы. Это происходит до тех пор, пока давление не выровняется, что завершает фазу истечения.

    Примеры (эксперименты)

    Эксперимент 1

    Небольшой баллончик плотно закрывается, образуя узел во рту, внутри шприца, в который был извлечен поршень, приблизительно 20 мл. Плунжер шприца расположен по направлению к средней части шприца, игла извлечена, а вход воздуха закрыт..

    наблюдение

    Медленно потянув за поршень инжектора, можно увидеть, что баллон надут.

    объяснение

    На стенку баллона оказывают два давления: давление на ее внутреннюю поверхность, продукт воздуха, содержащегося внутри баллона, и другое давление на внешнюю поверхность баллона, создаваемое воздухом, содержащимся в шприце..

    При вытягивании поршня инжектора внутри него создается полувакуум. Следовательно, давление воздуха на внешней поверхности стенки насоса уменьшается, что делает давление внутри насоса относительно большим..

    Это чистое давление, согласно закону Бойля-Мариотта, приведет к растяжению стенки баллона и увеличению объема баллона..

    Эксперимент 2

    Разрежьте пластиковую бутылку примерно пополам, следя за тем, чтобы разрез был как можно более горизонтальным. В устье бутылки помещен хорошо приспособленный баллон, в то же время в глубокую посуду помещается определенное количество воды..

    наблюдение

    Поместив дно бутылки с баллоном на воду посуды, баллон умеренно надувается.

    объяснение

    Вода вытесняет определенное количество воздуха, увеличивая давление воздуха на стенку бутылки и внутреннюю часть баллона. Это вызывает, согласно закону Бойля-Мариотта, увеличение объема земного шара, что визуализируется инфляцией земного шара..

    Читайте также: